/* * include/common/hathreads.h * definitions, macros and inline functions about threads. * * Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _COMMON_HATHREADS_H #define _COMMON_HATHREADS_H #include #include #ifdef _POSIX_PRIORITY_SCHEDULING #include #endif #include #include /* Note about all_threads_mask : * - this variable is comprised between 1 and LONGBITS. * - with threads support disabled, this symbol is defined as constant 1UL. * - with threads enabled, it contains the mask of enabled threads. Thus if * only one thread is enabled, it equals 1. */ /* thread info flags, for thread_info[].flags */ #define TI_FL_STUCK 0x00000001 #ifndef USE_THREAD #define MAX_THREADS 1 #define MAX_THREADS_MASK 1 /* Only way found to replace variables with constants that are optimized away * at build time. */ enum { all_threads_mask = 1UL }; enum { threads_harmless_mask = 0 }; enum { threads_want_rdv_mask = 0 }; enum { threads_sync_mask = 0 }; enum { tid_bit = 1UL }; enum { tid = 0 }; extern struct thread_info { clockid_t clock_id; timer_t wd_timer; /* valid timer or TIMER_INVALID if not set */ uint64_t prev_cpu_time; /* previous per thread CPU time */ uint64_t prev_mono_time; /* previous system wide monotonic time */ unsigned int idle_pct; /* idle to total ratio over last sample (percent) */ unsigned int flags; /* thread info flags, TI_FL_* */ /* pad to cache line (64B) */ char __pad[0]; /* unused except to check remaining room */ char __end[0] __attribute__((aligned(64))); } thread_info[MAX_THREADS]; extern THREAD_LOCAL struct thread_info *ti; /* thread_info for the current thread */ #define __decl_hathreads(decl) #define __decl_spinlock(lock) #define __decl_aligned_spinlock(lock) #define __decl_rwlock(lock) #define __decl_aligned_rwlock(lock) #define HA_ATOMIC_CAS(val, old, new) ({((*val) == (*old)) ? (*(val) = (new) , 1) : (*(old) = *(val), 0);}) /* warning, n is a pointer to the double value for dwcas */ #define HA_ATOMIC_DWCAS(val, o, n) \ ({ \ long *_v = (long*)(val); \ long *_o = (long*)(o); \ long *_n = (long*)(n); \ long _v0 = _v[0], _v1 = _v[1]; \ (_v0 == _o[0] && _v1 == _o[1]) ? \ (_v[0] = _n[0], _v[1] = _n[1], 1) : \ (_o[0] = _v0, _o[1] = _v1, 0); \ }) #define HA_ATOMIC_ADD(val, i) ({*(val) += (i);}) #define HA_ATOMIC_SUB(val, i) ({*(val) -= (i);}) #define HA_ATOMIC_XADD(val, i) \ ({ \ typeof((val)) __p_xadd = (val); \ typeof(*(val)) __old_xadd = *__p_xadd; \ *__p_xadd += i; \ __old_xadd; \ }) #define HA_ATOMIC_AND(val, flags) ({*(val) &= (flags);}) #define HA_ATOMIC_OR(val, flags) ({*(val) |= (flags);}) #define HA_ATOMIC_XCHG(val, new) \ ({ \ typeof(*(val)) __old_xchg = *(val); \ *(val) = new; \ __old_xchg; \ }) #define HA_ATOMIC_BTS(val, bit) \ ({ \ typeof((val)) __p_bts = (val); \ typeof(*__p_bts) __b_bts = (1UL << (bit)); \ typeof(*__p_bts) __t_bts = *__p_bts & __b_bts; \ if (!__t_bts) \ *__p_bts |= __b_bts; \ __t_bts; \ }) #define HA_ATOMIC_BTR(val, bit) \ ({ \ typeof((val)) __p_btr = (val); \ typeof(*__p_btr) __b_btr = (1UL << (bit)); \ typeof(*__p_btr) __t_btr = *__p_btr & __b_btr; \ if (__t_btr) \ *__p_btr &= ~__b_btr; \ __t_btr; \ }) #define HA_ATOMIC_LOAD(val) *(val) #define HA_ATOMIC_STORE(val, new) ({*(val) = new;}) #define HA_ATOMIC_UPDATE_MAX(val, new) \ ({ \ typeof(*(val)) __new_max = (new); \ \ if (*(val) < __new_max) \ *(val) = __new_max; \ *(val); \ }) #define HA_ATOMIC_UPDATE_MIN(val, new) \ ({ \ typeof(*(val)) __new_min = (new); \ \ if (*(val) > __new_min) \ *(val) = __new_min; \ *(val); \ }) #define HA_BARRIER() do { } while (0) #define HA_SPIN_INIT(l) do { /* do nothing */ } while(0) #define HA_SPIN_DESTROY(l) do { /* do nothing */ } while(0) #define HA_SPIN_LOCK(lbl, l) do { /* do nothing */ } while(0) #define HA_SPIN_TRYLOCK(lbl, l) ({ 0; }) #define HA_SPIN_UNLOCK(lbl, l) do { /* do nothing */ } while(0) #define HA_RWLOCK_INIT(l) do { /* do nothing */ } while(0) #define HA_RWLOCK_DESTROY(l) do { /* do nothing */ } while(0) #define HA_RWLOCK_WRLOCK(lbl, l) do { /* do nothing */ } while(0) #define HA_RWLOCK_TRYWRLOCK(lbl, l) ({ 0; }) #define HA_RWLOCK_WRUNLOCK(lbl, l) do { /* do nothing */ } while(0) #define HA_RWLOCK_RDLOCK(lbl, l) do { /* do nothing */ } while(0) #define HA_RWLOCK_TRYRDLOCK(lbl, l) ({ 0; }) #define HA_RWLOCK_RDUNLOCK(lbl, l) do { /* do nothing */ } while(0) #define ha_sigmask(how, set, oldset) sigprocmask(how, set, oldset) static inline void ha_set_tid(unsigned int tid) { ti = &thread_info[tid]; } static inline void ha_thread_relax(void) { #if _POSIX_PRIORITY_SCHEDULING sched_yield(); #endif } /* send signal to thread */ static inline void ha_tkill(unsigned int thr, int sig) { raise(sig); } /* send signal to all threads */ static inline void ha_tkillall(int sig) { raise(sig); } static inline void __ha_barrier_atomic_load(void) { } static inline void __ha_barrier_atomic_store(void) { } static inline void __ha_barrier_atomic_full(void) { } static inline void __ha_barrier_load(void) { } static inline void __ha_barrier_store(void) { } static inline void __ha_barrier_full(void) { } static inline void thread_harmless_now() { } static inline void thread_harmless_end() { } static inline void thread_isolate() { } static inline void thread_release() { } static inline void thread_sync_release() { } static inline unsigned long thread_isolated() { return 1; } #else /* USE_THREAD */ #include #include #include #include #include #ifndef MAX_THREADS #define MAX_THREADS LONGBITS #endif #define MAX_THREADS_MASK (~0UL >> (LONGBITS - MAX_THREADS)) #define __decl_hathreads(decl) decl /* declare a self-initializing spinlock */ #define __decl_spinlock(lock) \ HA_SPINLOCK_T (lock); \ INITCALL1(STG_LOCK, ha_spin_init, &(lock)) /* declare a self-initializing spinlock, aligned on a cache line */ #define __decl_aligned_spinlock(lock) \ HA_SPINLOCK_T (lock) __attribute__((aligned(64))); \ INITCALL1(STG_LOCK, ha_spin_init, &(lock)) /* declare a self-initializing rwlock */ #define __decl_rwlock(lock) \ HA_RWLOCK_T (lock); \ INITCALL1(STG_LOCK, ha_rwlock_init, &(lock)) /* declare a self-initializing rwlock, aligned on a cache line */ #define __decl_aligned_rwlock(lock) \ HA_RWLOCK_T (lock) __attribute__((aligned(64))); \ INITCALL1(STG_LOCK, ha_rwlock_init, &(lock)) /* TODO: thread: For now, we rely on GCC builtins but it could be a good idea to * have a header file regrouping all functions dealing with threads. */ #if defined(__GNUC__) && (__GNUC__ < 4 || __GNUC__ == 4 && __GNUC_MINOR__ < 7) && !defined(__clang__) /* gcc < 4.7 */ #define HA_ATOMIC_ADD(val, i) __sync_add_and_fetch(val, i) #define HA_ATOMIC_SUB(val, i) __sync_sub_and_fetch(val, i) #define HA_ATOMIC_XADD(val, i) __sync_fetch_and_add(val, i) #define HA_ATOMIC_AND(val, flags) __sync_and_and_fetch(val, flags) #define HA_ATOMIC_OR(val, flags) __sync_or_and_fetch(val, flags) /* the CAS is a bit complicated. The older API doesn't support returning the * value and the swap's result at the same time. So here we take what looks * like the safest route, consisting in using the boolean version guaranteeing * that the operation was performed or not, and we snoop a previous value. If * the compare succeeds, we return. If it fails, we return the previous value, * but only if it differs from the expected one. If it's the same it's a race * thus we try again to avoid confusing a possibly sensitive caller. */ #define HA_ATOMIC_CAS(val, old, new) \ ({ \ typeof((val)) __val_cas = (val); \ typeof((old)) __oldp_cas = (old); \ typeof(*(old)) __oldv_cas; \ typeof((new)) __new_cas = (new); \ int __ret_cas; \ do { \ __oldv_cas = *__val_cas; \ __ret_cas = __sync_bool_compare_and_swap(__val_cas, *__oldp_cas, __new_cas); \ } while (!__ret_cas && *__oldp_cas == __oldv_cas); \ if (!__ret_cas) \ *__oldp_cas = __oldv_cas; \ __ret_cas; \ }) /* warning, n is a pointer to the double value for dwcas */ #define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) #define HA_ATOMIC_XCHG(val, new) \ ({ \ typeof((val)) __val_xchg = (val); \ typeof(*(val)) __old_xchg; \ typeof((new)) __new_xchg = (new); \ do { __old_xchg = *__val_xchg; \ } while (!__sync_bool_compare_and_swap(__val_xchg, __old_xchg, __new_xchg)); \ __old_xchg; \ }) #define HA_ATOMIC_BTS(val, bit) \ ({ \ typeof(*(val)) __b_bts = (1UL << (bit)); \ __sync_fetch_and_or((val), __b_bts) & __b_bts; \ }) #define HA_ATOMIC_BTR(val, bit) \ ({ \ typeof(*(val)) __b_btr = (1UL << (bit)); \ __sync_fetch_and_and((val), ~__b_btr) & __b_btr; \ }) #define HA_ATOMIC_LOAD(val) \ ({ \ typeof(*(val)) ret; \ __sync_synchronize(); \ ret = *(volatile typeof(val))val; \ __sync_synchronize(); \ ret; \ }) #define HA_ATOMIC_STORE(val, new) \ ({ \ typeof((val)) __val_store = (val); \ typeof(*(val)) __old_store; \ typeof((new)) __new_store = (new); \ do { __old_store = *__val_store; \ } while (!__sync_bool_compare_and_swap(__val_store, __old_store, __new_store)); \ }) #else /* gcc >= 4.7 */ #define HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST) /* warning, n is a pointer to the double value for dwcas */ #define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) #define HA_ATOMIC_ADD(val, i) __atomic_add_fetch(val, i, __ATOMIC_SEQ_CST) #define HA_ATOMIC_XADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_SEQ_CST) #define HA_ATOMIC_SUB(val, i) __atomic_sub_fetch(val, i, __ATOMIC_SEQ_CST) #define HA_ATOMIC_AND(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_SEQ_CST) #define HA_ATOMIC_OR(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_SEQ_CST) #define HA_ATOMIC_BTS(val, bit) \ ({ \ typeof(*(val)) __b_bts = (1UL << (bit)); \ __sync_fetch_and_or((val), __b_bts) & __b_bts; \ }) #define HA_ATOMIC_BTR(val, bit) \ ({ \ typeof(*(val)) __b_btr = (1UL << (bit)); \ __sync_fetch_and_and((val), ~__b_btr) & __b_btr; \ }) #define HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_SEQ_CST) #define HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_SEQ_CST) #define HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_SEQ_CST) /* Variants that don't generate any memory barrier. * If you're unsure how to deal with barriers, just use the HA_ATOMIC_* version, * that will always generate correct code. * Usually it's fine to use those when updating data that have no dependency, * ie updating a counter. Otherwise a barrier is required. */ #define _HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED) /* warning, n is a pointer to the double value for dwcas */ #define _HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) #define _HA_ATOMIC_ADD(val, i) __atomic_add_fetch(val, i, __ATOMIC_RELAXED) #define _HA_ATOMIC_XADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_RELAXED) #define _HA_ATOMIC_SUB(val, i) __atomic_sub_fetch(val, i, __ATOMIC_RELAXED) #define _HA_ATOMIC_AND(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_RELAXED) #define _HA_ATOMIC_OR(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_RELAXED) #define _HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_RELAXED) #define _HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_RELAXED) #define _HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_RELAXED) #endif /* gcc >= 4.7 */ #define HA_ATOMIC_UPDATE_MAX(val, new) \ ({ \ typeof(*(val)) __old_max = *(val); \ typeof(*(val)) __new_max = (new); \ \ while (__old_max < __new_max && \ !HA_ATOMIC_CAS(val, &__old_max, __new_max)); \ *(val); \ }) #define HA_ATOMIC_UPDATE_MIN(val, new) \ ({ \ typeof(*(val)) __old_min = *(val); \ typeof(*(val)) __new_min = (new); \ \ while (__old_min > __new_min && \ !HA_ATOMIC_CAS(val, &__old_min, __new_min)); \ *(val); \ }) #define HA_BARRIER() pl_barrier() void thread_harmless_till_end(); void thread_isolate(); void thread_release(); void thread_sync_release(); void ha_tkill(unsigned int thr, int sig); void ha_tkillall(int sig); extern struct thread_info { pthread_t pthread; clockid_t clock_id; timer_t wd_timer; /* valid timer or TIMER_INVALID if not set */ uint64_t prev_cpu_time; /* previous per thread CPU time */ uint64_t prev_mono_time; /* previous system wide monotonic time */ unsigned int idle_pct; /* idle to total ratio over last sample (percent) */ unsigned int flags; /* thread info flags, TI_FL_* */ /* pad to cache line (64B) */ char __pad[0]; /* unused except to check remaining room */ char __end[0] __attribute__((aligned(64))); } thread_info[MAX_THREADS]; extern THREAD_LOCAL unsigned int tid; /* The thread id */ extern THREAD_LOCAL unsigned long tid_bit; /* The bit corresponding to the thread id */ extern THREAD_LOCAL struct thread_info *ti; /* thread_info for the current thread */ extern volatile unsigned long all_threads_mask; extern volatile unsigned long threads_want_rdv_mask; extern volatile unsigned long threads_harmless_mask; extern volatile unsigned long threads_sync_mask; /* explanation for threads_want_rdv_mask, threads_harmless_mask, and * threads_sync_mask : * - threads_want_rdv_mask is a bit field indicating all threads that have * requested a rendez-vous of other threads using thread_isolate(). * - threads_harmless_mask is a bit field indicating all threads that are * currently harmless in that they promise not to access a shared resource. * - threads_sync_mask is a bit field indicating that a thread waiting for * others to finish wants to leave synchronized with others and as such * promises to do so as well using thread_sync_release(). * * For a given thread, its bits in want_rdv and harmless can be translated like * this : * * ----------+----------+---------------------------------------------------- * want_rdv | harmless | description * ----------+----------+---------------------------------------------------- * 0 | 0 | thread not interested in RDV, possibly harmful * 0 | 1 | thread not interested in RDV but harmless * 1 | 1 | thread interested in RDV and waiting for its turn * 1 | 0 | thread currently working isolated from others * ----------+----------+---------------------------------------------------- * * thread_sync_mask only delays the leaving of threads_sync_release() to make * sure that each thread's harmless bit is cleared before leaving the function. */ #define ha_sigmask(how, set, oldset) pthread_sigmask(how, set, oldset) /* sets the thread ID and the TID bit for the current thread */ static inline void ha_set_tid(unsigned int data) { tid = data; tid_bit = (1UL << tid); ti = &thread_info[tid]; } static inline void ha_thread_relax(void) { #if _POSIX_PRIORITY_SCHEDULING sched_yield(); #else pl_cpu_relax(); #endif } /* Marks the thread as harmless. Note: this must be true, i.e. the thread must * not be touching any unprotected shared resource during this period. Usually * this is called before poll(), but it may also be placed around very slow * calls (eg: some crypto operations). Needs to be terminated using * thread_harmless_end(). */ static inline void thread_harmless_now() { HA_ATOMIC_OR(&threads_harmless_mask, tid_bit); } /* Ends the harmless period started by thread_harmless_now(). Usually this is * placed after the poll() call. If it is discovered that a job was running and * is relying on the thread still being harmless, the thread waits for the * other one to finish. */ static inline void thread_harmless_end() { while (1) { HA_ATOMIC_AND(&threads_harmless_mask, ~tid_bit); if (likely((threads_want_rdv_mask & all_threads_mask) == 0)) break; thread_harmless_till_end(); } } /* an isolated thread has harmless cleared and want_rdv set */ static inline unsigned long thread_isolated() { return threads_want_rdv_mask & ~threads_harmless_mask & tid_bit; } #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) /* WARNING!!! if you update this enum, please also keep lock_label() up to date below */ enum lock_label { FD_LOCK, TASK_RQ_LOCK, TASK_WQ_LOCK, POOL_LOCK, LISTENER_LOCK, PROXY_LOCK, SERVER_LOCK, LBPRM_LOCK, SIGNALS_LOCK, STK_TABLE_LOCK, STK_SESS_LOCK, APPLETS_LOCK, PEER_LOCK, BUF_WQ_LOCK, STRMS_LOCK, SSL_LOCK, SSL_GEN_CERTS_LOCK, PATREF_LOCK, PATEXP_LOCK, PATLRU_LOCK, VARS_LOCK, COMP_POOL_LOCK, LUA_LOCK, NOTIF_LOCK, SPOE_APPLET_LOCK, DNS_LOCK, PID_LIST_LOCK, EMAIL_ALERTS_LOCK, PIPES_LOCK, TLSKEYS_REF_LOCK, AUTH_LOCK, LOGSRV_LOCK, DICT_LOCK, OTHER_LOCK, LOCK_LABELS }; struct lock_stat { uint64_t nsec_wait_for_write; uint64_t nsec_wait_for_read; uint64_t num_write_locked; uint64_t num_write_unlocked; uint64_t num_read_locked; uint64_t num_read_unlocked; }; extern struct lock_stat lock_stats[LOCK_LABELS]; #define __HA_SPINLOCK_T unsigned long #define __SPIN_INIT(l) ({ (*l) = 0; }) #define __SPIN_DESTROY(l) ({ (*l) = 0; }) #define __SPIN_LOCK(l) pl_take_s(l) #define __SPIN_TRYLOCK(l) !pl_try_s(l) #define __SPIN_UNLOCK(l) pl_drop_s(l) #define __HA_RWLOCK_T unsigned long #define __RWLOCK_INIT(l) ({ (*l) = 0; }) #define __RWLOCK_DESTROY(l) ({ (*l) = 0; }) #define __RWLOCK_WRLOCK(l) pl_take_w(l) #define __RWLOCK_TRYWRLOCK(l) !pl_try_w(l) #define __RWLOCK_WRUNLOCK(l) pl_drop_w(l) #define __RWLOCK_RDLOCK(l) pl_take_r(l) #define __RWLOCK_TRYRDLOCK(l) !pl_try_r(l) #define __RWLOCK_RDUNLOCK(l) pl_drop_r(l) #define HA_SPINLOCK_T struct ha_spinlock #define HA_SPIN_INIT(l) __spin_init(l) #define HA_SPIN_DESTROY(l) __spin_destroy(l) #define HA_SPIN_LOCK(lbl, l) __spin_lock(lbl, l, __func__, __FILE__, __LINE__) #define HA_SPIN_TRYLOCK(lbl, l) __spin_trylock(lbl, l, __func__, __FILE__, __LINE__) #define HA_SPIN_UNLOCK(lbl, l) __spin_unlock(lbl, l, __func__, __FILE__, __LINE__) #define HA_RWLOCK_T struct ha_rwlock #define HA_RWLOCK_INIT(l) __ha_rwlock_init((l)) #define HA_RWLOCK_DESTROY(l) __ha_rwlock_destroy((l)) #define HA_RWLOCK_WRLOCK(lbl,l) __ha_rwlock_wrlock(lbl, l, __func__, __FILE__, __LINE__) #define HA_RWLOCK_TRYWRLOCK(lbl,l) __ha_rwlock_trywrlock(lbl, l, __func__, __FILE__, __LINE__) #define HA_RWLOCK_WRUNLOCK(lbl,l) __ha_rwlock_wrunlock(lbl, l, __func__, __FILE__, __LINE__) #define HA_RWLOCK_RDLOCK(lbl,l) __ha_rwlock_rdlock(lbl, l) #define HA_RWLOCK_TRYRDLOCK(lbl,l) __ha_rwlock_tryrdlock(lbl, l) #define HA_RWLOCK_RDUNLOCK(lbl,l) __ha_rwlock_rdunlock(lbl, l) struct ha_spinlock { __HA_SPINLOCK_T lock; struct { unsigned long owner; /* a bit is set to 1 << tid for the lock owner */ unsigned long waiters; /* a bit is set to 1 << tid for waiting threads */ struct { const char *function; const char *file; int line; } last_location; /* location of the last owner */ } info; }; struct ha_rwlock { __HA_RWLOCK_T lock; struct { unsigned long cur_writer; /* a bit is set to 1 << tid for the lock owner */ unsigned long wait_writers; /* a bit is set to 1 << tid for waiting writers */ unsigned long cur_readers; /* a bit is set to 1 << tid for current readers */ unsigned long wait_readers; /* a bit is set to 1 << tid for waiting waiters */ struct { const char *function; const char *file; int line; } last_location; /* location of the last write owner */ } info; }; static inline const char *lock_label(enum lock_label label) { switch (label) { case FD_LOCK: return "FD"; case TASK_RQ_LOCK: return "TASK_RQ"; case TASK_WQ_LOCK: return "TASK_WQ"; case POOL_LOCK: return "POOL"; case LISTENER_LOCK: return "LISTENER"; case PROXY_LOCK: return "PROXY"; case SERVER_LOCK: return "SERVER"; case LBPRM_LOCK: return "LBPRM"; case SIGNALS_LOCK: return "SIGNALS"; case STK_TABLE_LOCK: return "STK_TABLE"; case STK_SESS_LOCK: return "STK_SESS"; case APPLETS_LOCK: return "APPLETS"; case PEER_LOCK: return "PEER"; case BUF_WQ_LOCK: return "BUF_WQ"; case STRMS_LOCK: return "STRMS"; case SSL_LOCK: return "SSL"; case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS"; case PATREF_LOCK: return "PATREF"; case PATEXP_LOCK: return "PATEXP"; case PATLRU_LOCK: return "PATLRU"; case VARS_LOCK: return "VARS"; case COMP_POOL_LOCK: return "COMP_POOL"; case LUA_LOCK: return "LUA"; case NOTIF_LOCK: return "NOTIF"; case SPOE_APPLET_LOCK: return "SPOE_APPLET"; case DNS_LOCK: return "DNS"; case PID_LIST_LOCK: return "PID_LIST"; case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS"; case PIPES_LOCK: return "PIPES"; case TLSKEYS_REF_LOCK: return "TLSKEYS_REF"; case AUTH_LOCK: return "AUTH"; case LOGSRV_LOCK: return "LOGSRV"; case DICT_LOCK: return "DICT"; case OTHER_LOCK: return "OTHER"; case LOCK_LABELS: break; /* keep compiler happy */ }; /* only way to come here is consecutive to an internal bug */ abort(); } static inline void show_lock_stats() { int lbl; for (lbl = 0; lbl < LOCK_LABELS; lbl++) { fprintf(stderr, "Stats about Lock %s: \n" "\t # write lock : %lu\n" "\t # write unlock: %lu (%ld)\n" "\t # wait time for write : %.3f msec\n" "\t # wait time for write/lock: %.3f nsec\n" "\t # read lock : %lu\n" "\t # read unlock : %lu (%ld)\n" "\t # wait time for read : %.3f msec\n" "\t # wait time for read/lock : %.3f nsec\n", lock_label(lbl), lock_stats[lbl].num_write_locked, lock_stats[lbl].num_write_unlocked, lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked, (double)lock_stats[lbl].nsec_wait_for_write / 1000000.0, lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0, lock_stats[lbl].num_read_locked, lock_stats[lbl].num_read_unlocked, lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked, (double)lock_stats[lbl].nsec_wait_for_read / 1000000.0, lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0); } } /* Following functions are used to collect some stats about locks. We wrap * pthread functions to known how much time we wait in a lock. */ static uint64_t nsec_now(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ((uint64_t) ts.tv_sec * 1000000000ULL + (uint64_t) ts.tv_nsec); } static inline void __ha_rwlock_init(struct ha_rwlock *l) { memset(l, 0, sizeof(struct ha_rwlock)); __RWLOCK_INIT(&l->lock); } static inline void __ha_rwlock_destroy(struct ha_rwlock *l) { __RWLOCK_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_rwlock)); } static inline void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if (unlikely(l->info.cur_writer & tid_bit)) { /* the thread is already owning the lock for write */ abort(); } if (unlikely(l->info.cur_readers & tid_bit)) { /* the thread is already owning the lock for read */ abort(); } HA_ATOMIC_OR(&l->info.wait_writers, tid_bit); start_time = nsec_now(); __RWLOCK_WRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time)); HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1); l->info.cur_writer = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); } static inline int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; int r; if (unlikely(l->info.cur_writer & tid_bit)) { /* the thread is already owning the lock for write */ abort(); } if (unlikely(l->info.cur_readers & tid_bit)) { /* the thread is already owning the lock for read */ abort(); } /* We set waiting writer because trywrlock could wait for readers to quit */ HA_ATOMIC_OR(&l->info.wait_writers, tid_bit); start_time = nsec_now(); r = __RWLOCK_TRYWRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time)); if (unlikely(r)) { HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); return r; } HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1); l->info.cur_writer = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); return 0; } static inline void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l, const char *func, const char *file, int line) { if (unlikely(!(l->info.cur_writer & tid_bit))) { /* the thread is not owning the lock for write */ abort(); } l->info.cur_writer = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __RWLOCK_WRUNLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].num_write_unlocked, 1); } static inline void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l) { uint64_t start_time; if (unlikely(l->info.cur_writer & tid_bit)) { /* the thread is already owning the lock for write */ abort(); } if (unlikely(l->info.cur_readers & tid_bit)) { /* the thread is already owning the lock for read */ abort(); } HA_ATOMIC_OR(&l->info.wait_readers, tid_bit); start_time = nsec_now(); __RWLOCK_RDLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (nsec_now() - start_time)); HA_ATOMIC_ADD(&lock_stats[lbl].num_read_locked, 1); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); HA_ATOMIC_AND(&l->info.wait_readers, ~tid_bit); } static inline int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l) { int r; if (unlikely(l->info.cur_writer & tid_bit)) { /* the thread is already owning the lock for write */ abort(); } if (unlikely(l->info.cur_readers & tid_bit)) { /* the thread is already owning the lock for read */ abort(); } /* try read should never wait */ r = __RWLOCK_TRYRDLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_ADD(&lock_stats[lbl].num_read_locked, 1); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); return 0; } static inline void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l) { if (unlikely(!(l->info.cur_readers & tid_bit))) { /* the thread is not owning the lock for read */ abort(); } HA_ATOMIC_AND(&l->info.cur_readers, ~tid_bit); __RWLOCK_RDUNLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].num_read_unlocked, 1); } static inline void __spin_init(struct ha_spinlock *l) { memset(l, 0, sizeof(struct ha_spinlock)); __SPIN_INIT(&l->lock); } static inline void __spin_destroy(struct ha_spinlock *l) { __SPIN_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_spinlock)); } static inline void __spin_lock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { uint64_t start_time; if (unlikely(l->info.owner & tid_bit)) { /* the thread is already owning the lock */ abort(); } HA_ATOMIC_OR(&l->info.waiters, tid_bit); start_time = nsec_now(); __SPIN_LOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time)); HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1); l->info.owner = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.waiters, ~tid_bit); } static inline int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { int r; if (unlikely(l->info.owner & tid_bit)) { /* the thread is already owning the lock */ abort(); } /* try read should never wait */ r = __SPIN_TRYLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1); l->info.owner = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; return 0; } static inline void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { if (unlikely(!(l->info.owner & tid_bit))) { /* the thread is not owning the lock */ abort(); } l->info.owner = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __SPIN_UNLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].num_write_unlocked, 1); } #else /* DEBUG_THREAD */ #define HA_SPINLOCK_T unsigned long #define HA_SPIN_INIT(l) ({ (*l) = 0; }) #define HA_SPIN_DESTROY(l) ({ (*l) = 0; }) #define HA_SPIN_LOCK(lbl, l) pl_take_s(l) #define HA_SPIN_TRYLOCK(lbl, l) !pl_try_s(l) #define HA_SPIN_UNLOCK(lbl, l) pl_drop_s(l) #define HA_RWLOCK_T unsigned long #define HA_RWLOCK_INIT(l) ({ (*l) = 0; }) #define HA_RWLOCK_DESTROY(l) ({ (*l) = 0; }) #define HA_RWLOCK_WRLOCK(lbl,l) pl_take_w(l) #define HA_RWLOCK_TRYWRLOCK(lbl,l) !pl_try_w(l) #define HA_RWLOCK_WRUNLOCK(lbl,l) pl_drop_w(l) #define HA_RWLOCK_RDLOCK(lbl,l) pl_take_r(l) #define HA_RWLOCK_TRYRDLOCK(lbl,l) !pl_try_r(l) #define HA_RWLOCK_RDUNLOCK(lbl,l) pl_drop_r(l) #endif /* DEBUG_THREAD */ #ifdef __x86_64__ static __inline int __ha_cas_dw(void *target, void *compare, const void *set) { char ret; __asm __volatile("lock cmpxchg16b %0; setz %3" : "+m" (*(void **)target), "=a" (((void **)compare)[0]), "=d" (((void **)compare)[1]), "=q" (ret) : "a" (((void **)compare)[0]), "d" (((void **)compare)[1]), "b" (((const void **)set)[0]), "c" (((const void **)set)[1]) : "memory", "cc"); return (ret); } /* Use __ha_barrier_atomic* when you're trying to protect data that are * are modified using HA_ATOMIC* (except HA_ATOMIC_STORE) */ static __inline void __ha_barrier_atomic_load(void) { __asm __volatile("" ::: "memory"); } static __inline void __ha_barrier_atomic_store(void) { __asm __volatile("" ::: "memory"); } static __inline void __ha_barrier_atomic_full(void) { __asm __volatile("" ::: "memory"); } static __inline void __ha_barrier_load(void) { __asm __volatile("lfence" ::: "memory"); } static __inline void __ha_barrier_store(void) { __asm __volatile("sfence" ::: "memory"); } static __inline void __ha_barrier_full(void) { __asm __volatile("mfence" ::: "memory"); } #elif defined(__arm__) && (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__)) /* Use __ha_barrier_atomic* when you're trying to protect data that are * are modified using HA_ATOMIC* (except HA_ATOMIC_STORE) */ static __inline void __ha_barrier_atomic_load(void) { __asm __volatile("dmb" ::: "memory"); } static __inline void __ha_barrier_atomic_store(void) { __asm __volatile("dsb" ::: "memory"); } static __inline void __ha_barrier_atomic_full(void) { __asm __volatile("dmb" ::: "memory"); } static __inline void __ha_barrier_load(void) { __asm __volatile("dmb" ::: "memory"); } static __inline void __ha_barrier_store(void) { __asm __volatile("dsb" ::: "memory"); } static __inline void __ha_barrier_full(void) { __asm __volatile("dmb" ::: "memory"); } static __inline int __ha_cas_dw(void *target, void *compare, const void *set) { uint64_t previous; int tmp; __asm __volatile("1:" "ldrexd %0, [%4];" "cmp %Q0, %Q2;" "ittt eq;" "cmpeq %R0, %R2;" "strexdeq %1, %3, [%4];" "cmpeq %1, #1;" "beq 1b;" : "=&r" (previous), "=&r" (tmp) : "r" (*(uint64_t *)compare), "r" (*(uint64_t *)set), "r" (target) : "memory", "cc"); tmp = (previous == *(uint64_t *)compare); *(uint64_t *)compare = previous; return (tmp); } #elif defined (__aarch64__) /* Use __ha_barrier_atomic* when you're trying to protect data that are * are modified using HA_ATOMIC* (except HA_ATOMIC_STORE) */ static __inline void __ha_barrier_atomic_load(void) { __asm __volatile("dmb ishld" ::: "memory"); } static __inline void __ha_barrier_atomic_store(void) { __asm __volatile("dmb ishst" ::: "memory"); } static __inline void __ha_barrier_atomic_full(void) { __asm __volatile("dmb ish" ::: "memory"); } static __inline void __ha_barrier_load(void) { __asm __volatile("dmb ishld" ::: "memory"); } static __inline void __ha_barrier_store(void) { __asm __volatile("dmb ishst" ::: "memory"); } static __inline void __ha_barrier_full(void) { __asm __volatile("dmb ish" ::: "memory"); } static __inline int __ha_cas_dw(void *target, void *compare, void *set) { void *value[2]; uint64_t tmp1, tmp2; __asm__ __volatile__("1:" "ldxp %0, %1, [%4];" "mov %2, %0;" "mov %3, %1;" "eor %0, %0, %5;" "eor %1, %1, %6;" "orr %1, %0, %1;" "mov %w0, #0;" "cbnz %1, 2f;" "stxp %w0, %7, %8, [%4];" "cbnz %w0, 1b;" "mov %w0, #1;" "2:" : "=&r" (tmp1), "=&r" (tmp2), "=&r" (value[0]), "=&r" (value[1]) : "r" (target), "r" (((void **)(compare))[0]), "r" (((void **)(compare))[1]), "r" (((void **)(set))[0]), "r" (((void **)(set))[1]) : "cc", "memory"); memcpy(compare, &value, sizeof(value)); return (tmp1); } #else #define __ha_barrier_atomic_load __sync_synchronize #define __ha_barrier_atomic_store __sync_synchronize #define __ha_barrier_atomic_full __sync_synchronize #define __ha_barrier_load __sync_synchronize #define __ha_barrier_store __sync_synchronize #define __ha_barrier_full __sync_synchronize #endif void ha_spin_init(HA_SPINLOCK_T *l); void ha_rwlock_init(HA_RWLOCK_T *l); #endif /* USE_THREAD */ extern int thread_cpus_enabled_at_boot; static inline void __ha_compiler_barrier(void) { __asm __volatile("" ::: "memory"); } int parse_nbthread(const char *arg, char **err); int thread_get_default_count(); #ifndef _HA_ATOMIC_CAS #define _HA_ATOMIC_CAS HA_ATOMIC_CAS #endif /* !_HA_ATOMIC_CAS */ #ifndef _HA_ATOMIC_DWCAS #define _HA_ATOMIC_DWCAS HA_ATOMIC_DWCAS #endif /* !_HA_ATOMIC_CAS */ #ifndef _HA_ATOMIC_ADD #define _HA_ATOMIC_ADD HA_ATOMIC_ADD #endif /* !_HA_ATOMIC_ADD */ #ifndef _HA_ATOMIC_XADD #define _HA_ATOMIC_XADD HA_ATOMIC_XADD #endif /* !_HA_ATOMIC_SUB */ #ifndef _HA_ATOMIC_SUB #define _HA_ATOMIC_SUB HA_ATOMIC_SUB #endif /* !_HA_ATOMIC_SUB */ #ifndef _HA_ATOMIC_AND #define _HA_ATOMIC_AND HA_ATOMIC_AND #endif /* !_HA_ATOMIC_AND */ #ifndef _HA_ATOMIC_OR #define _HA_ATOMIC_OR HA_ATOMIC_OR #endif /* !_HA_ATOMIC_OR */ #ifndef _HA_ATOMIC_XCHG #define _HA_ATOMIC_XCHG HA_ATOMIC_XCHG #endif /* !_HA_ATOMIC_XCHG */ #ifndef _HA_ATOMIC_STORE #define _HA_ATOMIC_STORE HA_ATOMIC_STORE #endif /* !_HA_ATOMIC_STORE */ #ifndef _HA_ATOMIC_LOAD #define _HA_ATOMIC_LOAD HA_ATOMIC_LOAD #endif /* !_HA_ATOMIC_LOAD */ #endif /* _COMMON_HATHREADS_H */