/* * include/proto/connection.h * This file contains connection function prototypes * * Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _PROTO_CONNECTION_H #define _PROTO_CONNECTION_H #include #include #include #include #include #include #include #include #include extern struct pool_head *pool_head_connection; extern struct pool_head *pool_head_connstream; extern struct xprt_ops *registered_xprt[XPRT_ENTRIES]; extern struct mux_proto_list mux_proto_list; /* I/O callback for fd-based connections. It calls the read/write handlers * provided by the connection's sock_ops. */ void conn_fd_handler(int fd); /* receive a PROXY protocol header over a connection */ int conn_recv_proxy(struct connection *conn, int flag); int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote); int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst); int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote); int conn_subscribe(struct connection *conn, int event_type, void *param); int conn_unsubscribe(struct connection *conn, int event_type, void *param); /* receive a NetScaler Client IP insertion header over a connection */ int conn_recv_netscaler_cip(struct connection *conn, int flag); /* raw send() directly on the socket */ int conn_sock_send(struct connection *conn, const void *buf, int len, int flags); /* drains any pending bytes from the socket */ int conn_sock_drain(struct connection *conn); /* returns true is the transport layer is ready */ static inline int conn_xprt_ready(const struct connection *conn) { return (conn->flags & CO_FL_XPRT_READY); } /* returns true is the control layer is ready */ static inline int conn_ctrl_ready(const struct connection *conn) { return (conn->flags & CO_FL_CTRL_READY); } /* Calls the init() function of the transport layer if any and if not done yet, * and sets the CO_FL_XPRT_READY flag to indicate it was properly initialized. * Returns <0 in case of error. */ static inline int conn_xprt_init(struct connection *conn) { int ret = 0; if (!conn_xprt_ready(conn) && conn->xprt && conn->xprt->init) ret = conn->xprt->init(conn); if (ret >= 0) conn->flags |= CO_FL_XPRT_READY; return ret; } /* Calls the close() function of the transport layer if any and if not done * yet, and clears the CO_FL_XPRT_READY flag. However this is not done if the * CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the * transport layer very late if needed. */ static inline void conn_xprt_close(struct connection *conn) { if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_XPRT_TRACKED)) == CO_FL_XPRT_READY) { if (conn->xprt->close) conn->xprt->close(conn); conn->flags &= ~CO_FL_XPRT_READY; } } /* Initializes the connection's control layer which essentially consists in * registering the file descriptor for polling and setting the CO_FL_CTRL_READY * flag. The caller is responsible for ensuring that the control layer is * already assigned to the connection prior to the call. */ static inline void conn_ctrl_init(struct connection *conn) { if (!conn_ctrl_ready(conn)) { int fd = conn->handle.fd; fd_insert(fd, conn, conn_fd_handler, tid_bit); /* mark the fd as ready so as not to needlessly poll at the beginning */ fd_may_recv(fd); fd_may_send(fd); conn->flags |= CO_FL_CTRL_READY; } } /* Deletes the FD if the transport layer is already gone. Once done, * it then removes the CO_FL_CTRL_READY flag. */ static inline void conn_ctrl_close(struct connection *conn) { if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_CTRL_READY)) == CO_FL_CTRL_READY) { fd_delete(conn->handle.fd); conn->handle.fd = DEAD_FD_MAGIC; conn->flags &= ~CO_FL_CTRL_READY; } } /* If the connection still has a transport layer, then call its close() function * if any, and delete the file descriptor if a control layer is set. This is * used to close everything at once and atomically. However this is not done if * the CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the * transport layer very late if needed. */ static inline void conn_full_close(struct connection *conn) { conn_xprt_close(conn); conn_ctrl_close(conn); } /* stop tracking a connection, allowing conn_full_close() to always * succeed. */ static inline void conn_stop_tracking(struct connection *conn) { conn->flags &= ~CO_FL_XPRT_TRACKED; } /* Update polling on connection 's file descriptor depending on its current * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN * in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*. * The connection flags are updated with the new flags at the end of the * operation. Polling is totally disabled if an error was reported. */ void conn_update_sock_polling(struct connection *c); /* Update polling on connection 's file descriptor depending on its current * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN * in CO_FL_WAIT_*, and the upper layer expectations indicated by CO_FL_XPRT_*. * The connection flags are updated with the new flags at the end of the * operation. Polling is totally disabled if an error was reported. */ void conn_update_xprt_polling(struct connection *c); /* Refresh the connection's polling flags from its file descriptor status. * This should be called at the beginning of a connection handler. It does * nothing if CO_FL_WILL_UPDATE is present, indicating that an upper caller * has already done it. */ static inline void conn_refresh_polling_flags(struct connection *conn) { if (conn_ctrl_ready(conn) && !(conn->flags & CO_FL_WILL_UPDATE)) { unsigned int flags = conn->flags; flags &= ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_WAIT_ROOM); if (fd_recv_active(conn->handle.fd)) flags |= CO_FL_CURR_RD_ENA; if (fd_send_active(conn->handle.fd)) flags |= CO_FL_CURR_WR_ENA; conn->flags = flags; } } /* inspects c->flags and returns non-zero if XPRT ENA changes from the CURR ENA * or if the WAIT flags are set with their respective ENA flags. Additionally, * non-zero is also returned if an error was reported on the connection. This * function is used quite often and is inlined. In order to proceed optimally * with very little code and CPU cycles, the bits are arranged so that a change * can be detected by a few left shifts, a xor, and a mask. These operations * detect when W&D are both enabled for either direction, when C&D differ for * either direction and when Error is set. The trick consists in first keeping * only the bits we're interested in, since they don't collide when shifted, * and to perform the AND at the end. In practice, the compiler is able to * replace the last AND with a TEST in boolean conditions. This results in * checks that are done in 4-6 cycles and less than 30 bytes. */ static inline unsigned int conn_xprt_polling_changes(const struct connection *c) { unsigned int f = c->flags; f &= CO_FL_XPRT_WR_ENA | CO_FL_XPRT_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR; f = (f ^ (f << 1)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ D */ return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR); } /* inspects c->flags and returns non-zero if SOCK ENA changes from the CURR ENA * or if the WAIT flags are set with their respective ENA flags. Additionally, * non-zero is also returned if an error was reported on the connection. This * function is used quite often and is inlined. In order to proceed optimally * with very little code and CPU cycles, the bits are arranged so that a change * can be detected by a few left shifts, a xor, and a mask. These operations * detect when W&S are both enabled for either direction, when C&S differ for * either direction and when Error is set. The trick consists in first keeping * only the bits we're interested in, since they don't collide when shifted, * and to perform the AND at the end. In practice, the compiler is able to * replace the last AND with a TEST in boolean conditions. This results in * checks that are done in 4-6 cycles and less than 30 bytes. */ static inline unsigned int conn_sock_polling_changes(const struct connection *c) { unsigned int f = c->flags; f &= CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR; f = (f ^ (f << 2)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ S */ return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR); } /* Automatically updates polling on connection depending on the XPRT flags * if no handshake is in progress. It does nothing if CO_FL_WILL_UPDATE is * present, indicating that an upper caller is going to do it again later. */ static inline void conn_cond_update_xprt_polling(struct connection *c) { if (!(c->flags & CO_FL_WILL_UPDATE)) if (!(c->flags & CO_FL_POLL_SOCK) && conn_xprt_polling_changes(c)) conn_update_xprt_polling(c); } /* Automatically updates polling on connection depending on the SOCK flags * if a handshake is in progress. It does nothing if CO_FL_WILL_UPDATE is * present, indicating that an upper caller is going to do it again later. */ static inline void conn_cond_update_sock_polling(struct connection *c) { if (!(c->flags & CO_FL_WILL_UPDATE)) if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c)) conn_update_sock_polling(c); } /* Stop all polling on the fd. This might be used when an error is encountered * for example. It does not propage the change to the fd layer if * CO_FL_WILL_UPDATE is present, indicating that an upper caller is going to do * it later. */ static inline void conn_stop_polling(struct connection *c) { c->flags &= ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_SOCK_RD_ENA | CO_FL_SOCK_WR_ENA | CO_FL_XPRT_RD_ENA | CO_FL_XPRT_WR_ENA); if (!(c->flags & CO_FL_WILL_UPDATE) && conn_ctrl_ready(c)) fd_stop_both(c->handle.fd); } /* Automatically update polling on connection depending on the XPRT and * SOCK flags, and on whether a handshake is in progress or not. This may be * called at any moment when there is a doubt about the effectiveness of the * polling state, for instance when entering or leaving the handshake state. * It does nothing if CO_FL_WILL_UPDATE is present, indicating that an upper * caller is going to do it again later. */ static inline void conn_cond_update_polling(struct connection *c) { if (unlikely(c->flags & CO_FL_ERROR)) conn_stop_polling(c); else if (!(c->flags & CO_FL_WILL_UPDATE)) { if (!(c->flags & CO_FL_POLL_SOCK) && conn_xprt_polling_changes(c)) conn_update_xprt_polling(c); else if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c)) conn_update_sock_polling(c); } } /***** Event manipulation primitives for use by DATA I/O callbacks *****/ /* The __conn_* versions do not propagate to lower layers and are only meant * to be used by handlers called by the connection handler. The other ones * may be used anywhere. */ static inline void __conn_xprt_want_recv(struct connection *c) { c->flags |= CO_FL_XPRT_RD_ENA; } static inline void __conn_xprt_stop_recv(struct connection *c) { c->flags &= ~CO_FL_XPRT_RD_ENA; } /* this one is used only to stop speculative recv(). It doesn't stop it if the * fd is already polled in order to avoid expensive polling status changes. * Since it might require the upper layer to re-enable reading, we'll return 1 * if we've really stopped something otherwise zero. */ static inline int __conn_xprt_done_recv(struct connection *c) { if (!conn_ctrl_ready(c) || !fd_recv_polled(c->handle.fd)) { c->flags &= ~CO_FL_XPRT_RD_ENA; return 1; } return 0; } static inline void __conn_xprt_want_send(struct connection *c) { c->flags |= CO_FL_XPRT_WR_ENA; } static inline void __conn_xprt_stop_send(struct connection *c) { c->flags &= ~CO_FL_XPRT_WR_ENA; } static inline void __conn_xprt_stop_both(struct connection *c) { c->flags &= ~(CO_FL_XPRT_WR_ENA | CO_FL_XPRT_RD_ENA); } static inline void conn_xprt_want_recv(struct connection *c) { __conn_xprt_want_recv(c); conn_cond_update_xprt_polling(c); } static inline void conn_xprt_stop_recv(struct connection *c) { __conn_xprt_stop_recv(c); conn_cond_update_xprt_polling(c); } static inline void conn_xprt_want_send(struct connection *c) { __conn_xprt_want_send(c); conn_cond_update_xprt_polling(c); } static inline void conn_xprt_stop_send(struct connection *c) { __conn_xprt_stop_send(c); conn_cond_update_xprt_polling(c); } static inline void conn_xprt_stop_both(struct connection *c) { __conn_xprt_stop_both(c); conn_cond_update_xprt_polling(c); } /***** Event manipulation primitives for use by handshake I/O callbacks *****/ /* The __conn_* versions do not propagate to lower layers and are only meant * to be used by handlers called by the connection handler. The other ones * may be used anywhere. */ static inline void __conn_sock_want_recv(struct connection *c) { c->flags |= CO_FL_SOCK_RD_ENA; } static inline void __conn_sock_stop_recv(struct connection *c) { c->flags &= ~CO_FL_SOCK_RD_ENA; } static inline void __conn_sock_want_send(struct connection *c) { c->flags |= CO_FL_SOCK_WR_ENA; } static inline void __conn_sock_stop_send(struct connection *c) { c->flags &= ~CO_FL_SOCK_WR_ENA; } static inline void __conn_sock_stop_both(struct connection *c) { c->flags &= ~(CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA); } static inline void conn_sock_want_recv(struct connection *c) { __conn_sock_want_recv(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_recv(struct connection *c) { __conn_sock_stop_recv(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_want_send(struct connection *c) { __conn_sock_want_send(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_send(struct connection *c) { __conn_sock_stop_send(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_both(struct connection *c) { __conn_sock_stop_both(c); conn_cond_update_sock_polling(c); } /* read shutdown, called from the rcv_buf/rcv_pipe handlers when * detecting an end of connection. */ static inline void conn_sock_read0(struct connection *c) { c->flags |= CO_FL_SOCK_RD_SH; __conn_sock_stop_recv(c); /* we don't risk keeping ports unusable if we found the * zero from the other side. */ if (conn_ctrl_ready(c)) fdtab[c->handle.fd].linger_risk = 0; } /* write shutdown, indication that the upper layer is not willing to send * anything anymore and wants to close after pending data are sent. The * argument will allow not to perform the socket layer shutdown if * equal to 0. */ static inline void conn_sock_shutw(struct connection *c, int clean) { c->flags |= CO_FL_SOCK_WR_SH; conn_refresh_polling_flags(c); __conn_sock_stop_send(c); conn_cond_update_sock_polling(c); /* don't perform a clean shutdown if we're going to reset or * if the shutr was already received. */ if (conn_ctrl_ready(c) && !(c->flags & CO_FL_SOCK_RD_SH) && clean) shutdown(c->handle.fd, SHUT_WR); } static inline void conn_xprt_shutw(struct connection *c) { __conn_xprt_stop_send(c); /* clean data-layer shutdown */ if (c->xprt && c->xprt->shutw) c->xprt->shutw(c, 1); } static inline void conn_xprt_shutw_hard(struct connection *c) { __conn_xprt_stop_send(c); /* unclean data-layer shutdown */ if (c->xprt && c->xprt->shutw) c->xprt->shutw(c, 0); } /* shut read */ static inline void cs_shutr(struct conn_stream *cs, enum cs_shr_mode mode) { /* clean data-layer shutdown */ if (cs->conn->mux && cs->conn->mux->shutr) cs->conn->mux->shutr(cs, mode); cs->flags |= (mode == CS_SHR_DRAIN) ? CS_FL_SHRD : CS_FL_SHRR; } /* shut write */ static inline void cs_shutw(struct conn_stream *cs, enum cs_shw_mode mode) { /* clean data-layer shutdown */ if (cs->conn->mux && cs->conn->mux->shutw) cs->conn->mux->shutw(cs, mode); cs->flags |= (mode == CS_SHW_NORMAL) ? CS_FL_SHWN : CS_FL_SHWS; } /* completely close a conn_stream (but do not detach it) */ static inline void cs_close(struct conn_stream *cs) { cs_shutw(cs, CS_SHW_SILENT); cs_shutr(cs, CS_SHR_RESET); cs->flags = CS_FL_NONE; } /* sets CS_FL_ERROR or CS_FL_ERR_PENDING on the cs */ static inline void cs_set_error(struct conn_stream *cs) { if (cs->flags & CS_FL_EOS) cs->flags |= CS_FL_ERROR; else cs->flags |= CS_FL_REOS | CS_FL_ERR_PENDING; } /* detect sock->data read0 transition */ static inline int conn_xprt_read0_pending(struct connection *c) { return (c->flags & CO_FL_SOCK_RD_SH) != 0; } /* prepares a connection to work with protocol and transport . * The transport's is initialized as well, and the mux and its context are * cleared. The target is not reinitialized and it is recommended that it is * set prior to calling this function so that the function may make use of it * in the future to refine the mux choice if needed. */ static inline void conn_prepare(struct connection *conn, const struct protocol *proto, const struct xprt_ops *xprt) { conn->ctrl = proto; conn->xprt = xprt; conn->mux = NULL; conn->xprt_st = 0; conn->xprt_ctx = NULL; conn->ctx = NULL; } /* * Initializes all required fields for a new conn_strema. */ static inline void cs_init(struct conn_stream *cs, struct connection *conn) { cs->obj_type = OBJ_TYPE_CS; cs->flags = CS_FL_NONE; cs->conn = conn; } /* Initializes all required fields for a new connection. Note that it does the * minimum acceptable initialization for a connection that already exists and * is about to be reused. It also leaves the addresses untouched, which makes * it usable across connection retries to reset a connection to a known state. */ static inline void conn_init(struct connection *conn) { conn->obj_type = OBJ_TYPE_CONN; conn->flags = CO_FL_NONE; conn->tmp_early_data = -1; conn->sent_early_data = 0; conn->mux = NULL; conn->ctx = NULL; conn->owner = NULL; conn->send_proxy_ofs = 0; conn->handle.fd = DEAD_FD_MAGIC; conn->err_code = CO_ER_NONE; conn->target = NULL; conn->xprt_done_cb = NULL; conn->destroy_cb = NULL; conn->proxy_netns = NULL; LIST_INIT(&conn->list); LIST_INIT(&conn->session_list); conn->send_wait = NULL; conn->recv_wait = NULL; conn->idle_time = 0; } /* sets as the connection's owner */ static inline void conn_set_owner(struct connection *conn, void *owner, void (*cb)(struct connection *)) { conn->owner = owner; conn->destroy_cb = cb; } /* registers as a callback to notify for transport's readiness or failure */ static inline void conn_set_xprt_done_cb(struct connection *conn, int (*cb)(struct connection *)) { conn->xprt_done_cb = cb; } /* unregisters the callback to notify for transport's readiness or failure */ static inline void conn_clear_xprt_done_cb(struct connection *conn) { conn->xprt_done_cb = NULL; } /* Tries to allocate a new connection and initialized its main fields. The * connection is returned on success, NULL on failure. The connection must * be released using pool_free() or conn_free(). */ static inline struct connection *conn_new() { struct connection *conn; conn = pool_alloc(pool_head_connection); if (likely(conn != NULL)) conn_init(conn); return conn; } /* Releases a conn_stream previously allocated by cs_new(), as well as any * buffer it would still hold. */ static inline void cs_free(struct conn_stream *cs) { pool_free(pool_head_connstream, cs); } /* Tries to allocate a new conn_stream and initialize its main fields. If * is NULL, then a new connection is allocated on the fly, initialized, * and assigned to cs->conn ; this connection will then have to be released * using pool_free() or conn_free(). The conn_stream is initialized and added * to the mux's stream list on success, then returned. On failure, nothing is * allocated and NULL is returned. */ static inline struct conn_stream *cs_new(struct connection *conn) { struct conn_stream *cs; cs = pool_alloc(pool_head_connstream); if (!likely(cs)) return NULL; if (!conn) { conn = conn_new(); if (!likely(conn)) { cs_free(cs); return NULL; } conn_init(conn); } cs_init(cs, conn); return cs; } /* Retrieves any valid conn_stream from this connection, preferably the first * valid one. The purpose is to be able to figure one other end of a private * connection for purposes like source binding or proxy protocol header * emission. In such cases, any conn_stream is expected to be valid so the * mux is encouraged to return the first one it finds. If the connection has * no mux or the mux has no get_first_cs() method or the mux has no valid * conn_stream, NULL is returned. The output pointer is purposely marked * const to discourage the caller from modifying anything there. */ static inline const struct conn_stream *cs_get_first(const struct connection *conn) { if (!conn || !conn->mux || !conn->mux->get_first_cs) return NULL; return conn->mux->get_first_cs(conn); } static inline void conn_force_unsubscribe(struct connection *conn) { if (conn->recv_wait) { conn->recv_wait->events &= ~SUB_RETRY_RECV; conn->recv_wait = NULL; } if (conn->send_wait) { conn->send_wait->events &= ~SUB_RETRY_SEND; conn->send_wait = NULL; } } /* Releases a connection previously allocated by conn_new() */ static inline void conn_free(struct connection *conn) { /* Remove ourself from the session's connections list, if any. */ if (!LIST_ISEMPTY(&conn->session_list)) { struct session *sess = conn->owner; if (conn->flags & CO_FL_SESS_IDLE) sess->idle_conns--; session_unown_conn(sess, conn); } /* By convention we always place a NULL where the ctx points to if the * mux is null. It may have been used to store the connection as a * stream_interface's end point for example. */ if (conn->ctx != NULL && conn->mux == NULL) *(void **)conn->ctx = NULL; /* The connection is currently in the server's idle list, so tell it * there's one less connection available in that list. */ if (conn->idle_time > 0) { struct server *srv = __objt_server(conn->target); _HA_ATOMIC_SUB(&srv->curr_idle_conns, 1); srv->curr_idle_thr[tid]--; } conn_force_unsubscribe(conn); LIST_DEL_LOCKED(&conn->list); pool_free(pool_head_connection, conn); } /* Release a conn_stream */ static inline void cs_destroy(struct conn_stream *cs) { if (cs->conn->mux) cs->conn->mux->detach(cs); else { /* It's too early to have a mux, let's just destroy * the connection */ struct connection *conn = cs->conn; conn_stop_tracking(conn); conn_full_close(conn); if (conn->destroy_cb) conn->destroy_cb(conn); conn_free(conn); } cs_free(cs); } /* Returns the conn from a cs. If cs is NULL, returns NULL */ static inline struct connection *cs_conn(const struct conn_stream *cs) { return cs ? cs->conn : NULL; } /* Retrieves the connection's source address */ static inline void conn_get_from_addr(struct connection *conn) { if (conn->flags & CO_FL_ADDR_FROM_SET) return; if (!conn_ctrl_ready(conn) || !conn->ctrl->get_src) return; if (conn->ctrl->get_src(conn->handle.fd, (struct sockaddr *)&conn->addr.from, sizeof(conn->addr.from), obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1) return; conn->flags |= CO_FL_ADDR_FROM_SET; } /* Retrieves the connection's original destination address */ static inline void conn_get_to_addr(struct connection *conn) { if (conn->flags & CO_FL_ADDR_TO_SET) return; if (!conn_ctrl_ready(conn) || !conn->ctrl->get_dst) return; if (conn->ctrl->get_dst(conn->handle.fd, (struct sockaddr *)&conn->addr.to, sizeof(conn->addr.to), obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1) return; conn->flags |= CO_FL_ADDR_TO_SET; } /* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets * (as per RFC3260 #4 and BCP37 #4.2 and #5.2). The connection is tested and if * it is null, nothing is done. */ static inline void conn_set_tos(const struct connection *conn, int tos) { if (!conn || !conn_ctrl_ready(conn)) return; #ifdef IP_TOS if (conn->addr.from.ss_family == AF_INET) setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); #endif #ifdef IPV6_TCLASS if (conn->addr.from.ss_family == AF_INET6) { if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr)) /* v4-mapped addresses need IP_TOS */ setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); else setsockopt(conn->handle.fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos)); } #endif } /* Sets the netfilter mark on the connection's socket. The connection is tested * and if it is null, nothing is done. */ static inline void conn_set_mark(const struct connection *conn, int mark) { if (!conn || !conn_ctrl_ready(conn)) return; #ifdef SO_MARK setsockopt(conn->handle.fd, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)); #endif } /* Sets adjust the TCP quick-ack feature on the connection's socket. The * connection is tested and if it is null, nothing is done. */ static inline void conn_set_quickack(const struct connection *conn, int value) { if (!conn || !conn_ctrl_ready(conn)) return; #ifdef TCP_QUICKACK setsockopt(conn->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &value, sizeof(value)); #endif } /* Attaches a conn_stream to a data layer and sets the relevant callbacks */ static inline void cs_attach(struct conn_stream *cs, void *data, const struct data_cb *data_cb) { cs->data_cb = data_cb; cs->data = data; } static inline struct wait_event *wl_set_waitcb(struct wait_event *wl, struct task *(*cb)(struct task *, void *, unsigned short), void *ctx) { if (!wl->task->process) { wl->task->process = cb; wl->task->context = ctx; } return wl; } /* Installs the connection's mux layer for upper context . * Returns < 0 on error. */ static inline int conn_install_mux(struct connection *conn, const struct mux_ops *mux, void *ctx, struct proxy *prx, struct session *sess) { int ret; conn->mux = mux; conn->ctx = ctx; ret = mux->init ? mux->init(conn, prx, sess) : 0; if (ret < 0) { conn->mux = NULL; conn->ctx = NULL; } return ret; } /* returns a human-readable error code for conn->err_code, or NULL if the code * is unknown. */ static inline const char *conn_err_code_str(struct connection *c) { switch (c->err_code) { case CO_ER_NONE: return "Success"; case CO_ER_CONF_FDLIM: return "Reached configured maxconn value"; case CO_ER_PROC_FDLIM: return "Too many sockets on the process"; case CO_ER_SYS_FDLIM: return "Too many sockets on the system"; case CO_ER_SYS_MEMLIM: return "Out of system buffers"; case CO_ER_NOPROTO: return "Protocol or address family not supported"; case CO_ER_SOCK_ERR: return "General socket error"; case CO_ER_PORT_RANGE: return "Source port range exhausted"; case CO_ER_CANT_BIND: return "Can't bind to source address"; case CO_ER_FREE_PORTS: return "Out of local source ports on the system"; case CO_ER_ADDR_INUSE: return "Local source address already in use"; case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header"; case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header"; case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header"; case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received"; case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header"; case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header"; case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header"; case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header"; case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header"; case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received"; case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number"; case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header"; case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake"; case CO_ER_SSL_ABORT: return "Connection error during SSL handshake"; case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake"; case CO_ER_SSL_TOO_MANY: return "Too many SSL connections"; case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection"; case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegociation attempt"; case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified"; case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted"; case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one"; case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one"; case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure"; case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat"; case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)"; case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)"; } return NULL; } static inline const char *conn_get_ctrl_name(const struct connection *conn) { if (!conn_ctrl_ready(conn)) return "NONE"; return conn->ctrl->name; } static inline const char *conn_get_xprt_name(const struct connection *conn) { if (!conn_xprt_ready(conn)) return "NONE"; return conn->xprt->name; } static inline const char *conn_get_mux_name(const struct connection *conn) { if (!conn->mux) return "NONE"; return conn->mux->name; } static inline const char *cs_get_data_name(const struct conn_stream *cs) { if (!cs->data_cb) return "NONE"; return cs->data_cb->name; } /* registers pointer to transport layer (XPRT_*) */ static inline void xprt_register(int id, struct xprt_ops *xprt) { if (id >= XPRT_ENTRIES) return; registered_xprt[id] = xprt; } /* returns pointer to transport layer (XPRT_*) or NULL if not registered */ static inline struct xprt_ops *xprt_get(int id) { if (id >= XPRT_ENTRIES) return NULL; return registered_xprt[id]; } static inline int conn_get_alpn(const struct connection *conn, const char **str, int *len) { if (!conn_xprt_ready(conn) || !conn->xprt->get_alpn) return 0; return conn->xprt->get_alpn(conn, str, len); } /* registers proto mux list . Modifies the list element! */ static inline void register_mux_proto(struct mux_proto_list *list) { LIST_ADDQ(&mux_proto_list.list, &list->list); } /* unregisters proto mux list */ static inline void unregister_mux_proto(struct mux_proto_list *list) { LIST_DEL(&list->list); LIST_INIT(&list->list); } static inline struct mux_proto_list *get_mux_proto(const struct ist proto) { struct mux_proto_list *item; list_for_each_entry(item, &mux_proto_list.list, list) { if (isteq(proto, item->token)) return item; } return NULL; } /* Lists the known proto mux on */ static inline void list_mux_proto(FILE *out) { struct mux_proto_list *item; struct ist proto; char *mode, *side; fprintf(out, "Available multiplexer protocols :\n" "(protocols marked as cannot be specified using 'proto' keyword)\n"); list_for_each_entry(item, &mux_proto_list.list, list) { proto = item->token; if (item->mode == PROTO_MODE_ANY) mode = "TCP|HTTP"; else if (item->mode == PROTO_MODE_TCP) mode = "TCP"; else if (item->mode == PROTO_MODE_HTTP) mode = "HTTP"; else if (item->mode == PROTO_MODE_HTX) mode = "HTX"; else if (item->mode == (PROTO_MODE_HTTP | PROTO_MODE_HTX)) mode = "HTTP|HTX"; else mode = "NONE"; if (item->side == PROTO_SIDE_BOTH) side = "FE|BE"; else if (item->side == PROTO_SIDE_FE) side = "FE"; else if (item->side == PROTO_SIDE_BE) side = "BE"; else side = "NONE"; fprintf(out, " %15s : mode=%-10s side=%s\n", (proto.len ? proto.ptr : ""), mode, side); } } /* returns the first mux entry in the list matching the exact same * and compatible with the (FE or BE) and the (TCP or * HTTP). can be empty. Will fall back to the first compatible mux * with exactly the same or with an empty name. May return * null if the code improperly registered the default mux to use as a fallback. */ static inline const struct mux_proto_list *conn_get_best_mux_entry( const struct ist mux_proto, int proto_side, int proto_mode) { struct mux_proto_list *item; struct mux_proto_list *fallback = NULL; list_for_each_entry(item, &mux_proto_list.list, list) { if (!(item->side & proto_side) || !(item->mode & proto_mode)) continue; if (istlen(mux_proto) && isteq(mux_proto, item->token)) return item; else if (!istlen(item->token)) { if (!fallback || (item->mode == proto_mode && fallback->mode != proto_mode)) fallback = item; } } return fallback; } /* returns the first mux in the list matching the exact same and * compatible with the (FE or BE) and the (TCP or * HTTP). can be empty. Will fall back to the first compatible mux * with exactly the same or with an empty name. May return * null if the code improperly registered the default mux to use as a fallback. */ static inline const struct mux_ops *conn_get_best_mux(struct connection *conn, const struct ist mux_proto, int proto_side, int proto_mode) { const struct mux_proto_list *item; item = conn_get_best_mux_entry(mux_proto, proto_side, proto_mode); return item ? item->mux : NULL; } /* returns 0 if the connection is valid and is a frontend connection, otherwise * returns 1 indicating it's a backend connection. And uninitialized connection * also returns 1 to better handle the usage in the middle of initialization. */ static inline int conn_is_back(const struct connection *conn) { return !objt_listener(conn->target); } /* returns a pointer to the proxy associated with this connection. For a front * connection it returns a pointer to the frontend ; for a back connection, it * returns a pointer to the backend. */ static inline struct proxy *conn_get_proxy(const struct connection *conn) { struct listener *l; struct server *s; /* check if it's a frontend connection */ l = objt_listener(conn->target); if (l) return l->bind_conf->frontend; /* check if it's a backend connection */ s = objt_server(conn->target); if (s) return s->proxy; return objt_proxy(conn->target); } /* installs the best mux for incoming connection using the upper context * . If the mux protocol is forced, we use it to find the best * mux. Otherwise we use the ALPN name, if any. Returns < 0 on error. */ static inline int conn_install_mux_fe(struct connection *conn, void *ctx) { struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; const struct mux_ops *mux_ops; if (bind_conf->mux_proto) mux_ops = bind_conf->mux_proto->mux; else { struct ist mux_proto; const char *alpn_str = NULL; int alpn_len = 0; int mode; if (bind_conf->frontend->mode == PR_MODE_TCP) mode = PROTO_MODE_TCP; else if (bind_conf->frontend->options2 & PR_O2_USE_HTX) mode = PROTO_MODE_HTX; else mode = PROTO_MODE_HTTP; conn_get_alpn(conn, &alpn_str, &alpn_len); mux_proto = ist2(alpn_str, alpn_len); mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode); if (!mux_ops) return -1; } return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner); } /* installs the best mux for outgoing connection using the upper context * . If the mux protocol is forced, we use it to find the best mux. Returns * < 0 on error. */ static inline int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess) { struct server *srv = objt_server(conn->target); struct proxy *prx = objt_proxy(conn->target); const struct mux_ops *mux_ops; if (srv) prx = srv->proxy; if (!prx) // target must be either proxy or server return -1; if (srv && srv->mux_proto) mux_ops = srv->mux_proto->mux; else { struct ist mux_proto; const char *alpn_str = NULL; int alpn_len = 0; int mode; if (prx->mode == PR_MODE_TCP) mode = PROTO_MODE_TCP; else if (prx->options2 & PR_O2_USE_HTX) mode = PROTO_MODE_HTX; else mode = PROTO_MODE_HTTP; conn_get_alpn(conn, &alpn_str, &alpn_len); mux_proto = ist2(alpn_str, alpn_len); mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode); if (!mux_ops) return -1; } return conn_install_mux(conn, mux_ops, ctx, prx, sess); } #endif /* _PROTO_CONNECTION_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */