/* * Memory management functions. * * Copyright 2000-2007 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* These are the most common pools, expected to be initialized first. These * ones are allocated from an array, allowing to map them to an index. */ struct pool_head pool_base_start[MAX_BASE_POOLS] = { }; unsigned int pool_base_count = 0; THREAD_LOCAL struct pool_cache_head pool_cache[MAX_BASE_POOLS] = { }; THREAD_LOCAL struct list pool_lru_head = { }; /* oldest objects */ THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */ THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */ static struct list pools = LIST_HEAD_INIT(pools); int mem_poison_byte = -1; /* Try to find an existing shared pool with the same characteristics and * returns it, otherwise creates this one. NULL is returned if no memory * is available for a new creation. Two flags are supported : * - MEM_F_SHARED to indicate that the pool may be shared with other users * - MEM_F_EXACT to indicate that the size must not be rounded up */ struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags) { struct pool_head *pool; struct pool_head *entry; struct list *start; unsigned int align; /* We need to store a (void *) at the end of the chunks. Since we know * that the malloc() function will never return such a small size, * let's round the size up to something slightly bigger, in order to * ease merging of entries. Note that the rounding is a power of two. * This extra (void *) is not accounted for in the size computation * so that the visible parts outside are not affected. * * Note: for the LRU cache, we need to store 2 doubly-linked lists. */ if (!(flags & MEM_F_EXACT)) { align = 4 * sizeof(void *); // 2 lists = 4 pointers min size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA; } /* TODO: thread: we do not lock pool list for now because all pools are * created during HAProxy startup (so before threads creation) */ start = &pools; pool = NULL; list_for_each_entry(entry, &pools, list) { if (entry->size == size) { /* either we can share this place and we take it, or * we look for a sharable one or for the next position * before which we will insert a new one. */ if (flags & entry->flags & MEM_F_SHARED) { /* we can share this one */ pool = entry; DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name); break; } } else if (entry->size > size) { /* insert before this one */ start = &entry->list; break; } } if (!pool) { if (pool_base_count < MAX_BASE_POOLS) pool = &pool_base_start[pool_base_count++]; if (!pool) { /* look for a freed entry */ for (entry = pool_base_start; entry != pool_base_start + MAX_BASE_POOLS; entry++) { if (!entry->size) { pool = entry; break; } } } if (!pool) pool = calloc(1, sizeof(*pool)); if (!pool) return NULL; if (name) strlcpy2(pool->name, name, sizeof(pool->name)); pool->size = size; pool->flags = flags; LIST_ADDQ(start, &pool->list); } pool->users++; #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_INIT(&pool->lock); #endif return pool; } #ifdef CONFIG_HAP_LOCKLESS_POOLS /* Allocates new entries for pool until there are at least + 1 * available, then returns the last one for immediate use, so that at least * are left available in the pool upon return. NULL is returned if the * last entry could not be allocated. It's important to note that at least one * allocation is always performed even if there are enough entries in the pool. * A call to the garbage collector is performed at most once in case malloc() * returns an error, before returning NULL. */ void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr = NULL, **free_list; int failed = 0; int size = pool->size; int limit = pool->limit; int allocated = pool->allocated, allocated_orig = allocated; /* stop point */ avail += pool->used; while (1) { if (limit && allocated >= limit) { HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); return NULL; } ptr = malloc(size + POOL_EXTRA); if (!ptr) { HA_ATOMIC_ADD(&pool->failed, 1); if (failed) return NULL; failed++; pool_gc(pool); continue; } if (++allocated > avail) break; free_list = pool->free_list; do { *POOL_LINK(pool, ptr) = free_list; __ha_barrier_store(); } while (HA_ATOMIC_CAS(&pool->free_list, &free_list, ptr) == 0); } HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); HA_ATOMIC_ADD(&pool->used, 1); #ifdef DEBUG_MEMORY_POOLS /* keep track of where the element was allocated from */ *POOL_LINK(pool, ptr) = (void *)pool; #endif return ptr; } void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr; ptr = __pool_refill_alloc(pool, avail); return ptr; } /* * This function frees whatever can be freed in pool . */ void pool_flush(struct pool_head *pool) { void **next, *temp; int removed = 0; if (!pool) return; do { next = pool->free_list; } while (!HA_ATOMIC_CAS(&pool->free_list, &next, NULL)); while (next) { temp = next; next = *POOL_LINK(pool, temp); removed++; free(temp); } pool->free_list = next; HA_ATOMIC_SUB(&pool->allocated, removed); /* here, we should have pool->allocate == pool->used */ } /* * This function frees whatever can be freed in all pools, but respecting * the minimum thresholds imposed by owners. It takes care of avoiding * recursion because it may be called from a signal handler. * * is unused */ void pool_gc(struct pool_head *pool_ctx) { static int recurse; int cur_recurse = 0; struct pool_head *entry; if (recurse || !HA_ATOMIC_CAS(&recurse, &cur_recurse, 1)) return; list_for_each_entry(entry, &pools, list) { while ((int)((volatile int)entry->allocated - (volatile int)entry->used) > (int)entry->minavail) { struct pool_free_list cmp, new; cmp.seq = entry->seq; __ha_barrier_load(); cmp.free_list = entry->free_list; __ha_barrier_load(); if (cmp.free_list == NULL) break; new.free_list = *POOL_LINK(entry, cmp.free_list); new.seq = cmp.seq + 1; if (__ha_cas_dw(&entry->free_list, &cmp, &new) == 0) continue; free(cmp.free_list); HA_ATOMIC_SUB(&entry->allocated, 1); } } HA_ATOMIC_STORE(&recurse, 0); } /* frees an object to the local cache, possibly pushing oldest objects to the * global pool. Must not be called directly. */ void __pool_put_to_cache(struct pool_head *pool, void *ptr, ssize_t idx) { struct pool_cache_item *item = (struct pool_cache_item *)ptr; struct pool_cache_head *ph = &pool_cache[idx]; /* never allocated or empty */ if (unlikely(ph->list.n == NULL)) { LIST_INIT(&ph->list); ph->size = pool->size; if (pool_lru_head.n == NULL) LIST_INIT(&pool_lru_head); } LIST_ADD(&ph->list, &item->by_pool); LIST_ADD(&pool_lru_head, &item->by_lru); ph->count++; pool_cache_count++; pool_cache_bytes += ph->size; if (pool_cache_bytes <= CONFIG_HAP_POOL_CACHE_SIZE) return; do { item = LIST_PREV(&pool_lru_head, struct pool_cache_item *, by_lru); /* note: by definition we remove oldest objects so they also are the * oldest in their own pools, thus their next is the pool's head. */ ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list); LIST_DEL(&item->by_pool); LIST_DEL(&item->by_lru); ph->count--; pool_cache_count--; pool_cache_bytes -= ph->size; __pool_free(pool_base_start + (ph - pool_cache), item); } while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8); } #else /* CONFIG_HAP_LOCKLESS_POOLS */ /* Allocates new entries for pool until there are at least + 1 * available, then returns the last one for immediate use, so that at least * are left available in the pool upon return. NULL is returned if the * last entry could not be allocated. It's important to note that at least one * allocation is always performed even if there are enough entries in the pool. * A call to the garbage collector is performed at most once in case malloc() * returns an error, before returning NULL. */ void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr = NULL; int failed = 0; /* stop point */ avail += pool->used; while (1) { if (pool->limit && pool->allocated >= pool->limit) return NULL; ptr = pool_alloc_area(pool->size + POOL_EXTRA); if (!ptr) { pool->failed++; if (failed) return NULL; failed++; pool_gc(pool); continue; } if (++pool->allocated > avail) break; *POOL_LINK(pool, ptr) = (void *)pool->free_list; pool->free_list = ptr; } pool->used++; #ifdef DEBUG_MEMORY_POOLS /* keep track of where the element was allocated from */ *POOL_LINK(pool, ptr) = (void *)pool; #endif return ptr; } void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr; HA_SPIN_LOCK(POOL_LOCK, &pool->lock); ptr = __pool_refill_alloc(pool, avail); HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); return ptr; } /* * This function frees whatever can be freed in pool . */ void pool_flush(struct pool_head *pool) { void *temp, *next; if (!pool) return; HA_SPIN_LOCK(POOL_LOCK, &pool->lock); next = pool->free_list; while (next) { temp = next; next = *POOL_LINK(pool, temp); pool->allocated--; pool_free_area(temp, pool->size + POOL_EXTRA); } pool->free_list = next; HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); /* here, we should have pool->allocate == pool->used */ } /* * This function frees whatever can be freed in all pools, but respecting * the minimum thresholds imposed by owners. It takes care of avoiding * recursion because it may be called from a signal handler. * * is used when pool_gc is called to release resources to allocate * an element in __pool_refill_alloc. It is important because is * already locked, so we need to skip the lock here. */ void pool_gc(struct pool_head *pool_ctx) { static int recurse; int cur_recurse = 0; struct pool_head *entry; if (recurse || !HA_ATOMIC_CAS(&recurse, &cur_recurse, 1)) return; list_for_each_entry(entry, &pools, list) { void *temp, *next; //qfprintf(stderr, "Flushing pool %s\n", entry->name); if (entry != pool_ctx) HA_SPIN_LOCK(POOL_LOCK, &entry->lock); next = entry->free_list; while (next && (int)(entry->allocated - entry->used) > (int)entry->minavail) { temp = next; next = *POOL_LINK(entry, temp); entry->allocated--; pool_free_area(temp, entry->size + POOL_EXTRA); } entry->free_list = next; if (entry != pool_ctx) HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock); } HA_ATOMIC_STORE(&recurse, 0); } #endif /* * This function destroys a pool by freeing it completely, unless it's still * in use. This should be called only under extreme circumstances. It always * returns NULL if the resulting pool is empty, easing the clearing of the old * pointer, otherwise it returns the pool. * . */ void *pool_destroy(struct pool_head *pool) { if (pool) { pool_flush(pool); if (pool->used) return pool; pool->users--; if (!pool->users) { LIST_DEL(&pool->list); #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_DESTROY(&pool->lock); #endif if ((pool - pool_base_start) < MAX_BASE_POOLS) memset(pool, 0, sizeof(*pool)); else free(pool); } } return NULL; } /* This function dumps memory usage information into the trash buffer. */ void dump_pools_to_trash() { struct pool_head *entry; unsigned long allocated, used; int nbpools; allocated = used = nbpools = 0; chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n"); list_for_each_entry(entry, &pools, list) { #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_LOCK(POOL_LOCK, &entry->lock); #endif chunk_appendf(&trash, " - Pool %s (%d bytes) : %d allocated (%u bytes), %d used, %d failures, %d users, @%p=%02d%s\n", entry->name, entry->size, entry->allocated, entry->size * entry->allocated, entry->used, entry->failed, entry->users, entry, (int)pool_get_index(entry), (entry->flags & MEM_F_SHARED) ? " [SHARED]" : ""); allocated += entry->allocated * entry->size; used += entry->used * entry->size; nbpools++; #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock); #endif } chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used.\n", nbpools, allocated, used); } /* Dump statistics on pools usage. */ void dump_pools(void) { dump_pools_to_trash(); qfprintf(stderr, "%s", trash.area); } /* This function returns the total number of failed pool allocations */ int pool_total_failures() { struct pool_head *entry; int failed = 0; list_for_each_entry(entry, &pools, list) failed += entry->failed; return failed; } /* This function returns the total amount of memory allocated in pools (in bytes) */ unsigned long pool_total_allocated() { struct pool_head *entry; unsigned long allocated = 0; list_for_each_entry(entry, &pools, list) allocated += entry->allocated * entry->size; return allocated; } /* This function returns the total amount of memory used in pools (in bytes) */ unsigned long pool_total_used() { struct pool_head *entry; unsigned long used = 0; list_for_each_entry(entry, &pools, list) used += entry->used * entry->size; return used; } /* This function dumps memory usage information onto the stream interface's * read buffer. It returns 0 as long as it does not complete, non-zero upon * completion. No state is used. */ static int cli_io_handler_dump_pools(struct appctx *appctx) { struct stream_interface *si = appctx->owner; dump_pools_to_trash(); if (ci_putchk(si_ic(si), &trash) == -1) { si_rx_room_blk(si); return 0; } return 1; } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ { { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools }, {{},} }}; __attribute__((constructor)) static void __memory_init(void) { cli_register_kw(&cli_kws); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */