/* * HA-Proxy : High Availability-enabled HTTP/TCP proxy * 2000-2005 - Willy Tarreau - willy AT meta-x DOT org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Please refer to RFC2068 or RFC2616 for informations about HTTP protocol, and * RFC2965 for informations about cookies usage. More generally, the IETF HTTP * Working Group's web site should be consulted for protocol related changes : * * http://ftp.ics.uci.edu/pub/ietf/http/ * * Pending bugs (may be not fixed because never reproduced) : * - solaris only : sometimes, an HTTP proxy with only a dispatch address causes * the proxy to terminate (no core) if the client breaks the connection during * the response. Seen on 1.1.8pre4, but never reproduced. May not be related to * the snprintf() bug since requests were simple (GET / HTTP/1.0), but may be * related to missing setsid() (fixed in 1.1.15) * - a proxy with an invalid config will prevent the startup even if disabled. * * ChangeLog has moved to the CHANGELOG file. * * TODO: * - handle properly intermediate incomplete server headers. Done ? * - handle hot-reconfiguration * - fix client/server state transition when server is in connect or headers state * and client suddenly disconnects. The server *should* switch to SHUT_WR, but * still handle HTTP headers. * - remove MAX_NEWHDR * - cut this huge file into several ones * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_PCRE #include #include #else #include #endif #if defined(TPROXY) && defined(NETFILTER) #include #endif #if defined(__dietlibc__) #include #endif #if defined(ENABLE_POLL) #include #endif #if defined(ENABLE_EPOLL) #if !defined(USE_MY_EPOLL) #include #else #include "include/epoll.h" #endif #endif #include "include/appsession.h" #define HAPROXY_VERSION "1.2.7" #define HAPROXY_DATE "2005/11/13" /* this is for libc5 for example */ #ifndef TCP_NODELAY #define TCP_NODELAY 1 #endif #ifndef SHUT_RD #define SHUT_RD 0 #endif #ifndef SHUT_WR #define SHUT_WR 1 #endif /* * BUFSIZE defines the size of a read and write buffer. It is the maximum * amount of bytes which can be stored by the proxy for each session. However, * when reading HTTP headers, the proxy needs some spare space to add or rewrite * headers if needed. The size of this spare is defined with MAXREWRITE. So it * is not possible to process headers longer than BUFSIZE-MAXREWRITE bytes. By * default, BUFSIZE=16384 bytes and MAXREWRITE=BUFSIZE/2, so the maximum length * of headers accepted is 8192 bytes, which is in line with Apache's limits. */ #ifndef BUFSIZE #define BUFSIZE 16384 #endif // reserved buffer space for header rewriting #ifndef MAXREWRITE #define MAXREWRITE (BUFSIZE / 2) #endif #define REQURI_LEN 1024 #define CAPTURE_LEN 64 // max # args on a configuration line #define MAX_LINE_ARGS 40 // max # of added headers per request #define MAX_NEWHDR 10 // max # of matches per regexp #define MAX_MATCH 10 // cookie delimitor in "prefix" mode. This character is inserted between the // persistence cookie and the original value. The '~' is allowed by RFC2965, // and should not be too common in server names. #ifndef COOKIE_DELIM #define COOKIE_DELIM '~' #endif #define CONN_RETRIES 3 #define CHK_CONNTIME 2000 #define DEF_CHKINTR 2000 #define DEF_FALLTIME 3 #define DEF_RISETIME 2 #define DEF_CHECK_REQ "OPTIONS / HTTP/1.0\r\n\r\n" /* default connections limit */ #define DEFAULT_MAXCONN 2000 /* how many bits are needed to code the size of an int (eg: 32bits -> 5) */ #define INTBITS 5 /* show stats this every millisecond, 0 to disable */ #ifndef STATTIME #define STATTIME 2000 #endif /* this reduces the number of calls to select() by choosing appropriate * sheduler precision in milliseconds. It should be near the minimum * time that is needed by select() to collect all events. All timeouts * are rounded up by adding this value prior to pass it to select(). */ #define SCHEDULER_RESOLUTION 9 #define TIME_ETERNITY -1 /* returns the lowest delay amongst and , and respects TIME_ETERNITY */ #define MINTIME(old, new) (((new)<0)?(old):(((old)<0||(new)<(old))?(new):(old))) #define SETNOW(a) (*a=now) /****** string-specific macros and functions ******/ /* if a > max, then bound to . The macro returns the new */ #define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); }) /* if a < min, then bound to . The macro returns the new */ #define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); }) /* returns 1 only if only zero or one bit is set in X, which means that X is a * power of 2, and 0 otherwise */ #define POWEROF2(x) (((x) & ((x)-1)) == 0) /* * copies at most chars from to . Last char is always * set to 0, unless is 0. The number of chars copied is returned * (excluding the terminating zero). * This code has been optimized for size and speed : on x86, it's 45 bytes * long, uses only registers, and consumes only 4 cycles per char. */ int strlcpy2(char *dst, const char *src, int size) { char *orig = dst; if (size) { while (--size && (*dst = *src)) { src++; dst++; } *dst = 0; } return dst - orig; } /* * Returns a pointer to an area of <__len> bytes taken from the pool or * dynamically allocated. In the first case, <__pool> is updated to point to * the next element in the list. */ #define pool_alloc_from(__pool, __len) ({ \ void *__p; \ if ((__p = (__pool)) == NULL) \ __p = malloc(((__len) >= sizeof (void *)) ? (__len) : sizeof(void *)); \ else { \ __pool = *(void **)(__pool); \ } \ __p; \ }) /* * Puts a memory area back to the corresponding pool. * Items are chained directly through a pointer that * is written in the beginning of the memory area, so * there's no need for any carrier cell. This implies * that each memory area is at least as big as one * pointer. */ #define pool_free_to(__pool, __ptr) ({ \ *(void **)(__ptr) = (void *)(__pool); \ __pool = (void *)(__ptr); \ }) #define MEM_OPTIM #ifdef MEM_OPTIM /* * Returns a pointer to type taken from the * pool or dynamically allocated. In the * first case, is updated to point to the * next element in the list. */ #define pool_alloc(type) ({ \ void *__p; \ if ((__p = pool_##type) == NULL) \ __p = malloc(sizeof_##type); \ else { \ pool_##type = *(void **)pool_##type; \ } \ __p; \ }) /* * Puts a memory area back to the corresponding pool. * Items are chained directly through a pointer that * is written in the beginning of the memory area, so * there's no need for any carrier cell. This implies * that each memory area is at least as big as one * pointer. */ #define pool_free(type, ptr) ({ \ *(void **)ptr = (void *)pool_##type; \ pool_##type = (void *)ptr; \ }) #else #define pool_alloc(type) (calloc(1,sizeof_##type)); #define pool_free(type, ptr) (free(ptr)); #endif /* MEM_OPTIM */ #define sizeof_task sizeof(struct task) #define sizeof_session sizeof(struct session) #define sizeof_buffer sizeof(struct buffer) #define sizeof_fdtab sizeof(struct fdtab) #define sizeof_requri REQURI_LEN #define sizeof_capture CAPTURE_LEN #define sizeof_curappsession CAPTURE_LEN /* current_session pool */ #define sizeof_appsess sizeof(struct appsessions) /* different possible states for the sockets */ #define FD_STCLOSE 0 #define FD_STLISTEN 1 #define FD_STCONN 2 #define FD_STREADY 3 #define FD_STERROR 4 /* values for task->state */ #define TASK_IDLE 0 #define TASK_RUNNING 1 /* values for proxy->state */ #define PR_STNEW 0 #define PR_STIDLE 1 #define PR_STRUN 2 #define PR_STDISABLED 3 /* values for proxy->mode */ #define PR_MODE_TCP 0 #define PR_MODE_HTTP 1 #define PR_MODE_HEALTH 2 /* possible actions for the *poll() loops */ #define POLL_LOOP_ACTION_INIT 0 #define POLL_LOOP_ACTION_RUN 1 #define POLL_LOOP_ACTION_CLEAN 2 /* poll mechanisms available */ #define POLL_USE_SELECT (1<<0) #define POLL_USE_POLL (1<<1) #define POLL_USE_EPOLL (1<<2) /* bits for proxy->options */ #define PR_O_REDISP 0x00000001 /* allow reconnection to dispatch in case of errors */ #define PR_O_TRANSP 0x00000002 /* transparent mode : use original DEST as dispatch */ #define PR_O_COOK_RW 0x00000004 /* rewrite all direct cookies with the right serverid */ #define PR_O_COOK_IND 0x00000008 /* keep only indirect cookies */ #define PR_O_COOK_INS 0x00000010 /* insert cookies when not accessing a server directly */ #define PR_O_COOK_PFX 0x00000020 /* rewrite all cookies by prefixing the right serverid */ #define PR_O_COOK_ANY (PR_O_COOK_RW | PR_O_COOK_IND | PR_O_COOK_INS | PR_O_COOK_PFX) #define PR_O_BALANCE_RR 0x00000040 /* balance in round-robin mode */ #define PR_O_BALANCE (PR_O_BALANCE_RR) #define PR_O_KEEPALIVE 0x00000080 /* follow keep-alive sessions */ #define PR_O_FWDFOR 0x00000100 /* insert x-forwarded-for with client address */ #define PR_O_BIND_SRC 0x00000200 /* bind to a specific source address when connect()ing */ #define PR_O_NULLNOLOG 0x00000400 /* a connect without request will not be logged */ #define PR_O_COOK_NOC 0x00000800 /* add a 'Cache-control' header with the cookie */ #define PR_O_COOK_POST 0x00001000 /* don't insert cookies for requests other than a POST */ #define PR_O_HTTP_CHK 0x00002000 /* use HTTP 'OPTIONS' method to check server health */ #define PR_O_PERSIST 0x00004000 /* server persistence stays effective even when server is down */ #define PR_O_LOGASAP 0x00008000 /* log as soon as possible, without waiting for the session to complete */ #define PR_O_HTTP_CLOSE 0x00010000 /* force 'connection: close' in both directions */ #define PR_O_CHK_CACHE 0x00020000 /* require examination of cacheability of the 'set-cookie' field */ #define PR_O_TCP_CLI_KA 0x00040000 /* enable TCP keep-alive on client-side sessions */ #define PR_O_TCP_SRV_KA 0x00080000 /* enable TCP keep-alive on server-side sessions */ /* various session flags */ #define SN_DIRECT 0x00000001 /* connection made on the server matching the client cookie */ #define SN_CLDENY 0x00000002 /* a client header matches a deny regex */ #define SN_CLALLOW 0x00000004 /* a client header matches an allow regex */ #define SN_SVDENY 0x00000008 /* a server header matches a deny regex */ #define SN_SVALLOW 0x00000010 /* a server header matches an allow regex */ #define SN_POST 0x00000020 /* the request was an HTTP POST */ #define SN_MONITOR 0x00000040 /* this session comes from a monitoring system */ #define SN_CK_NONE 0x00000000 /* this session had no cookie */ #define SN_CK_INVALID 0x00000040 /* this session had a cookie which matches no server */ #define SN_CK_DOWN 0x00000080 /* this session had cookie matching a down server */ #define SN_CK_VALID 0x000000C0 /* this session had cookie matching a valid server */ #define SN_CK_MASK 0x000000C0 /* mask to get this session's cookie flags */ #define SN_CK_SHIFT 6 /* bit shift */ #define SN_ERR_NONE 0x00000000 #define SN_ERR_CLITO 0x00000100 /* client time-out */ #define SN_ERR_CLICL 0x00000200 /* client closed (read/write error) */ #define SN_ERR_SRVTO 0x00000300 /* server time-out, connect time-out */ #define SN_ERR_SRVCL 0x00000400 /* server closed (connect/read/write error) */ #define SN_ERR_PRXCOND 0x00000500 /* the proxy decided to close (deny...) */ #define SN_ERR_RESOURCE 0x00000600 /* the proxy encountered a lack of a local resources (fd, mem, ...) */ #define SN_ERR_INTERNAL 0x00000700 /* the proxy encountered an internal error */ #define SN_ERR_MASK 0x00000700 /* mask to get only session error flags */ #define SN_ERR_SHIFT 8 /* bit shift */ #define SN_FINST_R 0x00001000 /* session ended during client request */ #define SN_FINST_C 0x00002000 /* session ended during server connect */ #define SN_FINST_H 0x00003000 /* session ended during server headers */ #define SN_FINST_D 0x00004000 /* session ended during data phase */ #define SN_FINST_L 0x00005000 /* session ended while pushing last data to client */ #define SN_FINST_MASK 0x00007000 /* mask to get only final session state flags */ #define SN_FINST_SHIFT 12 /* bit shift */ #define SN_SCK_NONE 0x00000000 /* no set-cookie seen for the server cookie */ #define SN_SCK_DELETED 0x00010000 /* existing set-cookie deleted or changed */ #define SN_SCK_INSERTED 0x00020000 /* new set-cookie inserted or changed existing one */ #define SN_SCK_SEEN 0x00040000 /* set-cookie seen for the server cookie */ #define SN_SCK_MASK 0x00070000 /* mask to get the set-cookie field */ #define SN_SCK_ANY 0x00080000 /* at least one set-cookie seen (not to be counted) */ #define SN_SCK_SHIFT 16 /* bit shift */ #define SN_CACHEABLE 0x00100000 /* at least part of the response is cacheable */ #define SN_CACHE_COOK 0x00200000 /* a cookie in the response is cacheable */ #define SN_CACHE_SHIFT 20 /* bit shift */ /* different possible states for the client side */ #define CL_STHEADERS 0 #define CL_STDATA 1 #define CL_STSHUTR 2 #define CL_STSHUTW 3 #define CL_STCLOSE 4 /* different possible states for the server side */ #define SV_STIDLE 0 #define SV_STCONN 1 #define SV_STHEADERS 2 #define SV_STDATA 3 #define SV_STSHUTR 4 #define SV_STSHUTW 5 #define SV_STCLOSE 6 /* result of an I/O event */ #define RES_SILENT 0 /* didn't happen */ #define RES_DATA 1 /* data were sent or received */ #define RES_NULL 2 /* result is 0 (read == 0), or connect without need for writing */ #define RES_ERROR 3 /* result -1 or error on the socket (eg: connect()) */ /* modes of operation (global.mode) */ #define MODE_DEBUG 1 #define MODE_STATS 2 #define MODE_LOG 4 #define MODE_DAEMON 8 #define MODE_QUIET 16 #define MODE_CHECK 32 #define MODE_VERBOSE 64 #define MODE_STARTING 128 /* server flags */ #define SRV_RUNNING 1 /* the server is UP */ #define SRV_BACKUP 2 /* this server is a backup server */ #define SRV_MAPPORTS 4 /* this server uses mapped ports */ #define SRV_BIND_SRC 8 /* this server uses a specific source address */ /* what to do when a header matches a regex */ #define ACT_ALLOW 0 /* allow the request */ #define ACT_REPLACE 1 /* replace the matching header */ #define ACT_REMOVE 2 /* remove the matching header */ #define ACT_DENY 3 /* deny the request */ #define ACT_PASS 4 /* pass this header without allowing or denying the request */ /* configuration sections */ #define CFG_NONE 0 #define CFG_GLOBAL 1 #define CFG_LISTEN 2 /* fields that need to be logged. They appear as flags in session->logs.logwait */ #define LW_DATE 1 /* date */ #define LW_CLIP 2 /* CLient IP */ #define LW_SVIP 4 /* SerVer IP */ #define LW_SVID 8 /* server ID */ #define LW_REQ 16 /* http REQuest */ #define LW_RESP 32 /* http RESPonse */ #define LW_PXIP 64 /* proxy IP */ #define LW_PXID 128 /* proxy ID */ #define LW_BYTES 256 /* bytes read from server */ #define LW_COOKIE 512 /* captured cookie */ #define LW_REQHDR 1024 /* request header(s) */ #define LW_RSPHDR 2048 /* response header(s) */ /*********************************************************************/ #define LIST_HEAD(a) ((void *)(&(a))) /*********************************************************************/ struct cap_hdr { struct cap_hdr *next; char *name; /* header name, case insensitive */ int namelen; /* length of the header name, to speed-up lookups */ int len; /* capture length, not including terminal zero */ int index; /* index in the output array */ void *pool; /* pool of pre-allocated memory area of (len+1) bytes */ }; struct hdr_exp { struct hdr_exp *next; regex_t *preg; /* expression to look for */ int action; /* ACT_ALLOW, ACT_REPLACE, ACT_REMOVE, ACT_DENY */ char *replace; /* expression to set instead */ }; struct buffer { unsigned int l; /* data length */ char *r, *w, *h, *lr; /* read ptr, write ptr, last header ptr, last read */ char *rlim; /* read limit, used for header rewriting */ unsigned long long total; /* total data read */ char data[BUFSIZE]; }; struct server { struct server *next; int state; /* server state (SRV_*) */ int cklen; /* the len of the cookie, to speed up checks */ char *cookie; /* the id set in the cookie */ char *id; /* just for identification */ struct sockaddr_in addr; /* the address to connect to */ struct sockaddr_in source_addr; /* the address to which we want to bind for connect() */ short check_port; /* the port to use for the health checks */ int health; /* 0->rise-1 = bad; rise->rise+fall-1 = good */ int rise, fall; /* time in iterations */ int inter; /* time in milliseconds */ int result; /* 0 = connect OK, -1 = connect KO */ int curfd; /* file desc used for current test, or -1 if not in test */ struct proxy *proxy; /* the proxy this server belongs to */ }; /* The base for all tasks */ struct task { struct task *next, *prev; /* chaining ... */ struct task *rqnext; /* chaining in run queue ... */ struct task *wq; /* the wait queue this task is in */ int state; /* task state : IDLE or RUNNING */ struct timeval expire; /* next expiration time for this task, use only for fast sorting */ int (*process)(struct task *t); /* the function which processes the task */ void *context; /* the task's context */ }; /* WARNING: if new fields are added, they must be initialized in event_accept() */ struct session { struct task *task; /* the task associated with this session */ /* application specific below */ struct timeval crexpire; /* expiration date for a client read */ struct timeval cwexpire; /* expiration date for a client write */ struct timeval srexpire; /* expiration date for a server read */ struct timeval swexpire; /* expiration date for a server write */ struct timeval cnexpire; /* expiration date for a connect */ char res_cr, res_cw, res_sr, res_sw;/* results of some events */ struct proxy *proxy; /* the proxy this socket belongs to */ int cli_fd; /* the client side fd */ int srv_fd; /* the server side fd */ int cli_state; /* state of the client side */ int srv_state; /* state of the server side */ int conn_retries; /* number of connect retries left */ int flags; /* some flags describing the session */ struct buffer *req; /* request buffer */ struct buffer *rep; /* response buffer */ struct sockaddr_storage cli_addr; /* the client address */ struct sockaddr_in srv_addr; /* the address to connect to */ struct server *srv; /* the server being used */ char **req_cap; /* array of captured request headers (may be NULL) */ char **rsp_cap; /* array of captured response headers (may be NULL) */ struct { int logwait; /* log fields waiting to be collected : LW_* */ struct timeval tv_accept; /* date of the accept() (beginning of the session) */ long t_request; /* delay before the end of the request arrives, -1 if never occurs */ long t_connect; /* delay before the connect() to the server succeeds, -1 if never occurs */ long t_data; /* delay before the first data byte from the server ... */ unsigned long t_close; /* total session duration */ char *uri; /* first line if log needed, NULL otherwise */ char *cli_cookie; /* cookie presented by the client, in capture mode */ char *srv_cookie; /* cookie presented by the server, in capture mode */ int status; /* HTTP status from the server, negative if from proxy */ long long bytes; /* number of bytes transferred from the server */ } logs; unsigned int uniq_id; /* unique ID used for the traces */ }; struct listener { int fd; /* the listen socket */ struct sockaddr_storage addr; /* the address we listen to */ struct listener *next; /* next address or NULL */ }; struct proxy { struct listener *listen; /* the listen addresses and sockets */ struct in_addr mon_net, mon_mask; /* don't forward connections from this net (network order) FIXME: should support IPv6 */ int state; /* proxy state */ struct sockaddr_in dispatch_addr; /* the default address to connect to */ struct server *srv, *cursrv; /* known servers, current server */ int nbservers; /* # of servers */ char *cookie_name; /* name of the cookie to look for */ int cookie_len; /* strlen(cookie_name), computed only once */ char *appsession_name; /* name of the cookie to look for */ int appsession_name_len; /* strlen(appsession_name), computed only once */ int appsession_len; /* length of the appsession cookie value to be used */ int appsession_timeout; CHTbl htbl_proxy; /* Per Proxy hashtable */ char *capture_name; /* beginning of the name of the cookie to capture */ int capture_namelen; /* length of the cookie name to match */ int capture_len; /* length of the string to be captured */ int clitimeout; /* client I/O timeout (in milliseconds) */ int srvtimeout; /* server I/O timeout (in milliseconds) */ int contimeout; /* connect timeout (in milliseconds) */ char *id; /* proxy id */ int nbconn; /* # of active sessions */ int maxconn; /* max # of active sessions */ int conn_retries; /* maximum number of connect retries */ int options; /* PR_O_REDISP, PR_O_TRANSP, ... */ int mode; /* mode = PR_MODE_TCP, PR_MODE_HTTP or PR_MODE_HEALTH */ struct sockaddr_in source_addr; /* the address to which we want to bind for connect() */ struct proxy *next; struct sockaddr_in logsrv1, logsrv2; /* 2 syslog servers */ signed char logfac1, logfac2; /* log facility for both servers. -1 = disabled */ int loglev1, loglev2; /* log level for each server, 7 by default */ int to_log; /* things to be logged (LW_*) */ struct timeval stop_time; /* date to stop listening, when stopping != 0 */ int nb_reqadd, nb_rspadd; struct hdr_exp *req_exp; /* regular expressions for request headers */ struct hdr_exp *rsp_exp; /* regular expressions for response headers */ int nb_req_cap, nb_rsp_cap; /* # of headers to be captured */ struct cap_hdr *req_cap; /* chained list of request headers to be captured */ struct cap_hdr *rsp_cap; /* chained list of response headers to be captured */ void *req_cap_pool, *rsp_cap_pool; /* pools of pre-allocated char ** used to build the sessions */ char *req_add[MAX_NEWHDR], *rsp_add[MAX_NEWHDR]; /* headers to be added */ int grace; /* grace time after stop request */ char *check_req; /* HTTP request to use if PR_O_HTTP_CHK is set, else NULL */ int check_len; /* Length of the HTTP request */ struct { char *msg400; /* message for error 400 */ int len400; /* message length for error 400 */ char *msg403; /* message for error 403 */ int len403; /* message length for error 403 */ char *msg408; /* message for error 408 */ int len408; /* message length for error 408 */ char *msg500; /* message for error 500 */ int len500; /* message length for error 500 */ char *msg502; /* message for error 502 */ int len502; /* message length for error 502 */ char *msg503; /* message for error 503 */ int len503; /* message length for error 503 */ char *msg504; /* message for error 504 */ int len504; /* message length for error 504 */ } errmsg; }; /* info about one given fd */ struct fdtab { int (*read)(int fd); /* read function */ int (*write)(int fd); /* write function */ struct task *owner; /* the session (or proxy) associated with this fd */ int state; /* the state of this fd */ }; /*********************************************************************/ int cfg_maxpconn = DEFAULT_MAXCONN; /* # of simultaneous connections per proxy (-N) */ char *cfg_cfgfile = NULL; /* configuration file */ char *progname = NULL; /* program name */ int pid; /* current process id */ /* global options */ static struct { int uid; int gid; int nbproc; int maxconn; int maxsock; /* max # of sockets */ int rlimit_nofile; /* default ulimit-n value : 0=unset */ int mode; char *chroot; char *pidfile; int logfac1, logfac2; int loglev1, loglev2; struct sockaddr_in logsrv1, logsrv2; } global = { logfac1 : -1, logfac2 : -1, loglev1 : 7, /* max syslog level : debug */ loglev2 : 7, /* others NULL OK */ }; /*********************************************************************/ fd_set *StaticReadEvent, *StaticWriteEvent; int cfg_polling_mechanism = 0; /* POLL_USE_{SELECT|POLL|EPOLL} */ void **pool_session = NULL, **pool_buffer = NULL, **pool_fdtab = NULL, **pool_requri = NULL, **pool_task = NULL, **pool_capture = NULL, **pool_appsess = NULL; struct proxy *proxy = NULL; /* list of all existing proxies */ struct fdtab *fdtab = NULL; /* array of all the file descriptors */ struct task *rq = NULL; /* global run queue */ struct task wait_queue = { /* global wait queue */ prev:LIST_HEAD(wait_queue), next:LIST_HEAD(wait_queue) }; static int totalconn = 0; /* total # of terminated sessions */ static int actconn = 0; /* # of active sessions */ static int maxfd = 0; /* # of the highest fd + 1 */ static int listeners = 0; /* # of listeners */ static int stopping = 0; /* non zero means stopping in progress */ static struct timeval now = {0,0}; /* the current date at any moment */ static struct proxy defproxy; /* fake proxy used to assign default values on all instances */ #if defined(ENABLE_EPOLL) /* FIXME: this is dirty, but at the moment, there's no other solution to remove * the old FDs from outside the loop. Perhaps we should export a global 'poll' * structure with pointers to functions such as init_fd() and close_fd(), plus * a private structure with several pointers to places such as below. */ static fd_set *PrevReadEvent = NULL, *PrevWriteEvent = NULL; #endif static regmatch_t pmatch[MAX_MATCH]; /* rm_so, rm_eo for regular expressions */ /* this is used to drain data, and as a temporary buffer for sprintf()... */ static char trash[BUFSIZE]; const int zero = 0; const int one = 1; /* * Syslog facilities and levels. Conforming to RFC3164. */ #define MAX_SYSLOG_LEN 1024 #define NB_LOG_FACILITIES 24 const char *log_facilities[NB_LOG_FACILITIES] = { "kern", "user", "mail", "daemon", "auth", "syslog", "lpr", "news", "uucp", "cron", "auth2", "ftp", "ntp", "audit", "alert", "cron2", "local0", "local1", "local2", "local3", "local4", "local5", "local6", "local7" }; #define NB_LOG_LEVELS 8 const char *log_levels[NB_LOG_LEVELS] = { "emerg", "alert", "crit", "err", "warning", "notice", "info", "debug" }; #define SYSLOG_PORT 514 const char *monthname[12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; const char sess_term_cond[8] = "-cCsSPRI"; /* normal, CliTo, CliErr, SrvTo, SrvErr, PxErr, Resource, Internal */ const char sess_fin_state[8] = "-RCHDL67"; /* cliRequest, srvConnect, srvHeader, Data, Last, unknown */ const char sess_cookie[4] = "NIDV"; /* No cookie, Invalid cookie, cookie for a Down server, Valid cookie */ const char sess_set_cookie[8] = "N1I3PD5R"; /* No set-cookie, unknown, Set-Cookie Inserted, unknown, Set-cookie seen and left unchanged (passive), Set-cookie Deleted, unknown, Set-cookie Rewritten */ #define MAX_HOSTNAME_LEN 32 static char hostname[MAX_HOSTNAME_LEN] = ""; const char *HTTP_302 = "HTTP/1.0 302 Found\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the GET method */ const char *HTTP_303 = "HTTP/1.0 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ const char *HTTP_400 = "HTTP/1.0 400 Bad request\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

400 Bad request

\nYour browser sent an invalid request.\n\n"; const char *HTTP_403 = "HTTP/1.0 403 Forbidden\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

403 Forbidden

\nRequest forbidden by administrative rules.\n\n"; const char *HTTP_408 = "HTTP/1.0 408 Request Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

408 Request Time-out

\nYour browser didn't send a complete request in time.\n\n"; const char *HTTP_500 = "HTTP/1.0 500 Server Error\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

500 Server Error

\nAn internal server error occured.\n\n"; const char *HTTP_502 = "HTTP/1.0 502 Bad Gateway\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

502 Bad Gateway

\nThe server returned an invalid or incomplete response.\n\n"; const char *HTTP_503 = "HTTP/1.0 503 Service Unavailable\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

503 Service Unavailable

\nNo server is available to handle this request.\n\n"; const char *HTTP_504 = "HTTP/1.0 504 Gateway Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "\r\n" "

504 Gateway Time-out

\nThe server didn't respond in time.\n\n"; /*********************************************************************/ /* statistics ******************************************************/ /*********************************************************************/ #if STATTIME > 0 static int stats_tsk_lsrch, stats_tsk_rsrch, stats_tsk_good, stats_tsk_right, stats_tsk_left, stats_tsk_new, stats_tsk_nsrch; #endif /*********************************************************************/ /* debugging *******************************************************/ /*********************************************************************/ #ifdef DEBUG_FULL static char *cli_stnames[5] = {"HDR", "DAT", "SHR", "SHW", "CLS" }; static char *srv_stnames[7] = {"IDL", "CON", "HDR", "DAT", "SHR", "SHW", "CLS" }; #endif /*********************************************************************/ /* function prototypes *********************************************/ /*********************************************************************/ int event_accept(int fd); int event_cli_read(int fd); int event_cli_write(int fd); int event_srv_read(int fd); int event_srv_write(int fd); int process_session(struct task *t); static int appsession_task_init(void); static int appsession_init(void); static int appsession_refresh(struct task *t); /*********************************************************************/ /* general purpose functions ***************************************/ /*********************************************************************/ void display_version() { printf("HA-Proxy version " HAPROXY_VERSION " " HAPROXY_DATE"\n"); printf("Copyright 2000-2005 Willy Tarreau \n\n"); } /* * This function prints the command line usage and exits */ void usage(char *name) { display_version(); fprintf(stderr, "Usage : %s -f [ -vdV" #if STATTIME > 0 "sl" #endif "D ] [ -n ] [ -N ] [ -p ]\n" " -v displays version\n" " -d enters debug mode\n" " -V enters verbose mode (disables quiet mode)\n" #if STATTIME > 0 " -s enables statistics output\n" " -l enables long statistics format\n" #endif " -D goes daemon ; implies -q\n" " -q quiet mode : don't display messages\n" " -c check mode : only check config file and exit\n" " -n sets the maximum total # of connections (%d)\n" " -N sets the default, per-proxy maximum # of connections (%d)\n" " -p writes pids of all children to this file\n" #if defined(ENABLE_EPOLL) " -de disables epoll() usage even when available\n" #endif #if defined(ENABLE_POLL) " -dp disables poll() usage even when available\n" #endif "\n", name, DEFAULT_MAXCONN, cfg_maxpconn); exit(1); } /* * Displays the message on stderr with the date and pid. Overrides the quiet * mode during startup. */ void Alert(char *fmt, ...) { va_list argp; struct timeval tv; struct tm *tm; if (!(global.mode & MODE_QUIET) || (global.mode & (MODE_VERBOSE | MODE_STARTING))) { va_start(argp, fmt); gettimeofday(&tv, NULL); tm=localtime(&tv.tv_sec); fprintf(stderr, "[ALERT] %03d/%02d%02d%02d (%d) : ", tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, (int)getpid()); vfprintf(stderr, fmt, argp); fflush(stderr); va_end(argp); } } /* * Displays the message on stderr with the date and pid. */ void Warning(char *fmt, ...) { va_list argp; struct timeval tv; struct tm *tm; if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) { va_start(argp, fmt); gettimeofday(&tv, NULL); tm=localtime(&tv.tv_sec); fprintf(stderr, "[WARNING] %03d/%02d%02d%02d (%d) : ", tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, (int)getpid()); vfprintf(stderr, fmt, argp); fflush(stderr); va_end(argp); } } /* * Displays the message on only if quiet mode is not set. */ void qfprintf(FILE *out, char *fmt, ...) { va_list argp; if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) { va_start(argp, fmt); vfprintf(out, fmt, argp); fflush(out); va_end(argp); } } /* * converts to a struct sockaddr_in* which is locally allocated. * The format is "addr:port", where "addr" can be empty or "*" to indicate * INADDR_ANY. */ struct sockaddr_in *str2sa(char *str) { static struct sockaddr_in sa; char *c; int port; memset(&sa, 0, sizeof(sa)); str=strdup(str); if ((c=strrchr(str,':')) != NULL) { *c++=0; port=atol(c); } else port=0; if (*str == '*' || *str == '\0') { /* INADDR_ANY */ sa.sin_addr.s_addr = INADDR_ANY; } else if (!inet_pton(AF_INET, str, &sa.sin_addr)) { struct hostent *he; if ((he = gethostbyname(str)) == NULL) { Alert("Invalid server name: '%s'\n", str); } else sa.sin_addr = *(struct in_addr *) *(he->h_addr_list); } sa.sin_port=htons(port); sa.sin_family=AF_INET; free(str); return &sa; } /* * converts to a two struct in_addr* which are locally allocated. * The format is "addr[/mask]", where "addr" cannot be empty, and mask * is optionnal and either in the dotted or CIDR notation. * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. */ int str2net(char *str, struct in_addr *addr, struct in_addr *mask) { char *c; unsigned long len; memset(mask, 0, sizeof(*mask)); memset(addr, 0, sizeof(*addr)); str=strdup(str); if ((c = strrchr(str, '/')) != NULL) { *c++ = 0; /* c points to the mask */ if (strchr(c, '.') != NULL) { /* dotted notation */ if (!inet_pton(AF_INET, c, mask)) return 0; } else { /* mask length */ char *err; len = strtol(c, &err, 10); if (!*c || (err && *err) || (unsigned)len > 32) return 0; if (len) mask->s_addr = htonl(0xFFFFFFFFUL << (32 - len)); else mask->s_addr = 0; } } else { mask->s_addr = 0xFFFFFFFF; } if (!inet_pton(AF_INET, str, addr)) { struct hostent *he; if ((he = gethostbyname(str)) == NULL) { return 0; } else *addr = *(struct in_addr *) *(he->h_addr_list); } free(str); return 1; } /* * converts to a list of listeners which are dynamically allocated. * The format is "{addr|'*'}:port[-end][,{addr|'*'}:port[-end]]*", where : * - can be empty or "*" to indicate INADDR_ANY ; * - is a numerical port from 1 to 65535 ; * - indicates to use the range from to instead (inclusive). * This can be repeated as many times as necessary, separated by a coma. * The argument is a pointer to a current list which should be appended * to the tail of the new list. The pointer to the new list is returned. */ struct listener *str2listener(char *str, struct listener *tail) { struct listener *l; char *c, *next, *range, *dupstr; int port, end; next = dupstr = strdup(str); while (next && *next) { struct sockaddr_storage ss; str = next; /* 1) look for the end of the first address */ if ((next = strrchr(str, ',')) != NULL) { *next++ = 0; } /* 2) look for the addr/port delimiter, it's the last colon. */ if ((range = strrchr(str, ':')) == NULL) { Alert("Missing port number: '%s'\n", str); goto fail; } *range++ = 0; if (strrchr(str, ':') != NULL) { /* IPv6 address contains ':' */ memset(&ss, 0, sizeof(ss)); ss.ss_family = AF_INET6; if (!inet_pton(ss.ss_family, str, &((struct sockaddr_in6 *)&ss)->sin6_addr)) { Alert("Invalid server address: '%s'\n", str); goto fail; } } else { memset(&ss, 0, sizeof(ss)); ss.ss_family = AF_INET; if (*str == '*' || *str == '\0') { /* INADDR_ANY */ ((struct sockaddr_in *)&ss)->sin_addr.s_addr = INADDR_ANY; } else if (!inet_pton(ss.ss_family, str, &((struct sockaddr_in *)&ss)->sin_addr)) { struct hostent *he; if ((he = gethostbyname(str)) == NULL) { Alert("Invalid server name: '%s'\n", str); goto fail; } else ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *) *(he->h_addr_list); } } /* 3) look for the port-end delimiter */ if ((c = strchr(range, '-')) != NULL) { *c++ = 0; end = atol(c); } else { end = atol(range); } port = atol(range); if (port < 1 || port > 65535) { Alert("Invalid port '%d' specified for address '%s'.\n", port, str); goto fail; } if (end < 1 || end > 65535) { Alert("Invalid port '%d' specified for address '%s'.\n", end, str); goto fail; } for (; port <= end; port++) { l = (struct listener *)calloc(1, sizeof(struct listener)); l->next = tail; tail = l; l->addr = ss; if (ss.ss_family == AF_INET6) ((struct sockaddr_in6 *)(&l->addr))->sin6_port = htons(port); else ((struct sockaddr_in *)(&l->addr))->sin_port = htons(port); } /* end for(port) */ } /* end while(next) */ free(dupstr); return tail; fail: free(dupstr); return NULL; } #define FD_SETS_ARE_BITFIELDS #ifdef FD_SETS_ARE_BITFIELDS /* * This map is used with all the FD_* macros to check whether a particular bit * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes * which should be encoded. When FD_ISSET() returns non-zero, it means that the * byte should be encoded. Be careful to always pass bytes from 0 to 255 * exclusively to the macros. */ fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; #else #error "Check if your OS uses bitfields for fd_sets" #endif /* will try to encode the string replacing all characters tagged in * with the hexadecimal representation of their ASCII-code (2 digits) * prefixed by , and will store the result between (included *) and (excluded), and will always terminate the string with a '\0' * before . The position of the '\0' is returned if the conversion * completes. If bytes are missing between and , then the * conversion will be incomplete and truncated. If <= , the '\0' * cannot even be stored so we return without writing the 0. * The input string must also be zero-terminated. */ char hextab[16] = "0123456789ABCDEF"; char *encode_string(char *start, char *stop, const char escape, const fd_set *map, const char *string) { if (start < stop) { stop--; /* reserve one byte for the final '\0' */ while (start < stop && *string != 0) { if (!FD_ISSET((unsigned char)(*string), map)) *start++ = *string; else { if (start + 3 >= stop) break; *start++ = escape; *start++ = hextab[(*string >> 4) & 15]; *start++ = hextab[*string & 15]; } string++; } *start = '\0'; } return start; } /* * This function sends a syslog message to both log servers of a proxy, * or to global log servers if the proxy is NULL. * It also tries not to waste too much time computing the message header. * It doesn't care about errors nor does it report them. */ void send_log(struct proxy *p, int level, char *message, ...) { static int logfd = -1; /* syslog UDP socket */ static long tvsec = -1; /* to force the string to be initialized */ struct timeval tv; va_list argp; static char logmsg[MAX_SYSLOG_LEN]; static char *dataptr = NULL; int fac_level; int hdr_len, data_len; struct sockaddr_in *sa[2]; int facilities[2], loglevel[2]; int nbloggers = 0; char *log_ptr; if (logfd < 0) { if ((logfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) return; } if (level < 0 || progname == NULL || message == NULL) return; gettimeofday(&tv, NULL); if (tv.tv_sec != tvsec || dataptr == NULL) { /* this string is rebuild only once a second */ struct tm *tm = localtime(&tv.tv_sec); tvsec = tv.tv_sec; hdr_len = snprintf(logmsg, sizeof(logmsg), "<<<<>%s %2d %02d:%02d:%02d %s[%d]: ", monthname[tm->tm_mon], tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, progname, pid); /* WARNING: depending upon implementations, snprintf may return * either -1 or the number of bytes that would be needed to store * the total message. In both cases, we must adjust it. */ if (hdr_len < 0 || hdr_len > sizeof(logmsg)) hdr_len = sizeof(logmsg); dataptr = logmsg + hdr_len; } va_start(argp, message); data_len = vsnprintf(dataptr, logmsg + sizeof(logmsg) - dataptr, message, argp); if (data_len < 0 || data_len > (logmsg + sizeof(logmsg) - dataptr)) data_len = logmsg + sizeof(logmsg) - dataptr; va_end(argp); dataptr[data_len - 1] = '\n'; /* force a break on ultra-long lines */ if (p == NULL) { if (global.logfac1 >= 0) { sa[nbloggers] = &global.logsrv1; facilities[nbloggers] = global.logfac1; loglevel[nbloggers] = global.loglev1; nbloggers++; } if (global.logfac2 >= 0) { sa[nbloggers] = &global.logsrv2; facilities[nbloggers] = global.logfac2; loglevel[nbloggers] = global.loglev2; nbloggers++; } } else { if (p->logfac1 >= 0) { sa[nbloggers] = &p->logsrv1; facilities[nbloggers] = p->logfac1; loglevel[nbloggers] = p->loglev1; nbloggers++; } if (p->logfac2 >= 0) { sa[nbloggers] = &p->logsrv2; facilities[nbloggers] = p->logfac2; loglevel[nbloggers] = p->loglev2; nbloggers++; } } while (nbloggers-- > 0) { /* we can filter the level of the messages that are sent to each logger */ if (level > loglevel[nbloggers]) continue; /* For each target, we may have a different facility. * We can also have a different log level for each message. * This induces variations in the message header length. * Since we don't want to recompute it each time, nor copy it every * time, we only change the facility in the pre-computed header, * and we change the pointer to the header accordingly. */ fac_level = (facilities[nbloggers] << 3) + level; log_ptr = logmsg + 3; /* last digit of the log level */ do { *log_ptr = '0' + fac_level % 10; fac_level /= 10; log_ptr--; } while (fac_level && log_ptr > logmsg); *log_ptr = '<'; /* the total syslog message now starts at logptr, for dataptr+data_len-logptr */ #ifndef MSG_NOSIGNAL sendto(logfd, log_ptr, dataptr + data_len - log_ptr, MSG_DONTWAIT, (struct sockaddr *)sa[nbloggers], sizeof(**sa)); #else sendto(logfd, log_ptr, dataptr + data_len - log_ptr, MSG_DONTWAIT | MSG_NOSIGNAL, (struct sockaddr *)sa[nbloggers], sizeof(**sa)); #endif } } /* sets to the current time */ static inline struct timeval *tv_now(struct timeval *tv) { if (tv) gettimeofday(tv, NULL); return tv; } /* * adds ms to , set the result to and returns a pointer */ static inline struct timeval *tv_delayfrom(struct timeval *tv, struct timeval *from, int ms) { if (!tv || !from) return NULL; tv->tv_usec = from->tv_usec + (ms%1000)*1000; tv->tv_sec = from->tv_sec + (ms/1000); while (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } return tv; } /* * compares and : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2 * Must not be used when either argument is eternity. Use tv_cmp2() for that. */ static inline int tv_cmp(struct timeval *tv1, struct timeval *tv2) { if (tv1->tv_sec < tv2->tv_sec) return -1; else if (tv1->tv_sec > tv2->tv_sec) return 1; else if (tv1->tv_usec < tv2->tv_usec) return -1; else if (tv1->tv_usec > tv2->tv_usec) return 1; else return 0; } /* * returns the absolute difference, in ms, between tv1 and tv2 * Must not be used when either argument is eternity. */ unsigned long tv_delta(struct timeval *tv1, struct timeval *tv2) { int cmp; unsigned long ret; cmp = tv_cmp(tv1, tv2); if (!cmp) return 0; /* same dates, null diff */ else if (cmp < 0) { struct timeval *tmp = tv1; tv1 = tv2; tv2 = tmp; } ret = (tv1->tv_sec - tv2->tv_sec) * 1000; if (tv1->tv_usec > tv2->tv_usec) ret += (tv1->tv_usec - tv2->tv_usec) / 1000; else ret -= (tv2->tv_usec - tv1->tv_usec) / 1000; return (unsigned long) ret; } /* * returns the difference, in ms, between tv1 and tv2 * Must not be used when either argument is eternity. */ static inline unsigned long tv_diff(struct timeval *tv1, struct timeval *tv2) { unsigned long ret; ret = (tv2->tv_sec - tv1->tv_sec) * 1000; if (tv2->tv_usec > tv1->tv_usec) ret += (tv2->tv_usec - tv1->tv_usec) / 1000; else ret -= (tv1->tv_usec - tv2->tv_usec) / 1000; return (unsigned long) ret; } /* * compares and modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2 * Must not be used when either argument is eternity. Use tv_cmp2_ms() for that. */ static inline int tv_cmp_ms(struct timeval *tv1, struct timeval *tv2) { if (tv1->tv_sec == tv2->tv_sec) { if (tv2->tv_usec > tv1->tv_usec + 1000) return -1; else if (tv1->tv_usec > tv2->tv_usec + 1000) return 1; else return 0; } else if ((tv2->tv_sec > tv1->tv_sec + 1) || ((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 > tv1->tv_usec + 1000))) return -1; else if ((tv1->tv_sec > tv2->tv_sec + 1) || ((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 > tv2->tv_usec + 1000))) return 1; else return 0; } /* * returns the remaining time between tv1=now and event=tv2 * if tv2 is passed, 0 is returned. * Must not be used when either argument is eternity. */ static inline unsigned long tv_remain(struct timeval *tv1, struct timeval *tv2) { unsigned long ret; if (tv_cmp_ms(tv1, tv2) >= 0) return 0; /* event elapsed */ ret = (tv2->tv_sec - tv1->tv_sec) * 1000; if (tv2->tv_usec > tv1->tv_usec) ret += (tv2->tv_usec - tv1->tv_usec) / 1000; else ret -= (tv1->tv_usec - tv2->tv_usec) / 1000; return (unsigned long) ret; } /* * zeroes a struct timeval */ static inline struct timeval *tv_eternity(struct timeval *tv) { tv->tv_sec = tv->tv_usec = 0; return tv; } /* * returns 1 if tv is null, else 0 */ static inline int tv_iseternity(struct timeval *tv) { if (tv->tv_sec == 0 && tv->tv_usec == 0) return 1; else return 0; } /* * compares and : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2, * considering that 0 is the eternity. */ static inline int tv_cmp2(struct timeval *tv1, struct timeval *tv2) { if (tv_iseternity(tv1)) if (tv_iseternity(tv2)) return 0; /* same */ else return 1; /* tv1 later than tv2 */ else if (tv_iseternity(tv2)) return -1; /* tv2 later than tv1 */ if (tv1->tv_sec > tv2->tv_sec) return 1; else if (tv1->tv_sec < tv2->tv_sec) return -1; else if (tv1->tv_usec > tv2->tv_usec) return 1; else if (tv1->tv_usec < tv2->tv_usec) return -1; else return 0; } /* * compares and modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2, * considering that 0 is the eternity. */ static inline int tv_cmp2_ms(struct timeval *tv1, struct timeval *tv2) { if (tv_iseternity(tv1)) if (tv_iseternity(tv2)) return 0; /* same */ else return 1; /* tv1 later than tv2 */ else if (tv_iseternity(tv2)) return -1; /* tv2 later than tv1 */ if (tv1->tv_sec == tv2->tv_sec) { if (tv1->tv_usec > tv2->tv_usec + 1000) return 1; else if (tv2->tv_usec > tv1->tv_usec + 1000) return -1; else return 0; } else if ((tv1->tv_sec > tv2->tv_sec + 1) || ((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 > tv2->tv_usec + 1000))) return 1; else if ((tv2->tv_sec > tv1->tv_sec + 1) || ((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 > tv1->tv_usec + 1000))) return -1; else return 0; } /* * returns the remaining time between tv1=now and event=tv2 * if tv2 is passed, 0 is returned. * Returns TIME_ETERNITY if tv2 is eternity. */ static inline unsigned long tv_remain2(struct timeval *tv1, struct timeval *tv2) { unsigned long ret; if (tv_iseternity(tv2)) return TIME_ETERNITY; if (tv_cmp_ms(tv1, tv2) >= 0) return 0; /* event elapsed */ ret = (tv2->tv_sec - tv1->tv_sec) * 1000; if (tv2->tv_usec > tv1->tv_usec) ret += (tv2->tv_usec - tv1->tv_usec) / 1000; else ret -= (tv1->tv_usec - tv2->tv_usec) / 1000; return (unsigned long) ret; } /* * returns the first event between tv1 and tv2 into tvmin. * a zero tv is ignored. tvmin is returned. */ static inline struct timeval *tv_min(struct timeval *tvmin, struct timeval *tv1, struct timeval *tv2) { if (tv_cmp2(tv1, tv2) <= 0) *tvmin = *tv1; else *tvmin = *tv2; return tvmin; } /***********************************************************/ /* fd management ***************************************/ /***********************************************************/ /* Deletes an FD from the fdsets, and recomputes the maxfd limit. * The file descriptor is also closed. */ static inline void fd_delete(int fd) { FD_CLR(fd, StaticReadEvent); FD_CLR(fd, StaticWriteEvent); #if defined(ENABLE_EPOLL) if (PrevReadEvent) { FD_CLR(fd, PrevReadEvent); FD_CLR(fd, PrevWriteEvent); } #endif close(fd); fdtab[fd].state = FD_STCLOSE; while ((maxfd-1 >= 0) && (fdtab[maxfd-1].state == FD_STCLOSE)) maxfd--; } /* recomputes the maxfd limit from the fd */ static inline void fd_insert(int fd) { if (fd+1 > maxfd) maxfd = fd+1; } /*************************************************************/ /* task management ***************************************/ /*************************************************************/ /* puts the task in run queue , and returns */ static inline struct task *task_wakeup(struct task **q, struct task *t) { if (t->state == TASK_RUNNING) return t; else { t->rqnext = *q; t->state = TASK_RUNNING; return *q = t; } } /* removes the task from the queue * MUST be 's first task. * set the run queue to point to the next one, and return it */ static inline struct task *task_sleep(struct task **q, struct task *t) { if (t->state == TASK_RUNNING) { *q = t->rqnext; t->state = TASK_IDLE; /* tell that s has left the run queue */ } return *q; /* return next running task */ } /* * removes the task from its wait queue. It must have already been removed * from the run queue. A pointer to the task itself is returned. */ static inline struct task *task_delete(struct task *t) { t->prev->next = t->next; t->next->prev = t->prev; return t; } /* * frees a task. Its context must have been freed since it will be lost. */ static inline void task_free(struct task *t) { pool_free(task, t); } /* inserts into its assigned wait queue, where it may already be. In this case, it * may be only moved or left where it was, depending on its timing requirements. * is returned. */ struct task *task_queue(struct task *task) { struct task *list = task->wq; struct task *start_from; /* first, test if the task was already in a list */ if (task->prev == NULL) { // start_from = list; start_from = list->prev; #if STATTIME > 0 stats_tsk_new++; #endif /* insert the unlinked into the list, searching back from the last entry */ while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) { start_from = start_from->prev; #if STATTIME > 0 stats_tsk_nsrch++; #endif } // while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) { // start_from = start_from->next; // stats_tsk_nsrch++; // } } else if (task->prev == list || tv_cmp2(&task->expire, &task->prev->expire) >= 0) { /* walk right */ start_from = task->next; if (start_from == list || tv_cmp2(&task->expire, &start_from->expire) <= 0) { #if STATTIME > 0 stats_tsk_good++; #endif return task; /* it's already in the right place */ } #if STATTIME > 0 stats_tsk_right++; #endif /* if the task is not at the right place, there's little chance that * it has only shifted a bit, and it will nearly always be queued * at the end of the list because of constant timeouts * (observed in real case). */ #ifndef WE_REALLY_THINK_THAT_THIS_TASK_MAY_HAVE_SHIFTED start_from = list->prev; /* assume we'll queue to the end of the list */ while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) { start_from = start_from->prev; #if STATTIME > 0 stats_tsk_lsrch++; #endif } #else /* WE_REALLY_... */ /* insert the unlinked into the list, searching after position */ while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) { start_from = start_from->next; #if STATTIME > 0 stats_tsk_rsrch++; #endif } #endif /* WE_REALLY_... */ /* we need to unlink it now */ task_delete(task); } else { /* walk left. */ #if STATTIME > 0 stats_tsk_left++; #endif #ifdef LEFT_TO_TOP /* not very good */ start_from = list; while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) { start_from = start_from->next; #if STATTIME > 0 stats_tsk_lsrch++; #endif } #else start_from = task->prev->prev; /* valid because of the previous test above */ while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) { start_from = start_from->prev; #if STATTIME > 0 stats_tsk_lsrch++; #endif } #endif /* we need to unlink it now */ task_delete(task); } task->prev = start_from; task->next = start_from->next; task->next->prev = task; start_from->next = task; return task; } /*********************************************************************/ /* more specific functions ***************************************/ /*********************************************************************/ /* some prototypes */ static int maintain_proxies(void); /* This either returns the sockname or the original destination address. Code * inspired from Patrick Schaaf's example of nf_getsockname() implementation. */ static int get_original_dst(int fd, struct sockaddr_in *sa, socklen_t *salen) { #if defined(TPROXY) && defined(SO_ORIGINAL_DST) return getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, (void *)sa, salen); #else #if defined(TPROXY) && defined(USE_GETSOCKNAME) return getsockname(fd, (struct sockaddr *)sa, salen); #else return -1; #endif #endif } /* * frees the context associated to a session. It must have been removed first. */ static inline void session_free(struct session *s) { if (s->req) pool_free(buffer, s->req); if (s->rep) pool_free(buffer, s->rep); if (s->rsp_cap != NULL) { struct cap_hdr *h; for (h = s->proxy->rsp_cap; h; h = h->next) { if (s->rsp_cap[h->index] != NULL) pool_free_to(h->pool, s->rsp_cap[h->index]); } pool_free_to(s->proxy->rsp_cap_pool, s->rsp_cap); } if (s->req_cap != NULL) { struct cap_hdr *h; for (h = s->proxy->req_cap; h; h = h->next) { if (s->req_cap[h->index] != NULL) pool_free_to(h->pool, s->req_cap[h->index]); } pool_free_to(s->proxy->req_cap_pool, s->req_cap); } if (s->logs.uri) pool_free(requri, s->logs.uri); if (s->logs.cli_cookie) pool_free(capture, s->logs.cli_cookie); if (s->logs.srv_cookie) pool_free(capture, s->logs.srv_cookie); pool_free(session, s); } /* * This function tries to find a running server for the proxy . A first * pass looks for active servers, and if none is found, a second pass also * looks for backup servers. * If no valid server is found, NULL is returned and px->cursrv is left undefined. */ static inline struct server *find_server(struct proxy *px) { struct server *srv = px->cursrv; int ignore_backup = 1; do { do { if (srv == NULL) srv = px->srv; if (srv->state & SRV_RUNNING && !((srv->state & SRV_BACKUP) && ignore_backup)) return srv; srv = srv->next; } while (srv != px->cursrv); } while (ignore_backup--); return NULL; } /* * This function initiates a connection to the current server (s->srv) if (s->direct) * is set, or to the dispatch server if (s->direct) is 0. * It can return one of : * - SN_ERR_NONE if everything's OK * - SN_ERR_SRVTO if there are no more servers * - SN_ERR_SRVCL if the connection was refused by the server * - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) * - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) * - SN_ERR_INTERNAL for any other purely internal errors * Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted. */ int connect_server(struct session *s) { int fd; #ifdef DEBUG_FULL fprintf(stderr,"connect_server : s=%p\n",s); #endif if (s->flags & SN_DIRECT) { /* srv cannot be null */ s->srv_addr = s->srv->addr; } else if (s->proxy->options & PR_O_BALANCE) { if (s->proxy->options & PR_O_BALANCE_RR) { struct server *srv; srv = find_server(s->proxy); if (srv == NULL) /* no server left */ return SN_ERR_SRVTO; s->srv_addr = srv->addr; s->srv = srv; s->proxy->cursrv = srv->next; } else /* unknown balancing algorithm */ return SN_ERR_INTERNAL; } else if (*(int *)&s->proxy->dispatch_addr.sin_addr) { /* connect to the defined dispatch addr */ s->srv_addr = s->proxy->dispatch_addr; } else if (s->proxy->options & PR_O_TRANSP) { /* in transparent mode, use the original dest addr if no dispatch specified */ socklen_t salen = sizeof(s->srv_addr); if (get_original_dst(s->cli_fd, &s->srv_addr, &salen) == -1) { qfprintf(stderr, "Cannot get original server address.\n"); return SN_ERR_INTERNAL; } } /* if this server remaps proxied ports, we'll use * the port the client connected to with an offset. */ if (s->srv != NULL && s->srv->state & SRV_MAPPORTS) { struct sockaddr_in sockname; socklen_t namelen = sizeof(sockname); if (!(s->proxy->options & PR_O_TRANSP) || get_original_dst(s->cli_fd, (struct sockaddr_in *)&sockname, &namelen) == -1) getsockname(s->cli_fd, (struct sockaddr *)&sockname, &namelen); s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) + ntohs(sockname.sin_port)); } if ((fd = s->srv_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) { qfprintf(stderr, "Cannot get a server socket.\n"); if (errno == ENFILE) send_log(s->proxy, LOG_EMERG, "Proxy %s reached system FD limit at %d. Please check system tunables.\n", s->proxy->id, maxfd); else if (errno == EMFILE) send_log(s->proxy, LOG_EMERG, "Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n", s->proxy->id, maxfd); else if (errno == ENOBUFS || errno == ENOMEM) send_log(s->proxy, LOG_EMERG, "Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n", s->proxy->id, maxfd); /* this is a resource error */ return SN_ERR_RESOURCE; } if (fd >= global.maxsock) { /* do not log anything there, it's a normal condition when this option * is used to serialize connections to a server ! */ Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n"); close(fd); return SN_ERR_PRXCOND; /* it is a configuration limit */ } if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) || (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) { qfprintf(stderr,"Cannot set client socket to non blocking mode.\n"); close(fd); return SN_ERR_INTERNAL; } if (s->proxy->options & PR_O_TCP_SRV_KA) setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); /* allow specific binding : * - server-specific at first * - proxy-specific next */ if (s->srv != NULL && s->srv->state & SRV_BIND_SRC) { setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)); if (bind(fd, (struct sockaddr *)&s->srv->source_addr, sizeof(s->srv->source_addr)) == -1) { Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n", s->proxy->id, s->srv->id); close(fd); send_log(s->proxy, LOG_EMERG, "Cannot bind to source address before connect() for server %s/%s.\n", s->proxy->id, s->srv->id); return SN_ERR_RESOURCE; } } else if (s->proxy->options & PR_O_BIND_SRC) { setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)); if (bind(fd, (struct sockaddr *)&s->proxy->source_addr, sizeof(s->proxy->source_addr)) == -1) { Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n", s->proxy->id); close(fd); send_log(s->proxy, LOG_EMERG, "Cannot bind to source address before connect() for server %s/%s.\n", s->proxy->id, s->srv->id); return SN_ERR_RESOURCE; } } if ((connect(fd, (struct sockaddr *)&s->srv_addr, sizeof(s->srv_addr)) == -1) && (errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) { if (errno == EAGAIN || errno == EADDRINUSE) { char *msg; if (errno == EAGAIN) /* no free ports left, try again later */ msg = "no free ports"; else msg = "local address already in use"; qfprintf(stderr,"Cannot connect: %s.\n",msg); close(fd); send_log(s->proxy, LOG_EMERG, "Connect() failed for server %s/%s: %s.\n", s->proxy->id, s->srv->id, msg); return SN_ERR_RESOURCE; } else if (errno == ETIMEDOUT) { //qfprintf(stderr,"Connect(): ETIMEDOUT"); close(fd); return SN_ERR_SRVTO; } else { // (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM) //qfprintf(stderr,"Connect(): %d", errno); close(fd); return SN_ERR_SRVCL; } } fdtab[fd].owner = s->task; fdtab[fd].read = &event_srv_read; fdtab[fd].write = &event_srv_write; fdtab[fd].state = FD_STCONN; /* connection in progress */ FD_SET(fd, StaticWriteEvent); /* for connect status */ fd_insert(fd); if (s->proxy->contimeout) tv_delayfrom(&s->cnexpire, &now, s->proxy->contimeout); else tv_eternity(&s->cnexpire); return SN_ERR_NONE; /* connection is OK */ } /* * this function is called on a read event from a client socket. * It returns 0. */ int event_cli_read(int fd) { struct task *t = fdtab[fd].owner; struct session *s = t->context; struct buffer *b = s->req; int ret, max; #ifdef DEBUG_FULL fprintf(stderr,"event_cli_read : fd=%d, s=%p\n", fd, s); #endif if (fdtab[fd].state != FD_STERROR) { #ifdef FILL_BUFFERS while (1) #else do #endif { if (b->l == 0) { /* let's realign the buffer to optimize I/O */ b->r = b->w = b->h = b->lr = b->data; max = b->rlim - b->data; } else if (b->r > b->w) { max = b->rlim - b->r; } else { max = b->w - b->r; /* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore * since it means that the rewrite protection has been removed. This * implies that the if statement can be removed. */ if (max > b->rlim - b->data) max = b->rlim - b->data; } if (max == 0) { /* not anymore room to store data */ FD_CLR(fd, StaticReadEvent); break; } #ifndef MSG_NOSIGNAL { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (skerr) ret = -1; else ret = recv(fd, b->r, max, 0); } #else ret = recv(fd, b->r, max, MSG_NOSIGNAL); #endif if (ret > 0) { b->r += ret; b->l += ret; s->res_cr = RES_DATA; if (b->r == b->data + BUFSIZE) { b->r = b->data; /* wrap around the buffer */ } b->total += ret; /* we hope to read more data or to get a close on next round */ continue; } else if (ret == 0) { s->res_cr = RES_NULL; break; } else if (errno == EAGAIN) {/* ignore EAGAIN */ break; } else { s->res_cr = RES_ERROR; fdtab[fd].state = FD_STERROR; break; } } /* while(1) */ #ifndef FILL_BUFFERS while (0); #endif } else { s->res_cr = RES_ERROR; fdtab[fd].state = FD_STERROR; } if (s->res_cr != RES_SILENT) { if (s->proxy->clitimeout && FD_ISSET(fd, StaticReadEvent)) tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout); else tv_eternity(&s->crexpire); task_wakeup(&rq, t); } return 0; } /* * this function is called on a read event from a server socket. * It returns 0. */ int event_srv_read(int fd) { struct task *t = fdtab[fd].owner; struct session *s = t->context; struct buffer *b = s->rep; int ret, max; #ifdef DEBUG_FULL fprintf(stderr,"event_srv_read : fd=%d, s=%p\n", fd, s); #endif if (fdtab[fd].state != FD_STERROR) { #ifdef FILL_BUFFERS while (1) #else do #endif { if (b->l == 0) { /* let's realign the buffer to optimize I/O */ b->r = b->w = b->h = b->lr = b->data; max = b->rlim - b->data; } else if (b->r > b->w) { max = b->rlim - b->r; } else { max = b->w - b->r; /* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore * since it means that the rewrite protection has been removed. This * implies that the if statement can be removed. */ if (max > b->rlim - b->data) max = b->rlim - b->data; } if (max == 0) { /* not anymore room to store data */ FD_CLR(fd, StaticReadEvent); break; } #ifndef MSG_NOSIGNAL { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (skerr) ret = -1; else ret = recv(fd, b->r, max, 0); } #else ret = recv(fd, b->r, max, MSG_NOSIGNAL); #endif if (ret > 0) { b->r += ret; b->l += ret; s->res_sr = RES_DATA; if (b->r == b->data + BUFSIZE) { b->r = b->data; /* wrap around the buffer */ } b->total += ret; /* we hope to read more data or to get a close on next round */ continue; } else if (ret == 0) { s->res_sr = RES_NULL; break; } else if (errno == EAGAIN) {/* ignore EAGAIN */ break; } else { s->res_sr = RES_ERROR; fdtab[fd].state = FD_STERROR; break; } } /* while(1) */ #ifndef FILL_BUFFERS while (0); #endif } else { s->res_sr = RES_ERROR; fdtab[fd].state = FD_STERROR; } if (s->res_sr != RES_SILENT) { if (s->proxy->srvtimeout && FD_ISSET(fd, StaticReadEvent)) tv_delayfrom(&s->srexpire, &now, s->proxy->srvtimeout); else tv_eternity(&s->srexpire); task_wakeup(&rq, t); } return 0; } /* * this function is called on a write event from a client socket. * It returns 0. */ int event_cli_write(int fd) { struct task *t = fdtab[fd].owner; struct session *s = t->context; struct buffer *b = s->rep; int ret, max; #ifdef DEBUG_FULL fprintf(stderr,"event_cli_write : fd=%d, s=%p\n", fd, s); #endif if (b->l == 0) { /* let's realign the buffer to optimize I/O */ b->r = b->w = b->h = b->lr = b->data; // max = BUFSIZE; BUG !!!! max = 0; } else if (b->r > b->w) { max = b->r - b->w; } else max = b->data + BUFSIZE - b->w; if (fdtab[fd].state != FD_STERROR) { if (max == 0) { s->res_cw = RES_NULL; task_wakeup(&rq, t); tv_eternity(&s->cwexpire); FD_CLR(fd, StaticWriteEvent); return 0; } #ifndef MSG_NOSIGNAL { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (skerr) ret = -1; else ret = send(fd, b->w, max, MSG_DONTWAIT); } #else ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL); #endif if (ret > 0) { b->l -= ret; b->w += ret; s->res_cw = RES_DATA; if (b->w == b->data + BUFSIZE) { b->w = b->data; /* wrap around the buffer */ } } else if (ret == 0) { /* nothing written, just make as if we were never called */ // s->res_cw = RES_NULL; return 0; } else if (errno == EAGAIN) /* ignore EAGAIN */ return 0; else { s->res_cw = RES_ERROR; fdtab[fd].state = FD_STERROR; } } else { s->res_cw = RES_ERROR; fdtab[fd].state = FD_STERROR; } if (s->proxy->clitimeout) { tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout); /* FIXME: to avoid the client to read-time-out during writes, we refresh it */ s->crexpire = s->cwexpire; } else tv_eternity(&s->cwexpire); task_wakeup(&rq, t); return 0; } /* * this function is called on a write event from a server socket. * It returns 0. */ int event_srv_write(int fd) { struct task *t = fdtab[fd].owner; struct session *s = t->context; struct buffer *b = s->req; int ret, max; #ifdef DEBUG_FULL fprintf(stderr,"event_srv_write : fd=%d, s=%p\n", fd, s); #endif if (b->l == 0) { /* let's realign the buffer to optimize I/O */ b->r = b->w = b->h = b->lr = b->data; // max = BUFSIZE; BUG !!!! max = 0; } else if (b->r > b->w) { max = b->r - b->w; } else max = b->data + BUFSIZE - b->w; if (fdtab[fd].state != FD_STERROR) { if (max == 0) { /* may be we have received a connection acknowledgement in TCP mode without data */ if (s->srv_state == SV_STCONN) { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (skerr) { s->res_sw = RES_ERROR; fdtab[fd].state = FD_STERROR; task_wakeup(&rq, t); tv_eternity(&s->swexpire); FD_CLR(fd, StaticWriteEvent); return 0; } } s->res_sw = RES_NULL; task_wakeup(&rq, t); fdtab[fd].state = FD_STREADY; tv_eternity(&s->swexpire); FD_CLR(fd, StaticWriteEvent); return 0; } #ifndef MSG_NOSIGNAL { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (skerr) ret = -1; else ret = send(fd, b->w, max, MSG_DONTWAIT); } #else ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL); #endif fdtab[fd].state = FD_STREADY; if (ret > 0) { b->l -= ret; b->w += ret; s->res_sw = RES_DATA; if (b->w == b->data + BUFSIZE) { b->w = b->data; /* wrap around the buffer */ } } else if (ret == 0) { /* nothing written, just make as if we were never called */ // s->res_sw = RES_NULL; return 0; } else if (errno == EAGAIN) /* ignore EAGAIN */ return 0; else { s->res_sw = RES_ERROR; fdtab[fd].state = FD_STERROR; } } else { s->res_sw = RES_ERROR; fdtab[fd].state = FD_STERROR; } if (s->proxy->srvtimeout) { tv_delayfrom(&s->swexpire, &now, s->proxy->srvtimeout); /* FIXME: to avoid the server to read-time-out during writes, we refresh it */ s->srexpire = s->swexpire; } else tv_eternity(&s->swexpire); task_wakeup(&rq, t); return 0; } /* * returns a message to the client ; the connection is shut down for read, * and the request is cleared so that no server connection can be initiated. * The client must be in a valid state for this (HEADER, DATA ...). * Nothing is performed on the server side. * The reply buffer doesn't need to be empty before this. */ void client_retnclose(struct session *s, int len, const char *msg) { FD_CLR(s->cli_fd, StaticReadEvent); FD_SET(s->cli_fd, StaticWriteEvent); tv_eternity(&s->crexpire); tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout); shutdown(s->cli_fd, SHUT_RD); s->cli_state = CL_STSHUTR; strcpy(s->rep->data, msg); s->rep->l = len; s->rep->r = s->rep->h = s->rep->lr = s->rep->w = s->rep->data; s->rep->r += len; s->req->l = 0; } /* * returns a message into the rep buffer, and flushes the req buffer. * The reply buffer doesn't need to be empty before this. */ void client_return(struct session *s, int len, const char *msg) { strcpy(s->rep->data, msg); s->rep->l = len; s->rep->r = s->rep->h = s->rep->lr = s->rep->w = s->rep->data; s->rep->r += len; s->req->l = 0; } /* * send a log for the session when we have enough info about it */ void sess_log(struct session *s) { char pn[INET6_ADDRSTRLEN + strlen(":65535")]; struct proxy *p = s->proxy; int log; char *uri; char *pxid; char *srv; struct tm *tm; /* This is a first attempt at a better logging system. * For now, we rely on send_log() to provide the date, although it obviously * is the date of the log and not of the request, and most fields are not * computed. */ log = p->to_log & ~s->logs.logwait; if (s->cli_addr.ss_family == AF_INET) inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn)); else inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); uri = (log & LW_REQ) ? s->logs.uri ? s->logs.uri : "" : ""; pxid = p->id; srv = (p->to_log & LW_SVID) ? (s->srv != NULL) ? s->srv->id : "" : "-"; tm = localtime(&s->logs.tv_accept.tv_sec); if (p->to_log & LW_REQ) { char tmpline[MAX_SYSLOG_LEN], *h; int hdr; h = tmpline; if (p->to_log & LW_REQHDR && (h < tmpline + sizeof(tmpline) - 10)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < p->nb_req_cap; hdr++) { if (hdr) *(h++) = '|'; if (s->req_cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 7, '#', hdr_encode_map, s->req_cap[hdr]); } *(h++) = '}'; } if (p->to_log & LW_RSPHDR && (h < tmpline + sizeof(tmpline) - 7)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < p->nb_rsp_cap; hdr++) { if (hdr) *(h++) = '|'; if (s->rsp_cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 4, '#', hdr_encode_map, s->rsp_cap[hdr]); } *(h++) = '}'; } if (h < tmpline + sizeof(tmpline) - 4) { *(h++) = ' '; *(h++) = '"'; h = encode_string(h, tmpline + sizeof(tmpline) - 1, '#', url_encode_map, uri); *(h++) = '"'; } *h = '\0'; send_log(p, LOG_INFO, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d] %s %s %d/%d/%d/%s%d %d %s%lld %s %s %c%c%c%c %d/%d%s\n", pn, (s->cli_addr.ss_family == AF_INET) ? ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) : ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), tm->tm_mday, monthname[tm->tm_mon], tm->tm_year+1900, tm->tm_hour, tm->tm_min, tm->tm_sec, pxid, srv, s->logs.t_request, (s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_request : -1, (s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1, (p->to_log & LW_BYTES) ? "" : "+", s->logs.t_close, s->logs.status, (p->to_log & LW_BYTES) ? "" : "+", s->logs.bytes, s->logs.cli_cookie ? s->logs.cli_cookie : "-", s->logs.srv_cookie ? s->logs.srv_cookie : "-", sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT], sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT], (p->options & PR_O_COOK_ANY) ? sess_cookie[(s->flags & SN_CK_MASK) >> SN_CK_SHIFT] : '-', (p->options & PR_O_COOK_ANY) ? sess_set_cookie[(s->flags & SN_SCK_MASK) >> SN_SCK_SHIFT] : '-', p->nbconn, actconn, tmpline); } else { send_log(p, LOG_INFO, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d] %s %s %d/%s%d %s%lld %c%c %d/%d\n", pn, (s->cli_addr.ss_family == AF_INET) ? ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) : ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), tm->tm_mday, monthname[tm->tm_mon], tm->tm_year+1900, tm->tm_hour, tm->tm_min, tm->tm_sec, pxid, srv, (s->logs.t_connect >= 0) ? s->logs.t_connect : -1, (p->to_log & LW_BYTES) ? "" : "+", s->logs.t_close, (p->to_log & LW_BYTES) ? "" : "+", s->logs.bytes, sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT], sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT], p->nbconn, actconn); } s->logs.logwait = 0; } /* * this function is called on a read event from a listen socket, corresponding * to an accept. It tries to accept as many connections as possible. * It returns 0. */ int event_accept(int fd) { struct proxy *p = (struct proxy *)fdtab[fd].owner; struct session *s; struct task *t; int cfd; while (p->nbconn < p->maxconn) { struct sockaddr_storage addr; socklen_t laddr = sizeof(addr); if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) == -1) { switch (errno) { case EAGAIN: case EINTR: case ECONNABORTED: return 0; /* nothing more to accept */ case ENFILE: send_log(p, LOG_EMERG, "Proxy %s reached system FD limit at %d. Please check system tunables.\n", p->id, maxfd); return 0; case EMFILE: send_log(p, LOG_EMERG, "Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n", p->id, maxfd); return 0; case ENOBUFS: case ENOMEM: send_log(p, LOG_EMERG, "Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n", p->id, maxfd); return 0; default: return 0; } } if ((s = pool_alloc(session)) == NULL) { /* disable this proxy for a while */ Alert("out of memory in event_accept().\n"); FD_CLR(fd, StaticReadEvent); p->state = PR_STIDLE; close(cfd); return 0; } /* if this session comes from a known monitoring system, we want to ignore * it as soon as possible, which means closing it immediately for TCP. */ s->flags = 0; if (addr.ss_family == AF_INET && p->mon_mask.s_addr && (((struct sockaddr_in *)&addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr) { if (p->mode == PR_MODE_TCP) { close(cfd); pool_free(session, s); continue; } s->flags |= SN_MONITOR; } if ((t = pool_alloc(task)) == NULL) { /* disable this proxy for a while */ Alert("out of memory in event_accept().\n"); FD_CLR(fd, StaticReadEvent); p->state = PR_STIDLE; close(cfd); pool_free(session, s); return 0; } s->cli_addr = addr; if (cfd >= global.maxsock) { Alert("accept(): not enough free sockets. Raise -n argument. Giving up.\n"); close(cfd); pool_free(task, t); pool_free(session, s); return 0; } if ((fcntl(cfd, F_SETFL, O_NONBLOCK) == -1) || (setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) { Alert("accept(): cannot set the socket in non blocking mode. Giving up\n"); close(cfd); pool_free(task, t); pool_free(session, s); return 0; } if (p->options & PR_O_TCP_CLI_KA) setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */ t->wq = LIST_HEAD(wait_queue); /* but already has a wait queue assigned */ t->state = TASK_IDLE; t->process = process_session; t->context = s; s->task = t; s->proxy = p; s->cli_state = (p->mode == PR_MODE_HTTP) ? CL_STHEADERS : CL_STDATA; /* no HTTP headers for non-HTTP proxies */ s->srv_state = SV_STIDLE; s->req = s->rep = NULL; /* will be allocated later */ s->res_cr = s->res_cw = s->res_sr = s->res_sw = RES_SILENT; s->cli_fd = cfd; s->srv_fd = -1; s->srv = NULL; s->conn_retries = p->conn_retries; if (s->flags & SN_MONITOR) s->logs.logwait = 0; else s->logs.logwait = p->to_log; s->logs.tv_accept = now; s->logs.t_request = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.uri = NULL; s->logs.cli_cookie = NULL; s->logs.srv_cookie = NULL; s->logs.status = -1; s->logs.bytes = 0; s->uniq_id = totalconn; if (p->nb_req_cap > 0) { if ((s->req_cap = pool_alloc_from(p->req_cap_pool, p->nb_req_cap*sizeof(char *))) == NULL) { /* no memory */ close(cfd); /* nothing can be done for this fd without memory */ pool_free(task, t); pool_free(session, s); return 0; } memset(s->req_cap, 0, p->nb_req_cap*sizeof(char *)); } else s->req_cap = NULL; if (p->nb_rsp_cap > 0) { if ((s->rsp_cap = pool_alloc_from(p->rsp_cap_pool, p->nb_rsp_cap*sizeof(char *))) == NULL) { /* no memory */ if (s->req_cap != NULL) pool_free_to(p->req_cap_pool, s->req_cap); close(cfd); /* nothing can be done for this fd without memory */ pool_free(task, t); pool_free(session, s); return 0; } memset(s->rsp_cap, 0, p->nb_rsp_cap*sizeof(char *)); } else s->rsp_cap = NULL; if ((p->mode == PR_MODE_TCP || p->mode == PR_MODE_HTTP) && (p->logfac1 >= 0 || p->logfac2 >= 0)) { struct sockaddr_storage sockname; socklen_t namelen = sizeof(sockname); if (addr.ss_family != AF_INET || !(s->proxy->options & PR_O_TRANSP) || get_original_dst(cfd, (struct sockaddr_in *)&sockname, &namelen) == -1) getsockname(cfd, (struct sockaddr *)&sockname, &namelen); if (p->to_log) { /* we have the client ip */ if (s->logs.logwait & LW_CLIP) if (!(s->logs.logwait &= ~LW_CLIP)) sess_log(s); } else if (s->cli_addr.ss_family == AF_INET) { char pn[INET_ADDRSTRLEN], sn[INET_ADDRSTRLEN]; if (inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&sockname)->sin_addr, sn, sizeof(sn)) && inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn))) { send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n", pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port), sn, ntohs(((struct sockaddr_in *)&sockname)->sin_port), p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP"); } } else { char pn[INET6_ADDRSTRLEN], sn[INET6_ADDRSTRLEN]; if (inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&sockname)->sin6_addr, sn, sizeof(sn)) && inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&s->cli_addr)->sin6_addr, pn, sizeof(pn))) { send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n", pn, ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), sn, ntohs(((struct sockaddr_in6 *)&sockname)->sin6_port), p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP"); } } } if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { struct sockaddr_in sockname; socklen_t namelen = sizeof(sockname); int len; if (addr.ss_family != AF_INET || !(s->proxy->options & PR_O_TRANSP) || get_original_dst(cfd, (struct sockaddr_in *)&sockname, &namelen) == -1) getsockname(cfd, (struct sockaddr *)&sockname, &namelen); if (s->cli_addr.ss_family == AF_INET) { char pn[INET_ADDRSTRLEN]; inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn)); len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n", s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd, pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port)); } else { char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n", s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd, pn, ntohs(((struct sockaddr_in6 *)(&s->cli_addr))->sin6_port)); } write(1, trash, len); } if ((s->req = pool_alloc(buffer)) == NULL) { /* no memory */ if (s->rsp_cap != NULL) pool_free_to(p->rsp_cap_pool, s->rsp_cap); if (s->req_cap != NULL) pool_free_to(p->req_cap_pool, s->req_cap); close(cfd); /* nothing can be done for this fd without memory */ pool_free(task, t); pool_free(session, s); return 0; } s->req->l = 0; s->req->total = 0; s->req->h = s->req->r = s->req->lr = s->req->w = s->req->data; /* r and w will be reset further */ s->req->rlim = s->req->data + BUFSIZE; if (s->cli_state == CL_STHEADERS) /* reserve some space for header rewriting */ s->req->rlim -= MAXREWRITE; if ((s->rep = pool_alloc(buffer)) == NULL) { /* no memory */ pool_free(buffer, s->req); if (s->rsp_cap != NULL) pool_free_to(p->rsp_cap_pool, s->rsp_cap); if (s->req_cap != NULL) pool_free_to(p->req_cap_pool, s->req_cap); close(cfd); /* nothing can be done for this fd without memory */ pool_free(task, t); pool_free(session, s); return 0; } s->rep->l = 0; s->rep->total = 0; s->rep->h = s->rep->r = s->rep->lr = s->rep->w = s->rep->rlim = s->rep->data; fdtab[cfd].read = &event_cli_read; fdtab[cfd].write = &event_cli_write; fdtab[cfd].owner = t; fdtab[cfd].state = FD_STREADY; if ((p->mode == PR_MODE_HTTP && (s->flags & SN_MONITOR)) || (p->mode == PR_MODE_HEALTH && (p->options & PR_O_HTTP_CHK))) /* Either we got a request from a monitoring system on an HTTP instance, * or we're in health check mode with the 'httpchk' option enabled. In * both cases, we return a fake "HTTP/1.0 200 OK" response and we exit. */ client_retnclose(s, 19, "HTTP/1.0 200 OK\r\n\r\n"); /* forge a 200 response */ else if (p->mode == PR_MODE_HEALTH) { /* health check mode, no client reading */ client_retnclose(s, 3, "OK\n"); /* forge an "OK" response */ } else { FD_SET(cfd, StaticReadEvent); } #if defined(DEBUG_FULL) && defined(ENABLE_EPOLL) if (PrevReadEvent) { assert(!(FD_ISSET(cfd, PrevReadEvent))); assert(!(FD_ISSET(cfd, PrevWriteEvent))); } #endif fd_insert(cfd); tv_eternity(&s->cnexpire); tv_eternity(&s->srexpire); tv_eternity(&s->swexpire); tv_eternity(&s->crexpire); tv_eternity(&s->cwexpire); if (s->proxy->clitimeout) { if (FD_ISSET(cfd, StaticReadEvent)) tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout); if (FD_ISSET(cfd, StaticWriteEvent)) tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout); } tv_min(&t->expire, &s->crexpire, &s->cwexpire); task_queue(t); if (p->mode != PR_MODE_HEALTH) task_wakeup(&rq, t); p->nbconn++; actconn++; totalconn++; // fprintf(stderr, "accepting from %p => %d conn, %d total, task=%p\n", p, actconn, totalconn, t); } /* end of while (p->nbconn < p->maxconn) */ return 0; } /* * This function is used only for server health-checks. It handles * the connection acknowledgement. If the proxy requires HTTP health-checks, * it sends the request. In other cases, it returns 1 if the socket is OK, * or -1 if an error occured. */ int event_srv_chk_w(int fd) { struct task *t = fdtab[fd].owner; struct server *s = t->context; int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); /* in case of TCP only, this tells us if the connection succeeded */ if (skerr) s->result = -1; else { if (s->proxy->options & PR_O_HTTP_CHK) { int ret; /* we want to check if this host replies to "OPTIONS / HTTP/1.0" * so we'll send the request, and won't wake the checker up now. */ #ifndef MSG_NOSIGNAL ret = send(fd, s->proxy->check_req, s->proxy->check_len, MSG_DONTWAIT); #else ret = send(fd, s->proxy->check_req, s->proxy->check_len, MSG_DONTWAIT | MSG_NOSIGNAL); #endif if (ret == s->proxy->check_len) { FD_SET(fd, StaticReadEvent); /* prepare for reading reply */ FD_CLR(fd, StaticWriteEvent); /* nothing more to write */ return 0; } else s->result = -1; } else { /* good TCP connection is enough */ s->result = 1; } } task_wakeup(&rq, t); return 0; } /* * This function is used only for server health-checks. It handles * the server's reply to an HTTP request. It returns 1 if the server replies * 2xx or 3xx (valid responses), or -1 in other cases. */ int event_srv_chk_r(int fd) { char reply[64]; int len; struct task *t = fdtab[fd].owner; struct server *s = t->context; s->result = len = -1; #ifndef MSG_NOSIGNAL { int skerr; socklen_t lskerr = sizeof(skerr); getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr); if (!skerr) len = recv(fd, reply, sizeof(reply), 0); } #else /* Warning! Linux returns EAGAIN on SO_ERROR if data are still available * but the connection was closed on the remote end. Fortunately, recv still * works correctly and we don't need to do the getsockopt() on linux. */ len = recv(fd, reply, sizeof(reply), MSG_NOSIGNAL); #endif if ((len >= sizeof("HTTP/1.0 000")) && !memcmp(reply, "HTTP/1.", 7) && (reply[9] == '2' || reply[9] == '3')) /* 2xx or 3xx */ s->result = 1; FD_CLR(fd, StaticReadEvent); task_wakeup(&rq, t); return 0; } /* * this function writes the string at position which must be in buffer , * and moves just after the end of . * 's parameters (l, r, w, h, lr) are recomputed to be valid after the shift. * the shift value (positive or negative) is returned. * If there's no space left, the move is not done. * */ int buffer_replace(struct buffer *b, char *pos, char *end, char *str) { int delta; int len; len = strlen(str); delta = len - (end - pos); if (delta + b->r >= b->data + BUFSIZE) return 0; /* no space left */ /* first, protect the end of the buffer */ memmove(end + delta, end, b->data + b->l - end); /* now, copy str over pos */ memcpy(pos, str,len); /* we only move data after the displaced zone */ if (b->r > pos) b->r += delta; if (b->w > pos) b->w += delta; if (b->h > pos) b->h += delta; if (b->lr > pos) b->lr += delta; b->l += delta; return delta; } /* same except that the string length is given, which allows str to be NULL if * len is 0. */ int buffer_replace2(struct buffer *b, char *pos, char *end, char *str, int len) { int delta; delta = len - (end - pos); if (delta + b->r >= b->data + BUFSIZE) return 0; /* no space left */ /* first, protect the end of the buffer */ memmove(end + delta, end, b->data + b->l - end); /* now, copy str over pos */ if (len) memcpy(pos, str, len); /* we only move data after the displaced zone */ if (b->r > pos) b->r += delta; if (b->w > pos) b->w += delta; if (b->h > pos) b->h += delta; if (b->lr > pos) b->lr += delta; b->l += delta; return delta; } int exp_replace(char *dst, char *src, char *str, regmatch_t *matches) { char *old_dst = dst; while (*str) { if (*str == '\\') { str++; if (isdigit((int)*str)) { int len, num; num = *str - '0'; str++; if (matches[num].rm_eo > -1 && matches[num].rm_so > -1) { len = matches[num].rm_eo - matches[num].rm_so; memcpy(dst, src + matches[num].rm_so, len); dst += len; } } else if (*str == 'x') { unsigned char hex1, hex2; str++; hex1 = toupper(*str++) - '0'; hex2 = toupper(*str++) - '0'; if (hex1 > 9) hex1 -= 'A' - '9' - 1; if (hex2 > 9) hex2 -= 'A' - '9' - 1; *dst++ = (hex1<<4) + hex2; } else *dst++ = *str++; } else *dst++ = *str++; } *dst = 0; return dst - old_dst; } static int ishex(char s) { return (s >= '0' && s <= '9') || (s >= 'A' && s <= 'F') || (s >= 'a' && s <= 'f'); } /* returns NULL if the replacement string is valid, or the pointer to the first error */ char *check_replace_string(char *str) { char *err = NULL; while (*str) { if (*str == '\\') { err = str; /* in case of a backslash, we return the pointer to it */ str++; if (!*str) return err; else if (isdigit((int)*str)) err = NULL; else if (*str == 'x') { str++; if (!ishex(*str)) return err; str++; if (!ishex(*str)) return err; err = NULL; } else { Warning("'\\%c' : deprecated use of a backslash before something not '\\','x' or a digit.\n", *str); err = NULL; } } str++; } return err; } /* * manages the client FSM and its socket. BTW, it also tries to handle the * cookie. It returns 1 if a state has changed (and a resync may be needed), * 0 else. */ int process_cli(struct session *t) { int s = t->srv_state; int c = t->cli_state; struct buffer *req = t->req; struct buffer *rep = t->rep; int method_checked = 0; appsess *asession_temp = NULL; appsess local_asession; #ifdef DEBUG_FULL fprintf(stderr,"process_cli: c=%s s=%s set(r,w)=%d,%d exp(r,w)=%d.%d,%d.%d\n", cli_stnames[c], srv_stnames[s], FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent), t->crexpire.tv_sec, t->crexpire.tv_usec, t->cwexpire.tv_sec, t->cwexpire.tv_usec); #endif //fprintf(stderr,"process_cli: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s, //FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent), //FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent) //); if (c == CL_STHEADERS) { /* now parse the partial (or complete) headers */ while (req->lr < req->r) { /* this loop only sees one header at each iteration */ char *ptr; int delete_header; char *request_line = NULL; ptr = req->lr; /* look for the end of the current header */ while (ptr < req->r && *ptr != '\n' && *ptr != '\r') ptr++; if (ptr == req->h) { /* empty line, end of headers */ int line, len; /* we can only get here after an end of headers */ /* we'll have something else to do here : add new headers ... */ if (t->flags & SN_CLDENY) { /* no need to go further */ t->logs.status = 403; client_retnclose(t, t->proxy->errmsg.len403, t->proxy->errmsg.msg403); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } for (line = 0; line < t->proxy->nb_reqadd; line++) { len = sprintf(trash, "%s\r\n", t->proxy->req_add[line]); buffer_replace2(req, req->h, req->h, trash, len); } if (t->proxy->options & PR_O_FWDFOR) { if (t->cli_addr.ss_family == AF_INET) { unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&t->cli_addr)->sin_addr; len = sprintf(trash, "X-Forwarded-For: %d.%d.%d.%d\r\n", pn[0], pn[1], pn[2], pn[3]); buffer_replace2(req, req->h, req->h, trash, len); } else if (t->cli_addr.ss_family == AF_INET6) { char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&t->cli_addr))->sin6_addr, pn, sizeof(pn)); len = sprintf(trash, "X-Forwarded-For: %s\r\n", pn); buffer_replace2(req, req->h, req->h, trash, len); } } /* add a "connection: close" line if needed */ if (t->proxy->options & PR_O_HTTP_CLOSE) buffer_replace2(req, req->h, req->h, "Connection: close\r\n", 19); if (!memcmp(req->data, "POST ", 5)) { /* this is a POST request, which is not cacheable by default */ t->flags |= SN_POST; } t->cli_state = CL_STDATA; req->rlim = req->data + BUFSIZE; /* no more rewrite needed */ t->logs.t_request = tv_diff(&t->logs.tv_accept, &now); /* FIXME: we'll set the client in a wait state while we try to * connect to the server. Is this really needed ? wouldn't it be * better to release the maximum of system buffers instead ? */ //FD_CLR(t->cli_fd, StaticReadEvent); //tv_eternity(&t->crexpire); /* FIXME: if we break here (as up to 1.1.23), having the client * shutdown its connection can lead to an abort further. * it's better to either return 1 or even jump directly to the * data state which will save one schedule. */ //break; if (!t->proxy->clitimeout || (t->srv_state < SV_STDATA && t->proxy->srvtimeout)) /* If the client has no timeout, or if the server is not ready yet, * and we know for sure that it can expire, then it's cleaner to * disable the timeout on the client side so that too low values * cannot make the sessions abort too early. * * FIXME-20050705: the server needs a way to re-enable this time-out * when it switches its state, otherwise a client can stay connected * indefinitely. This now seems to be OK. */ tv_eternity(&t->crexpire); goto process_data; } /* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */ if (ptr > req->r - 2) { /* this is a partial header, let's wait for more to come */ req->lr = ptr; break; } /* now we know that *ptr is either \r or \n, * and that there are at least 1 char after it. */ if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n')) req->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */ else req->lr = ptr + 2; /* \r\n or \n\r */ /* * now we know that we have a full header ; we can do whatever * we want with these pointers : * req->h = beginning of header * ptr = end of header (first \r or \n) * req->lr = beginning of next line (next rep->h) * req->r = end of data (not used at this stage) */ if (!method_checked && (t->proxy->appsession_name != NULL) && ((memcmp(req->h, "GET ", 4) == 0) || (memcmp(req->h, "POST ", 4) == 0)) && ((request_line = memchr(req->h, ';', req->lr - req->h)) != NULL)) { /* skip ; */ request_line++; /* look if we have a jsessionid */ if (strncasecmp(request_line, t->proxy->appsession_name, t->proxy->appsession_name_len) == 0) { /* skip jsessionid= */ request_line += t->proxy->appsession_name_len + 1; /* First try if we allready have an appsession */ asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) { Alert("Not enough memory process_cli():asession_temp->sessid:calloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enough Memory process_cli():asession_temp->sessid:calloc().\n"); return 0; } /* Copy the sessionid */ memcpy(asession_temp->sessid, request_line, t->proxy->appsession_len); asession_temp->sessid[t->proxy->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *)&asession_temp)) { if ((asession_temp = pool_alloc(appsess)) == NULL) { Alert("Not enough memory process_cli():asession:calloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n"); return 0; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp); } /* end if (chtbl_lookup()) */ else { /*free wasted memory;*/ pool_free_to(apools.sessid, local_asession.sessid); } tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout); asession_temp->request_count++; #if defined(DEBUG_HASH) print_table(&(t->proxy->htbl_proxy)); #endif if (asession_temp->serverid == NULL) { Alert("Found Application Session without matching server.\n"); } else { struct server *srv = t->proxy->srv; while (srv) { if (strcmp(srv->id, asession_temp->serverid) == 0) { if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) { /* we found the server and it's usable */ t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_VALID | SN_DIRECT; t->srv = srv; break; } else { t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_DOWN; } } /* end if (strcmp()) */ srv = srv->next; }/* end while(srv) */ }/* end else of if (asession_temp->serverid == NULL) */ }/* end if (strncasecmp(request_line,t->proxy->appsession_name,apssesion_name_len) == 0) */ else { //fprintf(stderr,">>>>>>>>>>>>>>>>>>>>>>NO SESSION\n"); } method_checked = 1; } /* end if (!method_checked ...) */ else{ //printf("No Methode-Header with Session-String\n"); } if (t->logs.logwait & LW_REQ) { /* we have a complete HTTP request that we must log */ int urilen; if ((t->logs.uri = pool_alloc(requri)) == NULL) { Alert("HTTP logging : out of memory.\n"); t->logs.status = 500; client_retnclose(t, t->proxy->errmsg.len500, t->proxy->errmsg.msg500); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } urilen = ptr - req->h; if (urilen >= REQURI_LEN) urilen = REQURI_LEN - 1; memcpy(t->logs.uri, req->h, urilen); t->logs.uri[urilen] = 0; if (!(t->logs.logwait &= ~LW_REQ)) sess_log(t); } else if (t->logs.logwait & LW_REQHDR) { struct cap_hdr *h; int len; for (h = t->proxy->req_cap; h; h = h->next) { if ((h->namelen + 2 <= ptr - req->h) && (req->h[h->namelen] == ':') && (strncasecmp(req->h, h->name, h->namelen) == 0)) { if (t->req_cap[h->index] == NULL) t->req_cap[h->index] = pool_alloc_from(h->pool, h->len + 1); len = ptr - (req->h + h->namelen + 2); if (len > h->len) len = h->len; memcpy(t->req_cap[h->index], req->h + h->namelen + 2, len); t->req_cap[h->index][len]=0; } } } delete_header = 0; if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len, max; len = sprintf(trash, "%08x:%s.clihdr[%04x:%04x]: ", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); max = ptr - req->h; UBOUND(max, sizeof(trash) - len - 1); len += strlcpy2(trash + len, req->h, max + 1); trash[len++] = '\n'; write(1, trash, len); } /* remove "connection: " if needed */ if (!delete_header && (t->proxy->options & PR_O_HTTP_CLOSE) && (strncasecmp(req->h, "Connection: ", 12) == 0)) { delete_header = 1; } /* try headers regexps */ if (!delete_header && t->proxy->req_exp != NULL && !(t->flags & SN_CLDENY)) { struct hdr_exp *exp; char term; term = *ptr; *ptr = '\0'; exp = t->proxy->req_exp; do { if (regexec(exp->preg, req->h, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: if (!(t->flags & SN_CLDENY)) t->flags |= SN_CLALLOW; break; case ACT_REPLACE: if (!(t->flags & SN_CLDENY)) { int len = exp_replace(trash, req->h, exp->replace, pmatch); ptr += buffer_replace2(req, req->h, ptr, trash, len); } break; case ACT_REMOVE: if (!(t->flags & SN_CLDENY)) delete_header = 1; break; case ACT_DENY: if (!(t->flags & SN_CLALLOW)) t->flags |= SN_CLDENY; break; case ACT_PASS: /* we simply don't deny this one */ break; } break; } } while ((exp = exp->next) != NULL); *ptr = term; /* restore the string terminator */ } /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it */ if (!delete_header && (t->proxy->cookie_name != NULL || t->proxy->capture_name != NULL || t->proxy->appsession_name !=NULL) && !(t->flags & SN_CLDENY) && (ptr >= req->h + 8) && (strncasecmp(req->h, "Cookie: ", 8) == 0)) { char *p1, *p2, *p3, *p4; char *del_colon, *del_cookie, *colon; int app_cookies; p1 = req->h + 8; /* first char after 'Cookie: ' */ colon = p1; /* del_cookie == NULL => nothing to be deleted */ del_colon = del_cookie = NULL; app_cookies = 0; while (p1 < ptr) { /* skip spaces and colons, but keep an eye on these ones */ while (p1 < ptr) { if (*p1 == ';' || *p1 == ',') colon = p1; else if (!isspace((int)*p1)) break; p1++; } if (p1 == ptr) break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < ptr && *p2 != '=') p2++; if (p2 == ptr) break; p3 = p2 + 1; /* skips the '=' sign */ if (p3 == ptr) break; p4 = p3; while (p4 < ptr && !isspace((int)*p4) && *p4 != ';' && *p4 != ',') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it : * * Cookie: NAME=VALUE; * | || || | * | || || +--> p4 * | || |+-------> p3 * | || +--------> p2 * | |+------------> p1 * | +-------------> colon * +--------------------> req->h */ if (*p1 == '$') { /* skip this one */ } else { /* first, let's see if we want to capture it */ if (t->proxy->capture_name != NULL && t->logs.cli_cookie == NULL && (p4 - p1 >= t->proxy->capture_namelen) && memcmp(p1, t->proxy->capture_name, t->proxy->capture_namelen) == 0) { int log_len = p4 - p1; if ((t->logs.cli_cookie = pool_alloc(capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > t->proxy->capture_len) log_len = t->proxy->capture_len; memcpy(t->logs.cli_cookie, p1, log_len); t->logs.cli_cookie[log_len] = 0; } } if ((p2 - p1 == t->proxy->cookie_len) && (t->proxy->cookie_name != NULL) && (memcmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ struct server *srv = t->proxy->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID betweek p3 and delim, and the original cookie between * delim+1 and p4. Otherwise, delim==p4 : * * Cookie: NAME=SRV~VALUE; * | || || | | * | || || | +--> p4 * | || || +--------> delim * | || |+-----------> p3 * | || +------------> p2 * | |+----------------> p1 * | +-----------------> colon * +------------------------> req->h */ if (t->proxy->options & PR_O_COOK_PFX) { for (delim = p3; delim < p4; delim++) if (*delim == COOKIE_DELIM) break; } else delim = p4; /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. */ while (srv) { if ((srv->cklen == delim - p3) && !memcmp(p3, srv->cookie, delim - p3)) { if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) { /* we found the server and it's usable */ t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_VALID | SN_DIRECT; t->srv = srv; break; } else { /* we found a server, but it's down */ t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_DOWN; } } srv = srv->next; } if (!srv && !(t->flags & SN_CK_DOWN)) { /* no server matched this cookie */ t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentely removed later, * if we're in cookie prefix mode */ if ((t->proxy->options & PR_O_COOK_PFX) && (delim != p4)) { buffer_replace2(req, p3, delim + 1, NULL, 0); p4 -= (delim + 1 - p3); ptr -= (delim + 1 - p3); del_cookie = del_colon = NULL; app_cookies++; /* protect the header from deletion */ } else if (del_cookie == NULL && (t->proxy->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) { del_cookie = p1; del_colon = colon; } } else { /* now we know that we must keep this cookie since it's * not ours. But if we wanted to delete our cookie * earlier, we cannot remove the complete header, but we * can remove the previous block itself. */ app_cookies++; if (del_cookie != NULL) { buffer_replace2(req, del_cookie, p1, NULL, 0); p4 -= (p1 - del_cookie); ptr -= (p1 - del_cookie); del_cookie = del_colon = NULL; } } if ((t->proxy->appsession_name != NULL) && (memcmp(p1, t->proxy->appsession_name, p2 - p1) == 0)) { /* first, let's see if the cookie is our appcookie*/ /* Cool... it's the right one */ asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return 0; } memcpy(asession_temp->sessid, p3, t->proxy->appsession_len); asession_temp->sessid[t->proxy->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *) &asession_temp) != 0) { if ((asession_temp = pool_alloc(appsess)) == NULL) { Alert("Not enough memory process_cli():asession:calloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n"); return 0; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp); } else{ /* free wasted memory */ pool_free_to(apools.sessid, local_asession.sessid); } if (asession_temp->serverid == NULL) { Alert("Found Application Session without matching server.\n"); } else { struct server *srv = t->proxy->srv; while (srv) { if (strcmp(srv->id, asession_temp->serverid) == 0) { if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) { /* we found the server and it's usable */ t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_VALID | SN_DIRECT; t->srv = srv; break; } else { t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_DOWN; } } srv = srv->next; }/* end while(srv) */ }/* end else if server == NULL */ tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout); }/* end if ((t->proxy->appsession_name != NULL) ... */ } /* we'll have to look for another cookie ... */ p1 = p4; } /* while (p1 < ptr) */ /* There's no more cookie on this line. * We may have marked the last one(s) for deletion. * We must do this now in two ways : * - if there is no app cookie, we simply delete the header ; * - if there are app cookies, we must delete the end of the * string properly, including the colon/semi-colon before * the cookie name. */ if (del_cookie != NULL) { if (app_cookies) { buffer_replace2(req, del_colon, ptr, NULL, 0); /* WARNING! becomes invalid for now. If some code * below needs to rely on it before the end of the global * header loop, we need to correct it with this code : * ptr = del_colon; */ } else delete_header = 1; } } /* end of cookie processing on this header */ /* let's look if we have to delete this header */ if (delete_header && !(t->flags & SN_CLDENY)) { buffer_replace2(req, req->h, req->lr, NULL, 0); } /* WARNING: ptr is not valid anymore, since the header may have been deleted or truncated ! */ req->h = req->lr; } /* while (req->lr < req->r) */ /* end of header processing (even if incomplete) */ if ((req->l < req->rlim - req->data) && ! FD_ISSET(t->cli_fd, StaticReadEvent)) { /* fd in StaticReadEvent was disabled, perhaps because of a previous buffer * full. We cannot loop here since event_cli_read will disable it only if * req->l == rlim-data */ FD_SET(t->cli_fd, StaticReadEvent); if (t->proxy->clitimeout) tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout); else tv_eternity(&t->crexpire); } /* Since we are in header mode, if there's no space left for headers, we * won't be able to free more later, so the session will never terminate. */ if (req->l >= req->rlim - req->data) { t->logs.status = 400; client_retnclose(t, t->proxy->errmsg.len400, t->proxy->errmsg.msg400); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } else if (t->res_cr == RES_ERROR || t->res_cr == RES_NULL) { /* read error, or last read : give up. */ tv_eternity(&t->crexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) { /* read timeout : give up with an error message. */ t->logs.status = 408; client_retnclose(t, t->proxy->errmsg.len408, t->proxy->errmsg.msg408); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } return t->cli_state != CL_STHEADERS; } else if (c == CL_STDATA) { process_data: /* FIXME: this error handling is partly buggy because we always report * a 'DATA' phase while we don't know if the server was in IDLE, CONN * or HEADER phase. BTW, it's not logical to expire the client while * we're waiting for the server to connect. */ /* read or write error */ if (t->res_cw == RES_ERROR || t->res_cr == RES_ERROR) { tv_eternity(&t->crexpire); tv_eternity(&t->cwexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* last read, or end of server write */ else if (t->res_cr == RES_NULL || s == SV_STSHUTW || s == SV_STCLOSE) { FD_CLR(t->cli_fd, StaticReadEvent); tv_eternity(&t->crexpire); shutdown(t->cli_fd, SHUT_RD); t->cli_state = CL_STSHUTR; return 1; } /* last server read and buffer empty */ else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)) { FD_CLR(t->cli_fd, StaticWriteEvent); tv_eternity(&t->cwexpire); shutdown(t->cli_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->cli_fd, StaticReadEvent); if (t->proxy->clitimeout) tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout); t->cli_state = CL_STSHUTW; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* read timeout */ else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) { FD_CLR(t->cli_fd, StaticReadEvent); tv_eternity(&t->crexpire); shutdown(t->cli_fd, SHUT_RD); t->cli_state = CL_STSHUTR; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* write timeout */ else if (tv_cmp2_ms(&t->cwexpire, &now) <= 0) { FD_CLR(t->cli_fd, StaticWriteEvent); tv_eternity(&t->cwexpire); shutdown(t->cli_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->cli_fd, StaticReadEvent); if (t->proxy->clitimeout) tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout); t->cli_state = CL_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } if (req->l >= req->rlim - req->data) { /* no room to read more data */ if (FD_ISSET(t->cli_fd, StaticReadEvent)) { /* stop reading until we get some space */ FD_CLR(t->cli_fd, StaticReadEvent); tv_eternity(&t->crexpire); } } else { /* there's still some space in the buffer */ if (! FD_ISSET(t->cli_fd, StaticReadEvent)) { FD_SET(t->cli_fd, StaticReadEvent); if (!t->proxy->clitimeout || (t->srv_state < SV_STDATA && t->proxy->srvtimeout)) /* If the client has no timeout, or if the server not ready yet, and we * know for sure that it can expire, then it's cleaner to disable the * timeout on the client side so that too low values cannot make the * sessions abort too early. */ tv_eternity(&t->crexpire); else tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout); } } if ((rep->l == 0) || ((s < SV_STDATA) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) { if (FD_ISSET(t->cli_fd, StaticWriteEvent)) { FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */ tv_eternity(&t->cwexpire); } } else { /* buffer not empty */ if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) { FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */ if (t->proxy->clitimeout) { tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout); /* FIXME: to avoid the client to read-time-out during writes, we refresh it */ t->crexpire = t->cwexpire; } else tv_eternity(&t->cwexpire); } } return 0; /* other cases change nothing */ } else if (c == CL_STSHUTR) { if (t->res_cw == RES_ERROR) { tv_eternity(&t->cwexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)) { tv_eternity(&t->cwexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; return 1; } else if (tv_cmp2_ms(&t->cwexpire, &now) <= 0) { tv_eternity(&t->cwexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if ((rep->l == 0) || ((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) { if (FD_ISSET(t->cli_fd, StaticWriteEvent)) { FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */ tv_eternity(&t->cwexpire); } } else { /* buffer not empty */ if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) { FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */ if (t->proxy->clitimeout) { tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout); /* FIXME: to avoid the client to read-time-out during writes, we refresh it */ t->crexpire = t->cwexpire; } else tv_eternity(&t->cwexpire); } } return 0; } else if (c == CL_STSHUTW) { if (t->res_cr == RES_ERROR) { tv_eternity(&t->crexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if (t->res_cr == RES_NULL || s == SV_STSHUTW || s == SV_STCLOSE) { tv_eternity(&t->crexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; return 1; } else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) { tv_eternity(&t->crexpire); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if (req->l >= req->rlim - req->data) { /* no room to read more data */ /* FIXME-20050705: is it possible for a client to maintain a session * after the timeout by sending more data after it receives a close ? */ if (FD_ISSET(t->cli_fd, StaticReadEvent)) { /* stop reading until we get some space */ FD_CLR(t->cli_fd, StaticReadEvent); tv_eternity(&t->crexpire); //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); } } else { /* there's still some space in the buffer */ if (! FD_ISSET(t->cli_fd, StaticReadEvent)) { FD_SET(t->cli_fd, StaticReadEvent); if (t->proxy->clitimeout) tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout); else tv_eternity(&t->crexpire); //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); } } return 0; } else { /* CL_STCLOSE: nothing to do */ if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); write(1, trash, len); } return 0; } return 0; } /* * manages the server FSM and its socket. It returns 1 if a state has changed * (and a resync may be needed), 0 else. */ int process_srv(struct session *t) { int s = t->srv_state; int c = t->cli_state; struct buffer *req = t->req; struct buffer *rep = t->rep; appsess *asession_temp = NULL; appsess local_asession; int conn_err; #ifdef DEBUG_FULL fprintf(stderr,"process_srv: c=%s, s=%s\n", cli_stnames[c], srv_stnames[s]); #endif //fprintf(stderr,"process_srv: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s, //FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent), //FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent) //); if (s == SV_STIDLE) { if (c == CL_STHEADERS) return 0; /* stay in idle, waiting for data to reach the client side */ else if (c == CL_STCLOSE || c == CL_STSHUTW || (c == CL_STSHUTR && t->req->l == 0)) { /* give up */ tv_eternity(&t->cnexpire); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_C; return 1; } else { /* go to SV_STCONN */ /* initiate a connection to the server */ conn_err = connect_server(t); if (conn_err == SN_ERR_NONE) { //fprintf(stderr,"0: c=%d, s=%d\n", c, s); t->srv_state = SV_STCONN; } else { /* try again */ while (t->conn_retries-- > 0) { if ((t->proxy->options & PR_O_REDISP) && (t->conn_retries == 0)) { t->flags &= ~SN_DIRECT; /* ignore cookie and force to use the dispatcher */ t->srv = NULL; /* it's left to the dispatcher to choose a server */ if ((t->flags & SN_CK_MASK) == SN_CK_VALID) { t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_DOWN; } } conn_err = connect_server(t); if (conn_err == SN_ERR_NONE) { t->srv_state = SV_STCONN; break; } } if (t->conn_retries < 0) { /* if conn_retries < 0 or other error, let's abort */ tv_eternity(&t->cnexpire); t->srv_state = SV_STCLOSE; t->logs.status = 503; if (t->proxy->mode == PR_MODE_HTTP) client_return(t, t->proxy->errmsg.len503, t->proxy->errmsg.msg503); if (!(t->flags & SN_ERR_MASK)) t->flags |= conn_err; /* report the precise connect() error */ if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_C; } } return 1; } } else if (s == SV_STCONN) { /* connection in progress */ if (t->res_sw == RES_SILENT && tv_cmp2_ms(&t->cnexpire, &now) > 0) { //fprintf(stderr,"1: c=%d, s=%d\n", c, s); return 0; /* nothing changed */ } else if (t->res_sw == RES_SILENT || t->res_sw == RES_ERROR) { //fprintf(stderr,"2: c=%d, s=%d\n", c, s); /* timeout, connect error or first write error */ //FD_CLR(t->srv_fd, StaticWriteEvent); fd_delete(t->srv_fd); //close(t->srv_fd); t->conn_retries--; if (t->conn_retries >= 0) { if ((t->proxy->options & PR_O_REDISP) && (t->conn_retries == 0)) { t->flags &= ~SN_DIRECT; /* ignore cookie and force to use the dispatcher */ t->srv = NULL; /* it's left to the dispatcher to choose a server */ if ((t->flags & SN_CK_MASK) == SN_CK_VALID) { t->flags &= ~SN_CK_MASK; t->flags |= SN_CK_DOWN; } } conn_err = connect_server(t); if (conn_err == SN_ERR_NONE) return 0; /* no state changed */ } else if (t->res_sw == RES_SILENT) conn_err = SN_ERR_SRVTO; // it was a connect timeout. else conn_err = SN_ERR_SRVCL; // it was a connect error. /* if conn_retries < 0 or other error, let's abort */ tv_eternity(&t->cnexpire); t->srv_state = SV_STCLOSE; t->logs.status = 503; if (t->proxy->mode == PR_MODE_HTTP) client_return(t, t->proxy->errmsg.len503, t->proxy->errmsg.msg503); if (!(t->flags & SN_ERR_MASK)) t->flags |= conn_err; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_C; return 1; } else { /* no error or write 0 */ t->logs.t_connect = tv_diff(&t->logs.tv_accept, &now); //fprintf(stderr,"3: c=%d, s=%d\n", c, s); if (req->l == 0) /* nothing to write */ { FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); } else /* need the right to write */ { FD_SET(t->srv_fd, StaticWriteEvent); if (t->proxy->srvtimeout) { tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout); /* FIXME: to avoid the server to read-time-out during writes, we refresh it */ t->srexpire = t->swexpire; } else tv_eternity(&t->swexpire); } if (t->proxy->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); else tv_eternity(&t->srexpire); t->srv_state = SV_STDATA; rep->rlim = rep->data + BUFSIZE; /* no rewrite needed */ /* if the user wants to log as soon as possible, without counting bytes from the server, then this is the right moment. */ if (t->proxy->to_log && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_connect; /* to get a valid end date */ sess_log(t); } } else { t->srv_state = SV_STHEADERS; rep->rlim = rep->data + BUFSIZE - MAXREWRITE; /* rewrite needed */ } tv_eternity(&t->cnexpire); return 1; } } else if (s == SV_STHEADERS) { /* receiving server headers */ /* now parse the partial (or complete) headers */ while (rep->lr < rep->r) { /* this loop only sees one header at each iteration */ char *ptr; int delete_header; ptr = rep->lr; /* look for the end of the current header */ while (ptr < rep->r && *ptr != '\n' && *ptr != '\r') ptr++; if (ptr == rep->h) { int line, len; /* we can only get here after an end of headers */ /* first, we'll block if security checks have caught nasty things */ if (t->flags & SN_CACHEABLE) { if ((t->flags & SN_CACHE_COOK) && (t->flags & SN_SCK_ANY) && (t->proxy->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ tv_eternity(&t->srexpire); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; t->logs.status = 502; client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->proxy->id, t->srv->id); send_log(t->proxy, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->proxy->id, t->srv->id); return 1; } } /* next, we'll block if an 'rspideny' or 'rspdeny' filter matched */ if (t->flags & SN_SVDENY) { tv_eternity(&t->srexpire); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; t->logs.status = 502; client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 1; } /* we'll have something else to do here : add new headers ... */ if ((t->srv) && !(t->flags & SN_DIRECT) && (t->proxy->options & PR_O_COOK_INS) && (!(t->proxy->options & PR_O_COOK_POST) || (t->flags & SN_POST))) { /* the server is known, it's not the one the client requested, we have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. */ len = sprintf(trash, "Set-Cookie: %s=%s; path=/\r\n", t->proxy->cookie_name, t->srv->cookie ? t->srv->cookie : ""); t->flags |= SN_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if (t->proxy->options & PR_O_COOK_NOC) //len += sprintf(newhdr + len, "Cache-control: no-cache=\"set-cookie\"\r\n"); len += sprintf(trash + len, "Cache-control: private\r\n"); buffer_replace2(rep, rep->h, rep->h, trash, len); } /* headers to be added */ for (line = 0; line < t->proxy->nb_rspadd; line++) { len = sprintf(trash, "%s\r\n", t->proxy->rsp_add[line]); buffer_replace2(rep, rep->h, rep->h, trash, len); } /* add a "connection: close" line if needed */ if (t->proxy->options & PR_O_HTTP_CLOSE) buffer_replace2(rep, rep->h, rep->h, "Connection: close\r\n", 19); t->srv_state = SV_STDATA; rep->rlim = rep->data + BUFSIZE; /* no more rewrite needed */ t->logs.t_data = tv_diff(&t->logs.tv_accept, &now); /* if the user wants to log as soon as possible, without counting bytes from the server, then this is the right moment. */ if (t->proxy->to_log && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_data; /* to get a valid end date */ t->logs.bytes = rep->h - rep->data; sess_log(t); } break; } /* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */ if (ptr > rep->r - 2) { /* this is a partial header, let's wait for more to come */ rep->lr = ptr; break; } // fprintf(stderr,"h=%p, ptr=%p, lr=%p, r=%p, *h=", rep->h, ptr, rep->lr, rep->r); // write(2, rep->h, ptr - rep->h); fprintf(stderr,"\n"); /* now we know that *ptr is either \r or \n, * and that there are at least 1 char after it. */ if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n')) rep->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */ else rep->lr = ptr + 2; /* \r\n or \n\r */ /* * now we know that we have a full header ; we can do whatever * we want with these pointers : * rep->h = beginning of header * ptr = end of header (first \r or \n) * rep->lr = beginning of next line (next rep->h) * rep->r = end of data (not used at this stage) */ if (t->logs.status == -1) { t->logs.logwait &= ~LW_RESP; t->logs.status = atoi(rep->h + 9); switch (t->logs.status) { case 200: case 203: case 206: case 300: case 301: case 410: /* RFC2616 @13.4: * "A response received with a status code of * 200, 203, 206, 300, 301 or 410 MAY be stored * by a cache (...) unless a cache-control * directive prohibits caching." * * RFC2616 @9.5: POST method : * "Responses to this method are not cacheable, * unless the response includes appropriate * Cache-Control or Expires header fields." */ if ((!t->flags & SN_POST) && (t->proxy->options & PR_O_CHK_CACHE)) t->flags |= SN_CACHEABLE | SN_CACHE_COOK; break; default: break; } } else if (t->logs.logwait & LW_RSPHDR) { struct cap_hdr *h; int len; for (h = t->proxy->rsp_cap; h; h = h->next) { if ((h->namelen + 2 <= ptr - rep->h) && (rep->h[h->namelen] == ':') && (strncasecmp(rep->h, h->name, h->namelen) == 0)) { if (t->rsp_cap[h->index] == NULL) t->rsp_cap[h->index] = pool_alloc_from(h->pool, h->len + 1); len = ptr - (rep->h + h->namelen + 2); if (len > h->len) len = h->len; memcpy(t->rsp_cap[h->index], rep->h + h->namelen + 2, len); t->rsp_cap[h->index][len]=0; } } } delete_header = 0; if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len, max; len = sprintf(trash, "%08x:%s.srvhdr[%04x:%04x]: ", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); max = ptr - rep->h; UBOUND(max, sizeof(trash) - len - 1); len += strlcpy2(trash + len, rep->h, max + 1); trash[len++] = '\n'; write(1, trash, len); } /* remove "connection: " if needed */ if (!delete_header && (t->proxy->options & PR_O_HTTP_CLOSE) && (strncasecmp(rep->h, "Connection: ", 12) == 0)) { delete_header = 1; } /* try headers regexps */ if (!delete_header && t->proxy->rsp_exp != NULL && !(t->flags & SN_SVDENY)) { struct hdr_exp *exp; char term; term = *ptr; *ptr = '\0'; exp = t->proxy->rsp_exp; do { if (regexec(exp->preg, rep->h, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: if (!(t->flags & SN_SVDENY)) t->flags |= SN_SVALLOW; break; case ACT_REPLACE: if (!(t->flags & SN_SVDENY)) { int len = exp_replace(trash, rep->h, exp->replace, pmatch); ptr += buffer_replace2(rep, rep->h, ptr, trash, len); } break; case ACT_REMOVE: if (!(t->flags & SN_SVDENY)) delete_header = 1; break; case ACT_DENY: if (!(t->flags & SN_SVALLOW)) t->flags |= SN_SVDENY; break; case ACT_PASS: /* we simply don't deny this one */ break; } break; } } while ((exp = exp->next) != NULL); *ptr = term; /* restore the string terminator */ } /* check for cache-control: or pragma: headers */ if (!delete_header && (t->flags & SN_CACHEABLE)) { if (strncasecmp(rep->h, "Pragma: no-cache", 16) == 0) t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK; else if (strncasecmp(rep->h, "Cache-control: ", 15) == 0) { if (strncasecmp(rep->h + 15, "no-cache", 8) == 0) { if (rep->h + 23 == ptr || rep->h[23] == ',') t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK; else { if (strncasecmp(rep->h + 23, "=\"set-cookie", 12) == 0 && (rep->h[35] == '"' || rep->h[35] == ',')) t->flags &= ~SN_CACHE_COOK; } } else if ((strncasecmp(rep->h + 15, "private", 7) == 0 && (rep->h + 22 == ptr || rep->h[22] == ',')) || (strncasecmp(rep->h + 15, "no-store", 8) == 0 && (rep->h + 23 == ptr || rep->h[23] == ','))) { t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK; } else if (strncasecmp(rep->h + 15, "max-age=0", 9) == 0 && (rep->h + 24 == ptr || rep->h[24] == ',')) { t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK; } else if (strncasecmp(rep->h + 15, "s-maxage=0", 10) == 0 && (rep->h + 25 == ptr || rep->h[25] == ',')) { t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK; } else if (strncasecmp(rep->h + 15, "public", 6) == 0 && (rep->h + 21 == ptr || rep->h[21] == ',')) { t->flags |= SN_CACHEABLE | SN_CACHE_COOK; } } } /* check for server cookies */ if (!delete_header /*&& (t->proxy->options & PR_O_COOK_ANY)*/ && (t->proxy->cookie_name != NULL || t->proxy->capture_name != NULL || t->proxy->appsession_name !=NULL) && (strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) { char *p1, *p2, *p3, *p4; t->flags |= SN_SCK_ANY; p1 = rep->h + 12; /* first char after 'Set-Cookie: ' */ while (p1 < ptr) { /* in fact, we'll break after the first cookie */ while (p1 < ptr && (isspace((int)*p1))) p1++; if (p1 == ptr || *p1 == ';') /* end of cookie */ break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < ptr && *p2 != '=' && *p2 != ';') p2++; if (p2 == ptr || *p2 == ';') /* next cookie */ break; p3 = p2 + 1; /* skips the '=' sign */ if (p3 == ptr) break; p4 = p3; while (p4 < ptr && !isspace((int)*p4) && *p4 != ';') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it. */ /* first, let's see if we want to capture it */ if (t->proxy->capture_name != NULL && t->logs.srv_cookie == NULL && (p4 - p1 >= t->proxy->capture_namelen) && memcmp(p1, t->proxy->capture_name, t->proxy->capture_namelen) == 0) { int log_len = p4 - p1; if ((t->logs.srv_cookie = pool_alloc(capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } if (log_len > t->proxy->capture_len) log_len = t->proxy->capture_len; memcpy(t->logs.srv_cookie, p1, log_len); t->logs.srv_cookie[log_len] = 0; } if ((p2 - p1 == t->proxy->cookie_len) && (t->proxy->cookie_name != NULL) && (memcmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ t->flags |= SN_SCK_SEEN; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (((t->srv) && (t->proxy->options & PR_O_COOK_INS)) || ((t->flags & SN_DIRECT) && (t->proxy->options & PR_O_COOK_IND))) { /* this header must be deleted */ delete_header = 1; t->flags |= SN_SCK_DELETED; } else if ((t->srv) && (t->proxy->options & PR_O_COOK_RW)) { /* replace bytes p3->p4 with the cookie name associated * with this server since we know it. */ buffer_replace2(rep, p3, p4, t->srv->cookie, t->srv->cklen); t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED; } else if ((t->srv) && (t->proxy->options & PR_O_COOK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimitor between them.. */ buffer_replace2(rep, p3, p3, t->srv->cookie, t->srv->cklen + 1); p3[t->srv->cklen] = COOKIE_DELIM; t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED; } break; } /* first, let's see if the cookie is our appcookie*/ if ((t->proxy->appsession_name != NULL) && (memcmp(p1, t->proxy->appsession_name, p2 - p1) == 0)) { /* Cool... it's the right one */ size_t server_id_len = strlen(t->srv->id) + 1; asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) { Alert("Not enought Memory process_srv():asession->sessid:malloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n"); } memcpy(asession_temp->sessid, p3, t->proxy->appsession_len); asession_temp->sessid[t->proxy->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *) &asession_temp) != 0) { if ((asession_temp = pool_alloc(appsess)) == NULL) { Alert("Not enought Memory process_srv():asession:calloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession:calloc().\n"); return 0; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp); }/* end if (chtbl_lookup()) */ else { /* free wasted memory */ pool_free_to(apools.sessid, local_asession.sessid); } /* end else from if (chtbl_lookup()) */ if (asession_temp->serverid == NULL) { if ((asession_temp->serverid = pool_alloc_from(apools.serverid, apools.ser_msize)) == NULL) { Alert("Not enought Memory process_srv():asession->sessid:malloc().\n"); send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n"); } asession_temp->serverid[0] = '\0'; } if (asession_temp->serverid[0] == '\0') memcpy(asession_temp->serverid,t->srv->id,server_id_len); tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout); #if defined(DEBUG_HASH) print_table(&(t->proxy->htbl_proxy)); #endif break; }/* end if ((t->proxy->appsession_name != NULL) ... */ else { // fprintf(stderr,"Ignoring unknown cookie : "); // write(2, p1, p2-p1); // fprintf(stderr," = "); // write(2, p3, p4-p3); // fprintf(stderr,"\n"); } break; /* we don't want to loop again since there cannot be another cookie on the same line */ } /* we're now at the end of the cookie value */ } /* end of cookie processing */ /* check for any set-cookie in case we check for cacheability */ if (!delete_header && !(t->flags & SN_SCK_ANY) && (t->proxy->options & PR_O_CHK_CACHE) && (strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) { t->flags |= SN_SCK_ANY; } /* let's look if we have to delete this header */ if (delete_header && !(t->flags & SN_SVDENY)) buffer_replace2(rep, rep->h, rep->lr, "", 0); rep->h = rep->lr; } /* while (rep->lr < rep->r) */ /* end of header processing (even if incomplete) */ if ((rep->l < rep->rlim - rep->data) && ! FD_ISSET(t->srv_fd, StaticReadEvent)) { /* fd in StaticReadEvent was disabled, perhaps because of a previous buffer * full. We cannot loop here since event_srv_read will disable it only if * rep->l == rlim-data */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); else tv_eternity(&t->srexpire); } /* read error, write error */ if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) { tv_eternity(&t->srexpire); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; t->logs.status = 502; client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 1; } /* end of client write or end of server read. * since we are in header mode, if there's no space left for headers, we * won't be able to free more later, so the session will never terminate. */ else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE || rep->l >= rep->rlim - rep->data) { FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); shutdown(t->srv_fd, SHUT_RD); t->srv_state = SV_STSHUTR; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* read timeout : return a 504 to the client. */ else if (FD_ISSET(t->srv_fd, StaticReadEvent) && tv_cmp2_ms(&t->srexpire, &now) <= 0) { tv_eternity(&t->srexpire); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; t->logs.status = 504; client_return(t, t->proxy->errmsg.len504, t->proxy->errmsg.msg504); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 1; } /* last client read and buffer empty */ /* FIXME!!! here, we don't want to switch to SHUTW if the * client shuts read too early, because we may still have * some work to do on the headers. * The side-effect is that if the client completely closes its * connection during SV_STHEADER, the connection to the server * is kept until a response comes back or the timeout is reached. */ else if ((/*c == CL_STSHUTR ||*/ c == CL_STCLOSE) && (req->l == 0)) { FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); shutdown(t->srv_fd, SHUT_WR); t->srv_state = SV_STSHUTW; return 1; } /* write timeout */ /* FIXME!!! here, we don't want to switch to SHUTW if the * client shuts read too early, because we may still have * some work to do on the headers. */ else if (FD_ISSET(t->srv_fd, StaticWriteEvent) && tv_cmp2_ms(&t->swexpire, &now) <= 0) { FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); t->srv_state = SV_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 1; } if (req->l == 0) { if (FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */ tv_eternity(&t->swexpire); } } else { /* client buffer not empty */ if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */ if (t->proxy->srvtimeout) { tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout); /* FIXME: to avoid the server to read-time-out during writes, we refresh it */ t->srexpire = t->swexpire; } else tv_eternity(&t->swexpire); } } /* be nice with the client side which would like to send a complete header * FIXME: COMPLETELY BUGGY !!! not all headers may be processed because the client * would read all remaining data at once ! The client should not write past rep->lr * when the server is in header state. */ //return header_processed; return t->srv_state != SV_STHEADERS; } else if (s == SV_STDATA) { /* read or write error */ if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) { tv_eternity(&t->srexpire); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* last read, or end of client write */ else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE) { FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); shutdown(t->srv_fd, SHUT_RD); t->srv_state = SV_STSHUTR; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* end of client read and no more data to send */ else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) { FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); t->srv_state = SV_STSHUTW; return 1; } /* read timeout */ else if (tv_cmp2_ms(&t->srexpire, &now) <= 0) { FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); shutdown(t->srv_fd, SHUT_RD); t->srv_state = SV_STSHUTR; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* write timeout */ else if (tv_cmp2_ms(&t->swexpire, &now) <= 0) { FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); t->srv_state = SV_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* recompute request time-outs */ if (req->l == 0) { if (FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */ tv_eternity(&t->swexpire); } } else { /* buffer not empty, there are still data to be transferred */ if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */ if (t->proxy->srvtimeout) { tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout); /* FIXME: to avoid the server to read-time-out during writes, we refresh it */ t->srexpire = t->swexpire; } else tv_eternity(&t->swexpire); } } /* recompute response time-outs */ if (rep->l == BUFSIZE) { /* no room to read more data */ if (FD_ISSET(t->srv_fd, StaticReadEvent)) { FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); } } else { if (! FD_ISSET(t->srv_fd, StaticReadEvent)) { FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); else tv_eternity(&t->srexpire); } } return 0; /* other cases change nothing */ } else if (s == SV_STSHUTR) { if (t->res_sw == RES_ERROR) { //FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) { //FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; return 1; } else if (tv_cmp2_ms(&t->swexpire, &now) <= 0) { //FD_CLR(t->srv_fd, StaticWriteEvent); tv_eternity(&t->swexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if (req->l == 0) { if (FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */ tv_eternity(&t->swexpire); } } else { /* buffer not empty */ if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) { FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */ if (t->proxy->srvtimeout) { tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout); /* FIXME: to avoid the server to read-time-out during writes, we refresh it */ t->srexpire = t->swexpire; } else tv_eternity(&t->swexpire); } } return 0; } else if (s == SV_STSHUTW) { if (t->res_sr == RES_ERROR) { //FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE) { //FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; return 1; } else if (tv_cmp2_ms(&t->srexpire, &now) <= 0) { //FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); fd_delete(t->srv_fd); //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } else if (rep->l == BUFSIZE) { /* no room to read more data */ if (FD_ISSET(t->srv_fd, StaticReadEvent)) { FD_CLR(t->srv_fd, StaticReadEvent); tv_eternity(&t->srexpire); } } else { if (! FD_ISSET(t->srv_fd, StaticReadEvent)) { FD_SET(t->srv_fd, StaticReadEvent); if (t->proxy->srvtimeout) tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout); else tv_eternity(&t->srexpire); } } return 0; } else { /* SV_STCLOSE : nothing to do */ if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); write(1, trash, len); } return 0; } return 0; } /* Processes the client and server jobs of a session task, then * puts it back to the wait queue in a clean state, or * cleans up its resources if it must be deleted. Returns * the time the task accepts to wait, or TIME_ETERNITY for * infinity. */ int process_session(struct task *t) { struct session *s = t->context; int fsm_resync = 0; do { fsm_resync = 0; //fprintf(stderr,"before_cli:cli=%d, srv=%d\n", t->cli_state, t->srv_state); fsm_resync |= process_cli(s); //fprintf(stderr,"cli/srv:cli=%d, srv=%d\n", t->cli_state, t->srv_state); fsm_resync |= process_srv(s); //fprintf(stderr,"after_srv:cli=%d, srv=%d\n", t->cli_state, t->srv_state); } while (fsm_resync); if (s->cli_state != CL_STCLOSE || s->srv_state != SV_STCLOSE) { struct timeval min1, min2; s->res_cw = s->res_cr = s->res_sw = s->res_sr = RES_SILENT; tv_min(&min1, &s->crexpire, &s->cwexpire); tv_min(&min2, &s->srexpire, &s->swexpire); tv_min(&min1, &min1, &s->cnexpire); tv_min(&t->expire, &min1, &min2); /* restore t to its place in the task list */ task_queue(t); return tv_remain2(&now, &t->expire); /* nothing more to do */ } s->proxy->nbconn--; actconn--; if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->proxy->id, (unsigned short)s->cli_fd, (unsigned short)s->srv_fd); write(1, trash, len); } s->logs.t_close = tv_diff(&s->logs.tv_accept, &now); if (s->rep != NULL) s->logs.bytes = s->rep->total; /* let's do a final log if we need it */ if (s->logs.logwait && (!(s->proxy->options & PR_O_NULLNOLOG) || s->req->total)) sess_log(s); /* the task MUST not be in the run queue anymore */ task_delete(t); session_free(s); task_free(t); return TIME_ETERNITY; /* rest in peace for eternity */ } /* * manages a server health-check. Returns * the time the task accepts to wait, or TIME_ETERNITY for infinity. */ int process_chk(struct task *t) { struct server *s = t->context; struct sockaddr_in sa; int fd = s->curfd; //fprintf(stderr, "process_chk: task=%p\n", t); if (fd < 0) { /* no check currently running */ //fprintf(stderr, "process_chk: 2\n"); if (tv_cmp2_ms(&t->expire, &now) > 0) { /* not good time yet */ task_queue(t); /* restore t to its place in the task list */ return tv_remain2(&now, &t->expire); } /* we'll initiate a new check */ s->result = 0; /* no result yet */ if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) != -1) { if ((fd < global.maxsock) && (fcntl(fd, F_SETFL, O_NONBLOCK) != -1) && (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) != -1)) { //fprintf(stderr, "process_chk: 3\n"); /* we'll connect to the check port on the server */ sa = s->addr; sa.sin_port = htons(s->check_port); /* allow specific binding : * - server-specific at first * - proxy-specific next */ if (s->state & SRV_BIND_SRC) { setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)); if (bind(fd, (struct sockaddr *)&s->source_addr, sizeof(s->source_addr)) == -1) { Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n", s->proxy->id, s->id); s->result = -1; } } else if (s->proxy->options & PR_O_BIND_SRC) { setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)); if (bind(fd, (struct sockaddr *)&s->proxy->source_addr, sizeof(s->proxy->source_addr)) == -1) { Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n", s->proxy->id); s->result = -1; } } if (!s->result) { if ((connect(fd, (struct sockaddr *)&sa, sizeof(sa)) != -1) || (errno == EINPROGRESS)) { /* OK, connection in progress or established */ //fprintf(stderr, "process_chk: 4\n"); s->curfd = fd; /* that's how we know a test is in progress ;-) */ fdtab[fd].owner = t; fdtab[fd].read = &event_srv_chk_r; fdtab[fd].write = &event_srv_chk_w; fdtab[fd].state = FD_STCONN; /* connection in progress */ FD_SET(fd, StaticWriteEvent); /* for connect status */ fd_insert(fd); /* FIXME: we allow up to for a connection to establish, but we should use another parameter */ tv_delayfrom(&t->expire, &now, s->inter); task_queue(t); /* restore t to its place in the task list */ return tv_remain(&now, &t->expire); } else if (errno != EALREADY && errno != EISCONN && errno != EAGAIN) { s->result = -1; /* a real error */ } } } close(fd); /* socket creation error */ } if (!s->result) { /* nothing done */ //fprintf(stderr, "process_chk: 6\n"); tv_delayfrom(&t->expire, &now, s->inter); task_queue(t); /* restore t to its place in the task list */ return tv_remain(&now, &t->expire); } /* here, we have seen a failure */ if (s->health > s->rise) s->health--; /* still good */ else { s->state &= ~SRV_RUNNING; if (s->health == s->rise) { Warning("Server %s/%s DOWN.\n", s->proxy->id, s->id); send_log(s->proxy, LOG_ALERT, "Server %s/%s is DOWN.\n", s->proxy->id, s->id); if (find_server(s->proxy) == NULL) { Alert("Proxy %s has no server available !\n", s->proxy->id); send_log(s->proxy, LOG_EMERG, "Proxy %s has no server available !\n", s->proxy->id); } } s->health = 0; /* failure */ } //fprintf(stderr, "process_chk: 7\n"); /* FIXME: we allow up to for a connection to establish, but we should use another parameter */ tv_delayfrom(&t->expire, &now, s->inter); } else { //fprintf(stderr, "process_chk: 8\n"); /* there was a test running */ if (s->result > 0) { /* good server detected */ //fprintf(stderr, "process_chk: 9\n"); s->health++; /* was bad, stays for a while */ if (s->health >= s->rise) { if (s->health == s->rise) { Warning("server %s/%s UP.\n", s->proxy->id, s->id); send_log(s->proxy, LOG_NOTICE, "Server %s/%s is UP.\n", s->proxy->id, s->id); } s->health = s->rise + s->fall - 1; /* OK now */ s->state |= SRV_RUNNING; } s->curfd = -1; /* no check running anymore */ //FD_CLR(fd, StaticWriteEvent); fd_delete(fd); tv_delayfrom(&t->expire, &now, s->inter); } else if (s->result < 0 || tv_cmp2_ms(&t->expire, &now) <= 0) { //fprintf(stderr, "process_chk: 10\n"); /* failure or timeout detected */ if (s->health > s->rise) s->health--; /* still good */ else { s->state &= ~SRV_RUNNING; if (s->health == s->rise) { Warning("Server %s/%s DOWN.\n", s->proxy->id, s->id); send_log(s->proxy, LOG_ALERT, "Server %s/%s is DOWN.\n", s->proxy->id, s->id); if (find_server(s->proxy) == NULL) { Alert("Proxy %s has no server available !\n", s->proxy->id); send_log(s->proxy, LOG_EMERG, "Proxy %s has no server available !\n", s->proxy->id); } } s->health = 0; /* failure */ } s->curfd = -1; //FD_CLR(fd, StaticWriteEvent); fd_delete(fd); tv_delayfrom(&t->expire, &now, s->inter); } /* if result is 0 and there's no timeout, we have to wait again */ } //fprintf(stderr, "process_chk: 11\n"); s->result = 0; task_queue(t); /* restore t to its place in the task list */ return tv_remain2(&now, &t->expire); } #if STATTIME > 0 int stats(void); #endif /* * This does 4 things : * - wake up all expired tasks * - call all runnable tasks * - call maintain_proxies() to enable/disable the listeners * - return the delay till next event in ms, -1 = wait indefinitely * Note: this part should be rewritten with the O(ln(n)) scheduler. * */ int process_runnable_tasks() { int next_time; int time2; struct task *t, *tnext; next_time = TIME_ETERNITY; /* set the timer to wait eternally first */ /* look for expired tasks and add them to the run queue. */ tnext = ((struct task *)LIST_HEAD(wait_queue))->next; while ((t = tnext) != LIST_HEAD(wait_queue)) { /* we haven't looped ? */ tnext = t->next; if (t->state & TASK_RUNNING) continue; if (tv_iseternity(&t->expire)) continue; /* wakeup expired entries. It doesn't matter if they are * already running because of a previous event */ if (tv_cmp_ms(&t->expire, &now) <= 0) { task_wakeup(&rq, t); } else { /* first non-runnable task. Use its expiration date as an upper bound */ int temp_time = tv_remain(&now, &t->expire); if (temp_time) next_time = temp_time; break; } } /* process each task in the run queue now. Each task may be deleted * since we only use tnext. */ tnext = rq; while ((t = tnext) != NULL) { int temp_time; tnext = t->rqnext; task_sleep(&rq, t); temp_time = t->process(t); next_time = MINTIME(temp_time, next_time); } /* maintain all proxies in a consistent state. This should quickly become a task */ time2 = maintain_proxies(); return MINTIME(time2, next_time); } #if defined(ENABLE_EPOLL) /* * Main epoll() loop. */ /* does 3 actions : * 0 (POLL_LOOP_ACTION_INIT) : initializes necessary private structures * 1 (POLL_LOOP_ACTION_RUN) : runs the loop * 2 (POLL_LOOP_ACTION_CLEAN) : cleans up * * returns 0 if initialization failed, !0 otherwise. */ int epoll_loop(int action) { int next_time; int status; int fd; int fds, count; int pr, pw, sr, sw; unsigned rn, ro, wn, wo; /* read new, read old, write new, write old */ struct epoll_event ev; /* private data */ static struct epoll_event *epoll_events = NULL; static int epoll_fd; if (action == POLL_LOOP_ACTION_INIT) { epoll_fd = epoll_create(global.maxsock + 1); if (epoll_fd < 0) return 0; else { epoll_events = (struct epoll_event*) calloc(1, sizeof(struct epoll_event) * global.maxsock); PrevReadEvent = (fd_set *) calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); PrevWriteEvent = (fd_set *) calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); } return 1; } else if (action == POLL_LOOP_ACTION_CLEAN) { if (PrevWriteEvent) free(PrevWriteEvent); if (PrevReadEvent) free(PrevReadEvent); if (epoll_events) free(epoll_events); close(epoll_fd); epoll_fd = 0; return 1; } /* OK, it's POLL_LOOP_ACTION_RUN */ tv_now(&now); while (1) { next_time = process_runnable_tasks(); /* stop when there's no connection left and we don't allow them anymore */ if (!actconn && listeners == 0) break; #if STATTIME > 0 { int time2; time2 = stats(); next_time = MINTIME(time2, next_time); } #endif for (fds = 0; (fds << INTBITS) < maxfd; fds++) { rn = ((int*)StaticReadEvent)[fds]; ro = ((int*)PrevReadEvent)[fds]; wn = ((int*)StaticWriteEvent)[fds]; wo = ((int*)PrevWriteEvent)[fds]; if ((ro^rn) | (wo^wn)) { for (count = 0, fd = fds << INTBITS; count < (1<> count) & 1; pw = (wo >> count) & 1; sr = (rn >> count) & 1; sw = (wn >> count) & 1; #else pr = FD_ISSET(fd&((1< 0 { int time2; time2 = stats(); next_time = MINTIME(time2, next_time); } #endif nbfd = 0; for (fds = 0; (fds << INTBITS) < maxfd; fds++) { rn = ((int*)StaticReadEvent)[fds]; wn = ((int*)StaticWriteEvent)[fds]; if ((rn|wn)) { for (count = 0, fd = fds << INTBITS; count < (1<> count) & 1; sw = (wn >> count) & 1; #else sr = FD_ISSET(fd&((1< 0 && count < nbfd; count++) { fd = poll_events[count].fd; if (!poll_events[count].revents & ( POLLOUT | POLLIN | POLLERR | POLLHUP )) continue; /* ok, we found one active fd */ status--; if (fdtab[fd].state == FD_STCLOSE) continue; if (poll_events[count].revents & ( POLLIN | POLLERR | POLLHUP )) fdtab[fd].read(fd); if (fdtab[fd].state == FD_STCLOSE) continue; if (poll_events[count].revents & ( POLLOUT | POLLERR | POLLHUP )) fdtab[fd].write(fd); } } return 1; } #endif /* * Main select() loop. */ /* does 3 actions : * 0 (POLL_LOOP_ACTION_INIT) : initializes necessary private structures * 1 (POLL_LOOP_ACTION_RUN) : runs the loop * 2 (POLL_LOOP_ACTION_CLEAN) : cleans up * * returns 0 if initialization failed, !0 otherwise. */ int select_loop(int action) { int next_time; int status; int fd,i; struct timeval delta; int readnotnull, writenotnull; static fd_set *ReadEvent = NULL, *WriteEvent = NULL; if (action == POLL_LOOP_ACTION_INIT) { ReadEvent = (fd_set *) calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); WriteEvent = (fd_set *) calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); return 1; } else if (action == POLL_LOOP_ACTION_CLEAN) { if (WriteEvent) free(WriteEvent); if (ReadEvent) free(ReadEvent); return 1; } /* OK, it's POLL_LOOP_ACTION_RUN */ tv_now(&now); while (1) { next_time = process_runnable_tasks(); /* stop when there's no connection left and we don't allow them anymore */ if (!actconn && listeners == 0) break; #if STATTIME > 0 { int time2; time2 = stats(); next_time = MINTIME(time2, next_time); } #endif if (next_time > 0) { /* FIXME */ /* Convert to timeval */ /* to avoid eventual select loops due to timer precision */ next_time += SCHEDULER_RESOLUTION; delta.tv_sec = next_time / 1000; delta.tv_usec = (next_time % 1000) * 1000; } else if (next_time == 0) { /* allow select to return immediately when needed */ delta.tv_sec = delta.tv_usec = 0; } /* let's restore fdset state */ readnotnull = 0; writenotnull = 0; for (i = 0; i < (maxfd + FD_SETSIZE - 1)/(8*sizeof(int)); i++) { readnotnull |= (*(((int*)ReadEvent)+i) = *(((int*)StaticReadEvent)+i)) != 0; writenotnull |= (*(((int*)WriteEvent)+i) = *(((int*)StaticWriteEvent)+i)) != 0; } // /* just a verification code, needs to be removed for performance */ // for (i=0; i= 0) ? &delta : NULL); /* this is an experiment on the separation of the select work */ // status = (readnotnull ? select(maxfd, ReadEvent, NULL, NULL, (next_time >= 0) ? &delta : NULL) : 0); // status |= (writenotnull ? select(maxfd, NULL, WriteEvent, NULL, (next_time >= 0) ? &delta : NULL) : 0); tv_now(&now); if (status > 0) { /* must proceed with events */ int fds; char count; for (fds = 0; (fds << INTBITS) < maxfd; fds++) if ((((int *)(ReadEvent))[fds] | ((int *)(WriteEvent))[fds]) != 0) for (count = 1< 0 /* * Display proxy statistics regularly. It is designed to be called from the * select_loop(). */ int stats(void) { static int lines; static struct timeval nextevt; static struct timeval lastevt; static struct timeval starttime = {0,0}; unsigned long totaltime, deltatime; int ret; if (tv_cmp(&now, &nextevt) > 0) { deltatime = (tv_diff(&lastevt, &now)?:1); totaltime = (tv_diff(&starttime, &now)?:1); if (global.mode & MODE_STATS) { if ((lines++ % 16 == 0) && !(global.mode & MODE_LOG)) qfprintf(stderr, "\n active total tsknew tskgood tskleft tskrght tsknsch tsklsch tskrsch\n"); if (lines>1) { qfprintf(stderr,"%07d %07d %07d %07d %07d %07d %07d %07d %07d\n", actconn, totalconn, stats_tsk_new, stats_tsk_good, stats_tsk_left, stats_tsk_right, stats_tsk_nsrch, stats_tsk_lsrch, stats_tsk_rsrch); } } tv_delayfrom(&nextevt, &now, STATTIME); lastevt=now; } ret = tv_remain(&now, &nextevt); return ret; } #endif /* * this function enables proxies when there are enough free sessions, * or stops them when the table is full. It is designed to be called from the * select_loop(). It returns the time left before next expiration event * during stop time, TIME_ETERNITY otherwise. */ static int maintain_proxies(void) { struct proxy *p; struct listener *l; int tleft; /* time left */ p = proxy; tleft = TIME_ETERNITY; /* infinite time */ /* if there are enough free sessions, we'll activate proxies */ if (actconn < global.maxconn) { while (p) { if (p->nbconn < p->maxconn) { if (p->state == PR_STIDLE) { for (l = p->listen; l != NULL; l = l->next) { FD_SET(l->fd, StaticReadEvent); } p->state = PR_STRUN; } } else { if (p->state == PR_STRUN) { for (l = p->listen; l != NULL; l = l->next) { FD_CLR(l->fd, StaticReadEvent); } p->state = PR_STIDLE; } } p = p->next; } } else { /* block all proxies */ while (p) { if (p->state == PR_STRUN) { for (l = p->listen; l != NULL; l = l->next) { FD_CLR(l->fd, StaticReadEvent); } p->state = PR_STIDLE; } p = p->next; } } if (stopping) { p = proxy; while (p) { if (p->state != PR_STDISABLED) { int t; t = tv_remain2(&now, &p->stop_time); if (t == 0) { Warning("Proxy %s stopped.\n", p->id); send_log(p, LOG_WARNING, "Proxy %s stopped.\n", p->id); for (l = p->listen; l != NULL; l = l->next) { fd_delete(l->fd); listeners--; } p->state = PR_STDISABLED; } else { tleft = MINTIME(t, tleft); } } p = p->next; } } return tleft; } /* * this function disables health-check servers so that the process will quickly be ignored * by load balancers. */ static void soft_stop(void) { struct proxy *p; stopping = 1; p = proxy; tv_now(&now); /* else, the old time before select will be used */ while (p) { if (p->state != PR_STDISABLED) { Warning("Stopping proxy %s in %d ms.\n", p->id, p->grace); send_log(p, LOG_WARNING, "Stopping proxy %s in %d ms.\n", p->id, p->grace); tv_delayfrom(&p->stop_time, &now, p->grace); } p = p->next; } } /* * upon SIGUSR1, let's have a soft stop. */ void sig_soft_stop(int sig) { soft_stop(); signal(sig, SIG_IGN); } /* * this function dumps every server's state when the process receives SIGHUP. */ void sig_dump_state(int sig) { struct proxy *p = proxy; Warning("SIGHUP received, dumping servers states.\n"); while (p) { struct server *s = p->srv; send_log(p, LOG_NOTICE, "SIGUP received, dumping servers states.\n"); while (s) { if (s->state & SRV_RUNNING) { Warning("SIGHUP: server %s/%s is UP.\n", p->id, s->id); send_log(p, LOG_NOTICE, "SIGUP: server %s/%s is UP.\n", p->id, s->id); } else { Warning("SIGHUP: server %s/%s is DOWN.\n", p->id, s->id); send_log(p, LOG_NOTICE, "SIGHUP: server %s/%s is DOWN.\n", p->id, s->id); } s = s->next; } if (find_server(p) == NULL) { Warning("SIGHUP: proxy %s has no server available !\n", p); send_log(p, LOG_NOTICE, "SIGHUP: proxy %s has no server available !\n", p); } p = p->next; } signal(sig, sig_dump_state); } void dump(int sig) { struct task *t, *tnext; struct session *s; tnext = ((struct task *)LIST_HEAD(wait_queue))->next; while ((t = tnext) != LIST_HEAD(wait_queue)) { /* we haven't looped ? */ tnext = t->next; s = t->context; qfprintf(stderr,"[dump] wq: task %p, still %ld ms, " "cli=%d, srv=%d, cr=%d, cw=%d, sr=%d, sw=%d, " "req=%d, rep=%d, clifd=%d\n", s, tv_remain(&now, &t->expire), s->cli_state, s->srv_state, FD_ISSET(s->cli_fd, StaticReadEvent), FD_ISSET(s->cli_fd, StaticWriteEvent), FD_ISSET(s->srv_fd, StaticReadEvent), FD_ISSET(s->srv_fd, StaticWriteEvent), s->req->l, s->rep?s->rep->l:0, s->cli_fd ); } } #ifdef DEBUG_MEMORY static void fast_stop(void) { struct proxy *p; p = proxy; while (p) { p->grace = 0; p = p->next; } soft_stop(); } void sig_int(int sig) { /* This would normally be a hard stop, but we want to be sure about deallocation, and so on, so we do a soft stop with 0 GRACE time */ fast_stop(); /* If we are killed twice, we decide to die*/ signal(sig, SIG_DFL); } void sig_term(int sig) { /* This would normally be a hard stop, but we want to be sure about deallocation, and so on, so we do a soft stop with 0 GRACE time */ fast_stop(); /* If we are killed twice, we decide to die*/ signal(sig, SIG_DFL); } #endif /* returns the pointer to an error in the replacement string, or NULL if OK */ char *chain_regex(struct hdr_exp **head, regex_t *preg, int action, char *replace) { struct hdr_exp *exp; if (replace != NULL) { char *err; err = check_replace_string(replace); if (err) return err; } while (*head != NULL) head = &(*head)->next; exp = calloc(1, sizeof(struct hdr_exp)); exp->preg = preg; exp->replace = replace; exp->action = action; *head = exp; return NULL; } /* * parse a line in a section. Returns 0 if OK, -1 if error. */ int cfg_parse_global(char *file, int linenum, char **args) { if (!strcmp(args[0], "global")) { /* new section */ /* no option, nothing special to do */ return 0; } else if (!strcmp(args[0], "daemon")) { global.mode |= MODE_DAEMON; } else if (!strcmp(args[0], "debug")) { global.mode |= MODE_DEBUG; } else if (!strcmp(args[0], "noepoll")) { cfg_polling_mechanism &= ~POLL_USE_EPOLL; } else if (!strcmp(args[0], "nopoll")) { cfg_polling_mechanism &= ~POLL_USE_POLL; } else if (!strcmp(args[0], "quiet")) { global.mode |= MODE_QUIET; } else if (!strcmp(args[0], "stats")) { global.mode |= MODE_STATS; } else if (!strcmp(args[0], "uid")) { if (global.uid != 0) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } global.uid = atol(args[1]); } else if (!strcmp(args[0], "gid")) { if (global.gid != 0) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } global.gid = atol(args[1]); } else if (!strcmp(args[0], "nbproc")) { if (global.nbproc != 0) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } global.nbproc = atol(args[1]); } else if (!strcmp(args[0], "maxconn")) { if (global.maxconn != 0) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } global.maxconn = atol(args[1]); } else if (!strcmp(args[0], "ulimit-n")) { if (global.rlimit_nofile != 0) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } global.rlimit_nofile = atol(args[1]); } else if (!strcmp(args[0], "chroot")) { if (global.chroot != NULL) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects a directory as an argument.\n", file, linenum, args[0]); return -1; } global.chroot = strdup(args[1]); } else if (!strcmp(args[0], "pidfile")) { if (global.pidfile != NULL) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects a file name as an argument.\n", file, linenum, args[0]); return -1; } global.pidfile = strdup(args[1]); } else if (!strcmp(args[0], "log")) { /* syslog server address */ struct sockaddr_in *sa; int facility, level; if (*(args[1]) == 0 || *(args[2]) == 0) { Alert("parsing [%s:%d] : '%s' expects
and as arguments.\n", file, linenum, args[0]); return -1; } for (facility = 0; facility < NB_LOG_FACILITIES; facility++) if (!strcmp(log_facilities[facility], args[2])) break; if (facility >= NB_LOG_FACILITIES) { Alert("parsing [%s:%d] : unknown log facility '%s'\n", file, linenum, args[2]); exit(1); } level = 7; /* max syslog level = debug */ if (*(args[3])) { while (level >= 0 && strcmp(log_levels[level], args[3])) level--; if (level < 0) { Alert("parsing [%s:%d] : unknown optional log level '%s'\n", file, linenum, args[3]); exit(1); } } sa = str2sa(args[1]); if (!sa->sin_port) sa->sin_port = htons(SYSLOG_PORT); if (global.logfac1 == -1) { global.logsrv1 = *sa; global.logfac1 = facility; global.loglev1 = level; } else if (global.logfac2 == -1) { global.logsrv2 = *sa; global.logfac2 = facility; global.loglev2 = level; } else { Alert("parsing [%s:%d] : too many syslog servers\n", file, linenum); return -1; } } else { Alert("parsing [%s:%d] : unknown keyword '%s' in '%s' section\n", file, linenum, args[0], "global"); return -1; } return 0; } void init_default_instance() { memset(&defproxy, 0, sizeof(defproxy)); defproxy.mode = PR_MODE_TCP; defproxy.state = PR_STNEW; defproxy.maxconn = cfg_maxpconn; defproxy.conn_retries = CONN_RETRIES; defproxy.logfac1 = defproxy.logfac2 = -1; /* log disabled */ } /* * parse a line in a section. Returns 0 if OK, -1 if error. */ int cfg_parse_listen(char *file, int linenum, char **args) { static struct proxy *curproxy = NULL; struct server *newsrv = NULL; char *err; int rc; if (!strcmp(args[0], "listen")) { /* new proxy */ if (!*args[1]) { Alert("parsing [%s:%d] : '%s' expects an argument and\n" " optionnally supports [addr1]:port1[-end1]{,[addr]:port[-end]}...\n", file, linenum, args[0]); return -1; } if ((curproxy = (struct proxy *)calloc(1, sizeof(struct proxy))) == NULL) { Alert("parsing [%s:%d] : out of memory.\n", file, linenum); return -1; } curproxy->next = proxy; proxy = curproxy; curproxy->id = strdup(args[1]); /* parse the listener address if any */ if (*args[2]) { curproxy->listen = str2listener(args[2], curproxy->listen); if (!curproxy->listen) return -1; } /* set default values */ curproxy->state = defproxy.state; curproxy->maxconn = defproxy.maxconn; curproxy->conn_retries = defproxy.conn_retries; curproxy->options = defproxy.options; if (defproxy.check_req) curproxy->check_req = strdup(defproxy.check_req); curproxy->check_len = defproxy.check_len; if (defproxy.cookie_name) curproxy->cookie_name = strdup(defproxy.cookie_name); curproxy->cookie_len = defproxy.cookie_len; if (defproxy.capture_name) curproxy->capture_name = strdup(defproxy.capture_name); curproxy->capture_namelen = defproxy.capture_namelen; curproxy->capture_len = defproxy.capture_len; if (defproxy.errmsg.msg400) curproxy->errmsg.msg400 = strdup(defproxy.errmsg.msg400); curproxy->errmsg.len400 = defproxy.errmsg.len400; if (defproxy.errmsg.msg403) curproxy->errmsg.msg403 = strdup(defproxy.errmsg.msg403); curproxy->errmsg.len403 = defproxy.errmsg.len403; if (defproxy.errmsg.msg408) curproxy->errmsg.msg408 = strdup(defproxy.errmsg.msg408); curproxy->errmsg.len408 = defproxy.errmsg.len408; if (defproxy.errmsg.msg500) curproxy->errmsg.msg500 = strdup(defproxy.errmsg.msg500); curproxy->errmsg.len500 = defproxy.errmsg.len500; if (defproxy.errmsg.msg502) curproxy->errmsg.msg502 = strdup(defproxy.errmsg.msg502); curproxy->errmsg.len502 = defproxy.errmsg.len502; if (defproxy.errmsg.msg503) curproxy->errmsg.msg503 = strdup(defproxy.errmsg.msg503); curproxy->errmsg.len503 = defproxy.errmsg.len503; if (defproxy.errmsg.msg504) curproxy->errmsg.msg504 = strdup(defproxy.errmsg.msg504); curproxy->errmsg.len504 = defproxy.errmsg.len504; curproxy->clitimeout = defproxy.clitimeout; curproxy->contimeout = defproxy.contimeout; curproxy->srvtimeout = defproxy.srvtimeout; curproxy->mode = defproxy.mode; curproxy->logfac1 = defproxy.logfac1; curproxy->logsrv1 = defproxy.logsrv1; curproxy->loglev1 = defproxy.loglev1; curproxy->logfac2 = defproxy.logfac2; curproxy->logsrv2 = defproxy.logsrv2; curproxy->loglev2 = defproxy.loglev2; curproxy->to_log = defproxy.to_log & ~LW_COOKIE & ~LW_REQHDR & ~ LW_RSPHDR; curproxy->grace = defproxy.grace; curproxy->source_addr = defproxy.source_addr; curproxy->mon_net = defproxy.mon_net; curproxy->mon_mask = defproxy.mon_mask; return 0; } else if (!strcmp(args[0], "defaults")) { /* use this one to assign default values */ /* some variables may have already been initialized earlier */ if (defproxy.check_req) free(defproxy.check_req); if (defproxy.cookie_name) free(defproxy.cookie_name); if (defproxy.capture_name) free(defproxy.capture_name); if (defproxy.errmsg.msg400) free(defproxy.errmsg.msg400); if (defproxy.errmsg.msg403) free(defproxy.errmsg.msg403); if (defproxy.errmsg.msg408) free(defproxy.errmsg.msg408); if (defproxy.errmsg.msg500) free(defproxy.errmsg.msg500); if (defproxy.errmsg.msg502) free(defproxy.errmsg.msg502); if (defproxy.errmsg.msg503) free(defproxy.errmsg.msg503); if (defproxy.errmsg.msg504) free(defproxy.errmsg.msg504); init_default_instance(); curproxy = &defproxy; return 0; } else if (curproxy == NULL) { Alert("parsing [%s:%d] : 'listen' or 'defaults' expected.\n", file, linenum); return -1; } if (!strcmp(args[0], "bind")) { /* new listen addresses */ if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (strchr(args[1], ':') == NULL) { Alert("parsing [%s:%d] : '%s' expects [addr1]:port1[-end1]{,[addr]:port[-end]}... as arguments.\n", file, linenum, args[0]); return -1; } curproxy->listen = str2listener(args[1], curproxy->listen); if (!curproxy->listen) return -1; return 0; } else if (!strcmp(args[0], "monitor-net")) { /* set the range of IPs to ignore */ if (!*args[1] || !str2net(args[1], &curproxy->mon_net, &curproxy->mon_mask)) { Alert("parsing [%s:%d] : '%s' expects address[/mask].\n", file, linenum, args[0]); return -1; } /* flush useless bits */ curproxy->mon_net.s_addr &= curproxy->mon_mask.s_addr; return 0; } else if (!strcmp(args[0], "mode")) { /* sets the proxy mode */ if (!strcmp(args[1], "http")) curproxy->mode = PR_MODE_HTTP; else if (!strcmp(args[1], "tcp")) curproxy->mode = PR_MODE_TCP; else if (!strcmp(args[1], "health")) curproxy->mode = PR_MODE_HEALTH; else { Alert("parsing [%s:%d] : unknown proxy mode '%s'.\n", file, linenum, args[1]); return -1; } } else if (!strcmp(args[0], "disabled")) { /* disables this proxy */ curproxy->state = PR_STDISABLED; } else if (!strcmp(args[0], "enabled")) { /* enables this proxy (used to revert a disabled default) */ curproxy->state = PR_STNEW; } else if (!strcmp(args[0], "cookie")) { /* cookie name */ int cur_arg; // if (curproxy == &defproxy) { // Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); // return -1; // } if (curproxy->cookie_name != NULL) { // Alert("parsing [%s:%d] : cookie name already specified. Continuing.\n", // file, linenum); // return 0; free(curproxy->cookie_name); } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as argument.\n", file, linenum, args[0]); return -1; } curproxy->cookie_name = strdup(args[1]); curproxy->cookie_len = strlen(curproxy->cookie_name); cur_arg = 2; while (*(args[cur_arg])) { if (!strcmp(args[cur_arg], "rewrite")) { curproxy->options |= PR_O_COOK_RW; } else if (!strcmp(args[cur_arg], "indirect")) { curproxy->options |= PR_O_COOK_IND; } else if (!strcmp(args[cur_arg], "insert")) { curproxy->options |= PR_O_COOK_INS; } else if (!strcmp(args[cur_arg], "nocache")) { curproxy->options |= PR_O_COOK_NOC; } else if (!strcmp(args[cur_arg], "postonly")) { curproxy->options |= PR_O_COOK_POST; } else if (!strcmp(args[cur_arg], "prefix")) { curproxy->options |= PR_O_COOK_PFX; } else { Alert("parsing [%s:%d] : '%s' supports 'rewrite', 'insert', 'prefix', 'indirect', 'nocache' and 'postonly' options.\n", file, linenum, args[0]); return -1; } cur_arg++; } if (!POWEROF2(curproxy->options & (PR_O_COOK_RW|PR_O_COOK_IND))) { Alert("parsing [%s:%d] : cookie 'rewrite' and 'indirect' modes are incompatible.\n", file, linenum); return -1; } if (!POWEROF2(curproxy->options & (PR_O_COOK_RW|PR_O_COOK_INS|PR_O_COOK_PFX))) { Alert("parsing [%s:%d] : cookie 'rewrite', 'insert' and 'prefix' modes are incompatible.\n", file, linenum); return -1; } }/* end else if (!strcmp(args[0], "cookie")) */ else if (!strcmp(args[0], "appsession")) { /* cookie name */ // if (curproxy == &defproxy) { // Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); // return -1; // } if (curproxy->appsession_name != NULL) { // Alert("parsing [%s:%d] : cookie name already specified. Continuing.\n", // file, linenum); // return 0; free(curproxy->appsession_name); } if (*(args[5]) == 0) { Alert("parsing [%s:%d] : '%s' expects 'appsession' 'len' 'timeout' .\n", file, linenum, args[0]); return -1; } have_appsession = 1; curproxy->appsession_name = strdup(args[1]); curproxy->appsession_name_len = strlen(curproxy->appsession_name); curproxy->appsession_len = atoi(args[3]); curproxy->appsession_timeout = atoi(args[5]); rc = chtbl_init(&(curproxy->htbl_proxy), TBLSIZ, hashpjw, match_str, destroy); if (rc) { Alert("Error Init Appsession Hashtable.\n"); return -1; } } /* Url App Session */ else if (!strcmp(args[0], "capture")) { if (!strcmp(args[1], "cookie")) { /* name of a cookie to capture */ // if (curproxy == &defproxy) { // Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); // return -1; // } if (curproxy->capture_name != NULL) { // Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", // file, linenum, args[0]); // return 0; free(curproxy->capture_name); } if (*(args[4]) == 0) { Alert("parsing [%s:%d] : '%s' expects 'cookie' 'len' .\n", file, linenum, args[0]); return -1; } curproxy->capture_name = strdup(args[2]); curproxy->capture_namelen = strlen(curproxy->capture_name); curproxy->capture_len = atol(args[4]); if (curproxy->capture_len >= CAPTURE_LEN) { Warning("parsing [%s:%d] : truncating capture length to %d bytes.\n", file, linenum, CAPTURE_LEN - 1); curproxy->capture_len = CAPTURE_LEN - 1; } curproxy->to_log |= LW_COOKIE; } else if (!strcmp(args[1], "request") && !strcmp(args[2], "header")) { struct cap_hdr *hdr; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s %s' not allowed in 'defaults' section.\n", file, linenum, args[0], args[1]); return -1; } if (*(args[3]) == 0 || strcmp(args[4], "len") != 0 || *(args[5]) == 0) { Alert("parsing [%s:%d] : '%s %s' expects 'header' 'len' .\n", file, linenum, args[0], args[1]); return -1; } hdr = calloc(sizeof(struct cap_hdr), 1); hdr->next = curproxy->req_cap; hdr->name = strdup(args[3]); hdr->namelen = strlen(args[3]); hdr->len = atol(args[5]); hdr->index = curproxy->nb_req_cap++; curproxy->req_cap = hdr; curproxy->to_log |= LW_REQHDR; } else if (!strcmp(args[1], "response") && !strcmp(args[2], "header")) { struct cap_hdr *hdr; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s %s' not allowed in 'defaults' section.\n", file, linenum, args[0], args[1]); return -1; } if (*(args[3]) == 0 || strcmp(args[4], "len") != 0 || *(args[5]) == 0) { Alert("parsing [%s:%d] : '%s %s' expects 'header' 'len' .\n", file, linenum, args[0], args[1]); return -1; } hdr = calloc(sizeof(struct cap_hdr), 1); hdr->next = curproxy->rsp_cap; hdr->name = strdup(args[3]); hdr->namelen = strlen(args[3]); hdr->len = atol(args[5]); hdr->index = curproxy->nb_rsp_cap++; curproxy->rsp_cap = hdr; curproxy->to_log |= LW_RSPHDR; } else { Alert("parsing [%s:%d] : '%s' expects 'cookie' or 'request header' or 'response header'.\n", file, linenum, args[0]); return -1; } } else if (!strcmp(args[0], "contimeout")) { /* connect timeout */ if (curproxy->contimeout != defproxy.contimeout) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer as argument.\n", file, linenum, args[0]); return -1; } curproxy->contimeout = atol(args[1]); } else if (!strcmp(args[0], "clitimeout")) { /* client timeout */ if (curproxy->clitimeout != defproxy.clitimeout) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer as argument.\n", file, linenum, args[0]); return -1; } curproxy->clitimeout = atol(args[1]); } else if (!strcmp(args[0], "srvtimeout")) { /* server timeout */ if (curproxy->srvtimeout != defproxy.srvtimeout) { Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer as argument.\n", file, linenum, args[0]); return -1; } curproxy->srvtimeout = atol(args[1]); } else if (!strcmp(args[0], "retries")) { /* connection retries */ if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument (dispatch counts for one).\n", file, linenum, args[0]); return -1; } curproxy->conn_retries = atol(args[1]); } else if (!strcmp(args[0], "option")) { if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an option name.\n", file, linenum, args[0]); return -1; } if (!strcmp(args[1], "redispatch")) /* enable reconnections to dispatch */ curproxy->options |= PR_O_REDISP; #ifdef TPROXY else if (!strcmp(args[1], "transparent")) /* enable transparent proxy connections */ curproxy->options |= PR_O_TRANSP; #endif else if (!strcmp(args[1], "keepalive")) /* enable keep-alive */ curproxy->options |= PR_O_KEEPALIVE; else if (!strcmp(args[1], "forwardfor")) /* insert x-forwarded-for field */ curproxy->options |= PR_O_FWDFOR; else if (!strcmp(args[1], "logasap")) /* log as soon as possible, without waiting for the session to complete */ curproxy->options |= PR_O_LOGASAP; else if (!strcmp(args[1], "httpclose")) /* force connection: close in both directions in HTTP mode */ curproxy->options |= PR_O_HTTP_CLOSE; else if (!strcmp(args[1], "checkcache")) /* require examination of cacheability of the 'set-cookie' field */ curproxy->options |= PR_O_CHK_CACHE; else if (!strcmp(args[1], "httplog")) /* generate a complete HTTP log */ curproxy->to_log |= LW_DATE | LW_CLIP | LW_SVID | LW_REQ | LW_PXID | LW_RESP | LW_BYTES; else if (!strcmp(args[1], "tcplog")) /* generate a detailed TCP log */ curproxy->to_log |= LW_DATE | LW_CLIP | LW_SVID | LW_PXID | LW_BYTES; else if (!strcmp(args[1], "dontlognull")) { /* don't log empty requests */ curproxy->options |= PR_O_NULLNOLOG; } else if (!strcmp(args[1], "tcpka")) { /* enable TCP keep-alives on client and server sessions */ curproxy->options |= PR_O_TCP_CLI_KA | PR_O_TCP_SRV_KA; } else if (!strcmp(args[1], "clitcpka")) { /* enable TCP keep-alives on client sessions */ curproxy->options |= PR_O_TCP_CLI_KA; } else if (!strcmp(args[1], "srvtcpka")) { /* enable TCP keep-alives on server sessions */ curproxy->options |= PR_O_TCP_SRV_KA; } else if (!strcmp(args[1], "httpchk")) { /* use HTTP request to check servers' health */ if (curproxy->check_req != NULL) { free(curproxy->check_req); } curproxy->options |= PR_O_HTTP_CHK; if (!*args[2]) { /* no argument */ curproxy->check_req = strdup(DEF_CHECK_REQ); /* default request */ curproxy->check_len = strlen(DEF_CHECK_REQ); } else if (!*args[3]) { /* one argument : URI */ int reqlen = strlen(args[2]) + strlen("OPTIONS / HTTP/1.0\r\n\r\n"); curproxy->check_req = (char *)malloc(reqlen); curproxy->check_len = snprintf(curproxy->check_req, reqlen, "OPTIONS %s HTTP/1.0\r\n\r\n", args[2]); /* URI to use */ } else { /* more arguments : METHOD URI [HTTP_VER] */ int reqlen = strlen(args[2]) + strlen(args[3]) + 3 + strlen("\r\n\r\n"); if (*args[4]) reqlen += strlen(args[4]); else reqlen += strlen("HTTP/1.0"); curproxy->check_req = (char *)malloc(reqlen); curproxy->check_len = snprintf(curproxy->check_req, reqlen, "%s %s %s\r\n\r\n", args[2], args[3], *args[4]?args[4]:"HTTP/1.0"); } } else if (!strcmp(args[1], "persist")) { /* persist on using the server specified by the cookie, even when it's down */ curproxy->options |= PR_O_PERSIST; } else { Alert("parsing [%s:%d] : unknown option '%s'.\n", file, linenum, args[1]); return -1; } return 0; } else if (!strcmp(args[0], "redispatch") || !strcmp(args[0], "redisp")) { /* enable reconnections to dispatch */ curproxy->options |= PR_O_REDISP; } #ifdef TPROXY else if (!strcmp(args[0], "transparent")) { /* enable transparent proxy connections */ curproxy->options |= PR_O_TRANSP; } #endif else if (!strcmp(args[0], "maxconn")) { /* maxconn */ if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]); return -1; } curproxy->maxconn = atol(args[1]); } else if (!strcmp(args[0], "grace")) { /* grace time (ms) */ if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects a time in milliseconds.\n", file, linenum, args[0]); return -1; } curproxy->grace = atol(args[1]); } else if (!strcmp(args[0], "dispatch")) { /* dispatch address */ if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (strchr(args[1], ':') == NULL) { Alert("parsing [%s:%d] : '%s' expects as argument.\n", file, linenum, args[0]); return -1; } curproxy->dispatch_addr = *str2sa(args[1]); } else if (!strcmp(args[0], "balance")) { /* set balancing with optional algorithm */ if (*(args[1])) { if (!strcmp(args[1], "roundrobin")) { curproxy->options |= PR_O_BALANCE_RR; } else { Alert("parsing [%s:%d] : '%s' only supports 'roundrobin' option.\n", file, linenum, args[0]); return -1; } } else /* if no option is set, use round-robin by default */ curproxy->options |= PR_O_BALANCE_RR; } else if (!strcmp(args[0], "server")) { /* server address */ int cur_arg; char *rport; char *raddr; short realport; int do_check; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (!*args[2]) { Alert("parsing [%s:%d] : '%s' expects and [:] as arguments.\n", file, linenum, args[0]); return -1; } if ((newsrv = (struct server *)calloc(1, sizeof(struct server))) == NULL) { Alert("parsing [%s:%d] : out of memory.\n", file, linenum); return -1; } if (curproxy->srv == NULL) curproxy->srv = newsrv; else curproxy->cursrv->next = newsrv; curproxy->cursrv = newsrv; newsrv->next = NULL; newsrv->proxy = curproxy; do_check = 0; newsrv->state = SRV_RUNNING; /* early server setup */ newsrv->id = strdup(args[1]); /* several ways to check the port component : * - IP => port=+0, relative * - IP: => port=+0, relative * - IP:N => port=N, absolute * - IP:+N => port=+N, relative * - IP:-N => port=-N, relative */ raddr = strdup(args[2]); rport = strchr(raddr, ':'); if (rport) { *rport++ = 0; realport = atol(rport); if (!isdigit((int)*rport)) newsrv->state |= SRV_MAPPORTS; } else { realport = 0; newsrv->state |= SRV_MAPPORTS; } newsrv->addr = *str2sa(raddr); newsrv->addr.sin_port = htons(realport); free(raddr); newsrv->curfd = -1; /* no health-check in progress */ newsrv->inter = DEF_CHKINTR; newsrv->rise = DEF_RISETIME; newsrv->fall = DEF_FALLTIME; newsrv->health = newsrv->rise; /* up, but will fall down at first failure */ cur_arg = 3; while (*args[cur_arg]) { if (!strcmp(args[cur_arg], "cookie")) { newsrv->cookie = strdup(args[cur_arg + 1]); newsrv->cklen = strlen(args[cur_arg + 1]); cur_arg += 2; } else if (!strcmp(args[cur_arg], "rise")) { newsrv->rise = atol(args[cur_arg + 1]); newsrv->health = newsrv->rise; cur_arg += 2; } else if (!strcmp(args[cur_arg], "fall")) { newsrv->fall = atol(args[cur_arg + 1]); cur_arg += 2; } else if (!strcmp(args[cur_arg], "inter")) { newsrv->inter = atol(args[cur_arg + 1]); cur_arg += 2; } else if (!strcmp(args[cur_arg], "port")) { newsrv->check_port = atol(args[cur_arg + 1]); cur_arg += 2; } else if (!strcmp(args[cur_arg], "backup")) { newsrv->state |= SRV_BACKUP; cur_arg ++; } else if (!strcmp(args[cur_arg], "check")) { do_check = 1; cur_arg += 1; } else if (!strcmp(args[cur_arg], "source")) { /* address to which we bind when connecting */ if (!*args[cur_arg + 1]) { Alert("parsing [%s:%d] : '%s' expects [:] as argument.\n", file, linenum, "source"); return -1; } newsrv->state |= SRV_BIND_SRC; newsrv->source_addr = *str2sa(args[cur_arg + 1]); cur_arg += 2; } else { Alert("parsing [%s:%d] : server %s only supports options 'backup', 'cookie', 'check', 'inter', 'rise', 'fall', 'port' and 'source'.\n", file, linenum, newsrv->id); return -1; } } if (do_check) { struct task *t; if (!newsrv->check_port && !(newsrv->state & SRV_MAPPORTS)) newsrv->check_port = realport; /* by default */ if (!newsrv->check_port) { Alert("parsing [%s:%d] : server %s has neither service port nor check port. Check has been disabled.\n", file, linenum, newsrv->id); return -1; } if ((t = pool_alloc(task)) == NULL) { Alert("parsing [%s:%d] : out of memory.\n", file, linenum); return -1; } t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */ t->wq = LIST_HEAD(wait_queue); /* but already has a wait queue assigned */ t->state = TASK_IDLE; t->process = process_chk; t->context = newsrv; if (curproxy->state != PR_STDISABLED) { tv_delayfrom(&t->expire, &now, newsrv->inter); /* check this every ms */ task_queue(t); task_wakeup(&rq, t); } } curproxy->nbservers++; } else if (!strcmp(args[0], "log")) { /* syslog server address */ struct sockaddr_in *sa; int facility; if (*(args[1]) && *(args[2]) == 0 && !strcmp(args[1], "global")) { curproxy->logfac1 = global.logfac1; curproxy->logsrv1 = global.logsrv1; curproxy->loglev1 = global.loglev1; curproxy->logfac2 = global.logfac2; curproxy->logsrv2 = global.logsrv2; curproxy->loglev2 = global.loglev2; } else if (*(args[1]) && *(args[2])) { int level; for (facility = 0; facility < NB_LOG_FACILITIES; facility++) if (!strcmp(log_facilities[facility], args[2])) break; if (facility >= NB_LOG_FACILITIES) { Alert("parsing [%s:%d] : unknown log facility '%s'\n", file, linenum, args[2]); exit(1); } level = 7; /* max syslog level = debug */ if (*(args[3])) { while (level >= 0 && strcmp(log_levels[level], args[3])) level--; if (level < 0) { Alert("parsing [%s:%d] : unknown optional log level '%s'\n", file, linenum, args[3]); exit(1); } } sa = str2sa(args[1]); if (!sa->sin_port) sa->sin_port = htons(SYSLOG_PORT); if (curproxy->logfac1 == -1) { curproxy->logsrv1 = *sa; curproxy->logfac1 = facility; curproxy->loglev1 = level; } else if (curproxy->logfac2 == -1) { curproxy->logsrv2 = *sa; curproxy->logfac2 = facility; curproxy->loglev2 = level; } else { Alert("parsing [%s:%d] : too many syslog servers\n", file, linenum); return -1; } } else { Alert("parsing [%s:%d] : 'log' expects either and or 'global' as arguments.\n", file, linenum); return -1; } } else if (!strcmp(args[0], "source")) { /* address to which we bind when connecting */ if (!*args[1]) { Alert("parsing [%s:%d] : '%s' expects [:] as argument.\n", file, linenum, "source"); return -1; } curproxy->source_addr = *str2sa(args[1]); curproxy->options |= PR_O_BIND_SRC; } else if (!strcmp(args[0], "cliexp") || !strcmp(args[0], "reqrep")) { /* replace request header from a regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0 || *(args[2]) == 0) { Alert("parsing [%s:%d] : '%s' expects and as arguments.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->req_exp, preg, ACT_REPLACE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "reqdel")) { /* delete request header from a regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_REMOVE, NULL); } else if (!strcmp(args[0], "reqdeny")) { /* deny a request if a header matches this regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_DENY, NULL); } else if (!strcmp(args[0], "reqpass")) { /* pass this header without allowing or denying the request */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_PASS, NULL); } else if (!strcmp(args[0], "reqallow")) { /* allow a request if a header matches this regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_ALLOW, NULL); } else if (!strcmp(args[0], "reqirep")) { /* replace request header from a regex, ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0 || *(args[2]) == 0) { Alert("parsing [%s:%d] : '%s' expects and as arguments.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->req_exp, preg, ACT_REPLACE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "reqidel")) { /* delete request header from a regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_REMOVE, NULL); } else if (!strcmp(args[0], "reqideny")) { /* deny a request if a header matches this regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_DENY, NULL); } else if (!strcmp(args[0], "reqipass")) { /* pass this header without allowing or denying the request */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_PASS, NULL); } else if (!strcmp(args[0], "reqiallow")) { /* allow a request if a header matches this regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } chain_regex(&curproxy->req_exp, preg, ACT_ALLOW, NULL); } else if (!strcmp(args[0], "reqadd")) { /* add request header */ if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (curproxy->nb_reqadd >= MAX_NEWHDR) { Alert("parsing [%s:%d] : too many '%s'. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects
as an argument.\n", file, linenum, args[0]); return -1; } curproxy->req_add[curproxy->nb_reqadd++] = strdup(args[1]); } else if (!strcmp(args[0], "srvexp") || !strcmp(args[0], "rsprep")) { /* replace response header from a regex */ regex_t *preg; if (*(args[1]) == 0 || *(args[2]) == 0) { Alert("parsing [%s:%d] : '%s' expects and as arguments.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_REPLACE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspdel")) { /* delete response header from a regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_REMOVE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspdeny")) { /* block response header from a regex */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_DENY, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspirep")) { /* replace response header from a regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0 || *(args[2]) == 0) { Alert("parsing [%s:%d] : '%s' expects and as arguments.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_REPLACE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspidel")) { /* delete response header from a regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_REMOVE, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspideny")) { /* block response header from a regex ignoring case */ regex_t *preg; if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects as an argument.\n", file, linenum, args[0]); return -1; } preg = calloc(1, sizeof(regex_t)); if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) { Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]); return -1; } err = chain_regex(&curproxy->rsp_exp, preg, ACT_DENY, strdup(args[2])); if (err) { Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n", file, linenum, *err); return -1; } } else if (!strcmp(args[0], "rspadd")) { /* add response header */ if (curproxy == &defproxy) { Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); return -1; } if (curproxy->nb_rspadd >= MAX_NEWHDR) { Alert("parsing [%s:%d] : too many '%s'. Continuing.\n", file, linenum, args[0]); return 0; } if (*(args[1]) == 0) { Alert("parsing [%s:%d] : '%s' expects
as an argument.\n", file, linenum, args[0]); return -1; } curproxy->rsp_add[curproxy->nb_rspadd++] = strdup(args[1]); } else if (!strcmp(args[0], "errorloc") || !strcmp(args[0], "errorloc302") || !strcmp(args[0], "errorloc303")) { /* error location */ int errnum, errlen; char *err; // if (curproxy == &defproxy) { // Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]); // return -1; // } if (*(args[2]) == 0) { Alert("parsing [%s:%d] : expects and as arguments.\n", file, linenum); return -1; } errnum = atol(args[1]); if (!strcmp(args[0], "errorloc303")) { err = malloc(strlen(HTTP_303) + strlen(args[2]) + 5); errlen = sprintf(err, "%s%s\r\n\r\n", HTTP_303, args[2]); } else { err = malloc(strlen(HTTP_302) + strlen(args[2]) + 5); errlen = sprintf(err, "%s%s\r\n\r\n", HTTP_302, args[2]); } if (errnum == 400) { if (curproxy->errmsg.msg400) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg400); } curproxy->errmsg.msg400 = err; curproxy->errmsg.len400 = errlen; } else if (errnum == 403) { if (curproxy->errmsg.msg403) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg403); } curproxy->errmsg.msg403 = err; curproxy->errmsg.len403 = errlen; } else if (errnum == 408) { if (curproxy->errmsg.msg408) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg408); } curproxy->errmsg.msg408 = err; curproxy->errmsg.len408 = errlen; } else if (errnum == 500) { if (curproxy->errmsg.msg500) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg500); } curproxy->errmsg.msg500 = err; curproxy->errmsg.len500 = errlen; } else if (errnum == 502) { if (curproxy->errmsg.msg502) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg502); } curproxy->errmsg.msg502 = err; curproxy->errmsg.len502 = errlen; } else if (errnum == 503) { if (curproxy->errmsg.msg503) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg503); } curproxy->errmsg.msg503 = err; curproxy->errmsg.len503 = errlen; } else if (errnum == 504) { if (curproxy->errmsg.msg504) { //Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum); free(curproxy->errmsg.msg504); } curproxy->errmsg.msg504 = err; curproxy->errmsg.len504 = errlen; } else { Warning("parsing [%s:%d] : error %d relocation will be ignored.\n", file, linenum, errnum); free(err); } } else { Alert("parsing [%s:%d] : unknown keyword '%s' in '%s' section\n", file, linenum, args[0], "listen"); return -1; } return 0; } /* * This function reads and parses the configuration file given in the argument. * returns 0 if OK, -1 if error. */ int readcfgfile(char *file) { char thisline[256]; char *line; FILE *f; int linenum = 0; char *end; char *args[MAX_LINE_ARGS]; int arg; int cfgerr = 0; int confsect = CFG_NONE; struct proxy *curproxy = NULL; struct server *newsrv = NULL; if ((f=fopen(file,"r")) == NULL) return -1; init_default_instance(); while (fgets(line = thisline, sizeof(thisline), f) != NULL) { linenum++; end = line + strlen(line); /* skip leading spaces */ while (isspace((int)*line)) line++; arg = 0; args[arg] = line; while (*line && arg < MAX_LINE_ARGS) { /* first, we'll replace \\, \, \#, \r, \n, \t, \xXX with their * C equivalent value. Other combinations left unchanged (eg: \1). */ if (*line == '\\') { int skip = 0; if (line[1] == ' ' || line[1] == '\\' || line[1] == '#') { *line = line[1]; skip = 1; } else if (line[1] == 'r') { *line = '\r'; skip = 1; } else if (line[1] == 'n') { *line = '\n'; skip = 1; } else if (line[1] == 't') { *line = '\t'; skip = 1; } else if (line[1] == 'x') { if ((line + 3 < end ) && ishex(line[2]) && ishex(line[3])) { unsigned char hex1, hex2; hex1 = toupper(line[2]) - '0'; hex2 = toupper(line[3]) - '0'; if (hex1 > 9) hex1 -= 'A' - '9' - 1; if (hex2 > 9) hex2 -= 'A' - '9' - 1; *line = (hex1<<4) + hex2; skip = 3; } else { Alert("parsing [%s:%d] : invalid or incomplete '\\x' sequence in '%s'.\n", file, linenum, args[0]); return -1; } } if (skip) { memmove(line + 1, line + 1 + skip, end - (line + skip + 1)); end -= skip; } line++; } else if (*line == '#' || *line == '\n' || *line == '\r') { /* end of string, end of loop */ *line = 0; break; } else if (isspace((int)*line)) { /* a non-escaped space is an argument separator */ *line++ = 0; while (isspace((int)*line)) line++; args[++arg] = line; } else { line++; } } /* empty line */ if (!**args) continue; /* zero out remaining args */ while (++arg < MAX_LINE_ARGS) { args[arg] = line; } if (!strcmp(args[0], "listen") || !strcmp(args[0], "defaults")) /* new proxy */ confsect = CFG_LISTEN; else if (!strcmp(args[0], "global")) /* global config */ confsect = CFG_GLOBAL; /* else it's a section keyword */ switch (confsect) { case CFG_LISTEN: if (cfg_parse_listen(file, linenum, args) < 0) return -1; break; case CFG_GLOBAL: if (cfg_parse_global(file, linenum, args) < 0) return -1; break; default: Alert("parsing [%s:%d] : unknown keyword '%s' out of section.\n", file, linenum, args[0]); return -1; } } fclose(f); /* * Now, check for the integrity of all that we have collected. */ if ((curproxy = proxy) == NULL) { Alert("parsing %s : no line. Nothing to do !\n", file); return -1; } while (curproxy != NULL) { curproxy->cursrv = NULL; if (curproxy->state == PR_STDISABLED) { curproxy = curproxy->next; continue; } if (curproxy->listen == NULL) { Alert("parsing %s : listener %s has no listen address. Please either specify a valid address on the line, or use the keyword.\n", file, curproxy->id); cfgerr++; } else if ((curproxy->mode != PR_MODE_HEALTH) && !(curproxy->options & (PR_O_TRANSP | PR_O_BALANCE)) && (*(int *)&curproxy->dispatch_addr.sin_addr == 0)) { Alert("parsing %s : listener %s has no dispatch address and is not in transparent or balance mode.\n", file, curproxy->id); cfgerr++; } else if ((curproxy->mode != PR_MODE_HEALTH) && (curproxy->options & PR_O_BALANCE)) { if (curproxy->options & PR_O_TRANSP) { Alert("parsing %s : listener %s cannot use both transparent and balance mode.\n", file, curproxy->id); cfgerr++; } else if (curproxy->srv == NULL) { Alert("parsing %s : listener %s needs at least 1 server in balance mode.\n", file, curproxy->id); cfgerr++; } else if (*(int *)&curproxy->dispatch_addr.sin_addr != 0) { Warning("parsing %s : dispatch address of listener %s will be ignored in balance mode.\n", file, curproxy->id); } } else if (curproxy->mode == PR_MODE_TCP || curproxy->mode == PR_MODE_HEALTH) { /* TCP PROXY or HEALTH CHECK */ if (curproxy->cookie_name != NULL) { Warning("parsing %s : cookie will be ignored for listener %s.\n", file, curproxy->id); } if ((newsrv = curproxy->srv) != NULL) { Warning("parsing %s : servers will be ignored for listener %s.\n", file, curproxy->id); } if (curproxy->rsp_exp != NULL) { Warning("parsing %s : server regular expressions will be ignored for listener %s.\n", file, curproxy->id); } if (curproxy->req_exp != NULL) { Warning("parsing %s : client regular expressions will be ignored for listener %s.\n", file, curproxy->id); } } else if (curproxy->mode == PR_MODE_HTTP) { /* HTTP PROXY */ if ((curproxy->cookie_name != NULL) && ((newsrv = curproxy->srv) == NULL)) { Alert("parsing %s : HTTP proxy %s has a cookie but no server list !\n", file, curproxy->id); cfgerr++; } else { while (newsrv != NULL) { /* nothing to check for now */ newsrv = newsrv->next; } } } if (curproxy->options & PR_O_LOGASAP) curproxy->to_log &= ~LW_BYTES; if (curproxy->errmsg.msg400 == NULL) { curproxy->errmsg.msg400 = (char *)HTTP_400; curproxy->errmsg.len400 = strlen(HTTP_400); } if (curproxy->errmsg.msg403 == NULL) { curproxy->errmsg.msg403 = (char *)HTTP_403; curproxy->errmsg.len403 = strlen(HTTP_403); } if (curproxy->errmsg.msg408 == NULL) { curproxy->errmsg.msg408 = (char *)HTTP_408; curproxy->errmsg.len408 = strlen(HTTP_408); } if (curproxy->errmsg.msg500 == NULL) { curproxy->errmsg.msg500 = (char *)HTTP_500; curproxy->errmsg.len500 = strlen(HTTP_500); } if (curproxy->errmsg.msg502 == NULL) { curproxy->errmsg.msg502 = (char *)HTTP_502; curproxy->errmsg.len502 = strlen(HTTP_502); } if (curproxy->errmsg.msg503 == NULL) { curproxy->errmsg.msg503 = (char *)HTTP_503; curproxy->errmsg.len503 = strlen(HTTP_503); } if (curproxy->errmsg.msg504 == NULL) { curproxy->errmsg.msg504 = (char *)HTTP_504; curproxy->errmsg.len504 = strlen(HTTP_504); } curproxy = curproxy->next; } if (cfgerr > 0) { Alert("Errors found in configuration file, aborting.\n"); return -1; } else return 0; } /* * This function initializes all the necessary variables. It only returns * if everything is OK. If something fails, it exits. */ void init(int argc, char **argv) { int i; int arg_mode = 0; /* MODE_DEBUG, ... */ char *old_argv = *argv; char *tmp; char *cfg_pidfile = NULL; int cfg_maxconn = 0; /* # of simultaneous connections, (-n) */ if (1<= 127 ). * URL encoding only requires '"', '#' to be encoded as well as non- * printable characters above. */ memset(hdr_encode_map, 0, sizeof(hdr_encode_map)); memset(url_encode_map, 0, sizeof(url_encode_map)); for (i = 0; i < 32; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } for (i = 127; i < 256; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } tmp = "\"#{|}"; while (*tmp) { FD_SET(*tmp, hdr_encode_map); tmp++; } tmp = "\"#"; while (*tmp) { FD_SET(*tmp, url_encode_map); tmp++; } cfg_polling_mechanism = POLL_USE_SELECT; /* select() is always available */ #if defined(ENABLE_POLL) cfg_polling_mechanism |= POLL_USE_POLL; #endif #if defined(ENABLE_EPOLL) cfg_polling_mechanism |= POLL_USE_EPOLL; #endif pid = getpid(); progname = *argv; while ((tmp = strchr(progname, '/')) != NULL) progname = tmp + 1; argc--; argv++; while (argc > 0) { char *flag; if (**argv == '-') { flag = *argv+1; /* 1 arg */ if (*flag == 'v') { display_version(); exit(0); } #if defined(ENABLE_EPOLL) else if (*flag == 'd' && flag[1] == 'e') cfg_polling_mechanism &= ~POLL_USE_EPOLL; #endif #if defined(ENABLE_POLL) else if (*flag == 'd' && flag[1] == 'p') cfg_polling_mechanism &= ~POLL_USE_POLL; #endif else if (*flag == 'V') arg_mode |= MODE_VERBOSE; else if (*flag == 'd') arg_mode |= MODE_DEBUG; else if (*flag == 'c') arg_mode |= MODE_CHECK; else if (*flag == 'D') arg_mode |= MODE_DAEMON | MODE_QUIET; else if (*flag == 'q') arg_mode |= MODE_QUIET; #if STATTIME > 0 else if (*flag == 's') arg_mode |= MODE_STATS; else if (*flag == 'l') arg_mode |= MODE_LOG; #endif else { /* >=2 args */ argv++; argc--; if (argc == 0) usage(old_argv); switch (*flag) { case 'n' : cfg_maxconn = atol(*argv); break; case 'N' : cfg_maxpconn = atol(*argv); break; case 'f' : cfg_cfgfile = *argv; break; case 'p' : cfg_pidfile = *argv; break; default: usage(old_argv); } } } else usage(old_argv); argv++; argc--; } global.mode = MODE_STARTING | /* during startup, we want most of the alerts */ (arg_mode & (MODE_DAEMON | MODE_VERBOSE | MODE_QUIET | MODE_CHECK | MODE_DEBUG)); if (!cfg_cfgfile) usage(old_argv); gethostname(hostname, MAX_HOSTNAME_LEN); have_appsession = 0; if (readcfgfile(cfg_cfgfile) < 0) { Alert("Error reading configuration file : %s\n", cfg_cfgfile); exit(1); } if (have_appsession) appsession_init(); if (global.mode & MODE_CHECK) { qfprintf(stdout, "Configuration file is valid : %s\n", cfg_cfgfile); exit(0); } if (cfg_maxconn > 0) global.maxconn = cfg_maxconn; if (cfg_pidfile) { if (global.pidfile) free(global.pidfile); global.pidfile = strdup(cfg_pidfile); } if (global.maxconn == 0) global.maxconn = DEFAULT_MAXCONN; global.maxsock = global.maxconn * 2; /* each connection needs two sockets */ if (arg_mode & MODE_DEBUG) { /* command line debug mode inhibits configuration mode */ global.mode &= ~(MODE_DAEMON | MODE_QUIET); } global.mode |= (arg_mode & (MODE_DAEMON | MODE_QUIET | MODE_VERBOSE | MODE_DEBUG | MODE_STATS | MODE_LOG)); if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_QUIET))) { Warning(" mode incompatible with and . Keeping only.\n"); global.mode &= ~(MODE_DAEMON | MODE_QUIET); } if ((global.nbproc > 1) && !(global.mode & MODE_DAEMON)) { Warning(" is only meaningful in daemon mode. Setting limit to 1 process.\n"); global.nbproc = 1; } if (global.nbproc < 1) global.nbproc = 1; StaticReadEvent = (fd_set *)calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); StaticWriteEvent = (fd_set *)calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE); fdtab = (struct fdtab *)calloc(1, sizeof(struct fdtab) * (global.maxsock)); for (i = 0; i < global.maxsock; i++) { fdtab[i].state = FD_STCLOSE; } } /* * this function starts all the proxies. It returns 0 if OK, -1 if not. */ int start_proxies() { struct proxy *curproxy; struct listener *listener; int fd; for (curproxy = proxy; curproxy != NULL; curproxy = curproxy->next) { if (curproxy->state == PR_STDISABLED) continue; for (listener = curproxy->listen; listener != NULL; listener = listener->next) { if ((fd = listener->fd = socket(listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP)) == -1) { Alert("cannot create listening socket for proxy %s. Aborting.\n", curproxy->id); return -1; } if (fd >= global.maxsock) { Alert("socket(): not enough free sockets for proxy %s. Raise -n argument. Aborting.\n", curproxy->id); close(fd); return -1; } if ((fcntl(fd, F_SETFL, O_NONBLOCK) == -1) || (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) { Alert("cannot make socket non-blocking for proxy %s. Aborting.\n", curproxy->id); close(fd); return -1; } if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)) == -1) { Alert("cannot do so_reuseaddr for proxy %s. Continuing.\n", curproxy->id); } if (bind(fd, (struct sockaddr *)&listener->addr, listener->addr.ss_family == AF_INET6 ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == -1) { Alert("cannot bind socket for proxy %s. Aborting.\n", curproxy->id); close(fd); return -1; } if (listen(fd, curproxy->maxconn) == -1) { Alert("cannot listen to socket for proxy %s. Aborting.\n", curproxy->id); close(fd); return -1; } /* the function for the accept() event */ fdtab[fd].read = &event_accept; fdtab[fd].write = NULL; /* never called */ fdtab[fd].owner = (struct task *)curproxy; /* reference the proxy instead of a task */ curproxy->state = PR_STRUN; fdtab[fd].state = FD_STLISTEN; FD_SET(fd, StaticReadEvent); fd_insert(fd); listeners++; } send_log(curproxy, LOG_NOTICE, "Proxy %s started.\n", curproxy->id); } return 0; } int match_str(const void *key1, const void *key2) { appsess *temp1,*temp2; temp1 = (appsess *)key1; temp2 = (appsess *)key2; //fprintf(stdout,">>>>>>>>>>>>>>temp1->sessid :%s:\n",temp1->sessid); //fprintf(stdout,">>>>>>>>>>>>>>temp2->sessid :%s:\n",temp2->sessid); return (strcmp(temp1->sessid,temp2->sessid) == 0); }/* end match_str */ void destroy(void *data) { appsess *temp1; //printf("destroy called\n"); temp1 = (appsess *)data; if (temp1->sessid) pool_free_to(apools.sessid, temp1->sessid); if (temp1->serverid) pool_free_to(apools.serverid, temp1->serverid); pool_free(appsess, temp1); } /* end destroy */ void appsession_cleanup( void ) { struct proxy *p = proxy; while(p) { chtbl_destroy(&(p->htbl_proxy)); p = p->next; } }/* end appsession_cleanup() */ void pool_destroy(void **pool) { void *temp, *next; next = pool; while (next) { temp = next; next = *(void **)temp; free(temp); } }/* end pool_destroy() */ void deinit(void) { struct proxy *p = proxy; struct cap_hdr *h,*h_next; struct server *s,*s_next; struct listener *l,*l_next; while (p) { if (p->id) free(p->id); if (p->check_req) free(p->check_req); if (p->cookie_name) free(p->cookie_name); if (p->capture_name) free(p->capture_name); /* only strup if the user have set in config. When should we free it?! if (p->errmsg.msg400) free(p->errmsg.msg400); if (p->errmsg.msg403) free(p->errmsg.msg403); if (p->errmsg.msg408) free(p->errmsg.msg408); if (p->errmsg.msg500) free(p->errmsg.msg500); if (p->errmsg.msg502) free(p->errmsg.msg502); if (p->errmsg.msg503) free(p->errmsg.msg503); if (p->errmsg.msg504) free(p->errmsg.msg504); */ if (p->appsession_name) free(p->appsession_name); h = p->req_cap; while (h) { h_next = h->next; if (h->name) free(h->name); pool_destroy(h->pool); free(h); h = h_next; }/* end while(h) */ h = p->rsp_cap; while (h) { h_next = h->next; if (h->name) free(h->name); pool_destroy(h->pool); free(h); h = h_next; }/* end while(h) */ s = p->srv; while (s) { s_next = s->next; if (s->id) free(s->id); if (s->cookie) free(s->cookie); free(s); s = s_next; }/* end while(s) */ l = p->listen; while (l) { l_next = l->next; free(l); l = l_next; }/* end while(l) */ pool_destroy((void **) p->req_cap_pool); pool_destroy((void **) p->rsp_cap_pool); p = p->next; }/* end while(p) */ if (global.chroot) free(global.chroot); if (global.pidfile) free(global.pidfile); if (StaticReadEvent) free(StaticReadEvent); if (StaticWriteEvent) free(StaticWriteEvent); if (fdtab) free(fdtab); pool_destroy(pool_session); pool_destroy(pool_buffer); pool_destroy(pool_fdtab); pool_destroy(pool_requri); pool_destroy(pool_task); pool_destroy(pool_capture); pool_destroy(pool_appsess); if (have_appsession) { pool_destroy(apools.serverid); pool_destroy(apools.sessid); } } /* end deinit() */ int main(int argc, char **argv) { struct rlimit limit; FILE *pidfile = NULL; init(argc, argv); signal(SIGQUIT, dump); signal(SIGUSR1, sig_soft_stop); signal(SIGHUP, sig_dump_state); #ifdef DEBUG_MEMORY signal(SIGINT, sig_int); signal(SIGTERM, sig_term); #endif /* on very high loads, a sigpipe sometimes happen just between the * getsockopt() which tells "it's OK to write", and the following write :-( */ #ifndef MSG_NOSIGNAL signal(SIGPIPE, SIG_IGN); #endif /* start_proxies() sends an alert when it fails. */ if (start_proxies() < 0) exit(1); if (listeners == 0) { Alert("[%s.main()] No enabled listener found (check the keywords) ! Exiting.\n", argv[0]); exit(1); } /* MODE_QUIET can inhibit alerts and warnings below this line */ global.mode &= ~MODE_STARTING; if (global.mode & MODE_QUIET) { /* detach from the tty */ fclose(stdin); fclose(stdout); fclose(stderr); close(0); close(1); close(2); } /* open log & pid files before the chroot */ if (global.mode & MODE_DAEMON && global.pidfile != NULL) { int pidfd; unlink(global.pidfile); pidfd = open(global.pidfile, O_CREAT | O_WRONLY | O_TRUNC, 0644); if (pidfd < 0) { Alert("[%s.main()] Cannot create pidfile %s\n", argv[0], global.pidfile); exit(1); } pidfile = fdopen(pidfd, "w"); } /* chroot if needed */ if (global.chroot != NULL) { if (chroot(global.chroot) == -1) { Alert("[%s.main()] Cannot chroot(%s).\n", argv[0], global.chroot); exit(1); } chdir("/"); } /* ulimits */ if (global.rlimit_nofile) { limit.rlim_cur = limit.rlim_max = global.rlimit_nofile; if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { Warning("[%s.main()] Cannot raise FD limit to %d.\n", argv[0], global.rlimit_nofile); } } /* setgid / setuid */ if (global.gid && setgid(global.gid) == -1) { Alert("[%s.main()] Cannot set gid %d.\n", argv[0], global.gid); exit(1); } if (global.uid && setuid(global.uid) == -1) { Alert("[%s.main()] Cannot set uid %d.\n", argv[0], global.uid); exit(1); } /* check ulimits */ limit.rlim_cur = limit.rlim_max = 0; getrlimit(RLIMIT_NOFILE, &limit); if (limit.rlim_cur < global.maxsock) { Warning("[%s.main()] FD limit (%d) too low for maxconn=%d/maxsock=%d. Please raise 'ulimit-n' to %d or more to avoid any trouble.\n", argv[0], limit.rlim_cur, global.maxconn, global.maxsock, global.maxsock); } if (global.mode & MODE_DAEMON) { int ret = 0; int proc; /* the father launches the required number of processes */ for (proc = 0; proc < global.nbproc; proc++) { ret = fork(); if (ret < 0) { Alert("[%s.main()] Cannot fork.\n", argv[0]); exit(1); /* there has been an error */ } else if (ret == 0) /* child breaks here */ break; if (pidfile != NULL) { fprintf(pidfile, "%d\n", ret); fflush(pidfile); } } /* close the pidfile both in children and father */ if (pidfile != NULL) fclose(pidfile); free(global.pidfile); if (proc == global.nbproc) exit(0); /* parent must leave */ /* if we're NOT in QUIET mode, we should now close the 3 first FDs to ensure * that we can detach from the TTY. We MUST NOT do it in other cases since * it would have already be done, and 0-2 would have been affected to listening * sockets */ if (!(global.mode & MODE_QUIET)) { /* detach from the tty */ fclose(stdin); fclose(stdout); fclose(stderr); close(0); close(1); close(2); /* close all fd's */ global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */ } pid = getpid(); /* update child's pid */ setsid(); } #if defined(ENABLE_EPOLL) if (cfg_polling_mechanism & POLL_USE_EPOLL) { if (epoll_loop(POLL_LOOP_ACTION_INIT)) { epoll_loop(POLL_LOOP_ACTION_RUN); epoll_loop(POLL_LOOP_ACTION_CLEAN); cfg_polling_mechanism &= POLL_USE_EPOLL; } else { Warning("epoll() is not available. Using poll()/select() instead.\n"); cfg_polling_mechanism &= ~POLL_USE_EPOLL; } } #endif #if defined(ENABLE_POLL) if (cfg_polling_mechanism & POLL_USE_POLL) { if (poll_loop(POLL_LOOP_ACTION_INIT)) { poll_loop(POLL_LOOP_ACTION_RUN); poll_loop(POLL_LOOP_ACTION_CLEAN); cfg_polling_mechanism &= POLL_USE_POLL; } else { Warning("poll() is not available. Using select() instead.\n"); cfg_polling_mechanism &= ~POLL_USE_POLL; } } #endif if (cfg_polling_mechanism & POLL_USE_SELECT) { if (select_loop(POLL_LOOP_ACTION_INIT)) { select_loop(POLL_LOOP_ACTION_RUN); select_loop(POLL_LOOP_ACTION_CLEAN); cfg_polling_mechanism &= POLL_USE_SELECT; } } /* Free all Hash Keys and all Hash elements */ appsession_cleanup(); /* Do some cleanup */ deinit(); exit(0); } #if defined(DEBUG_HASH) static void print_table(const CHTbl *htbl) { ListElmt *element; int i; appsess *asession; /***************************************************************************** * * * Display the chained hash table. * * * *****************************************************************************/ fprintf(stdout, "Table size is %d\n", chtbl_size(htbl)); for (i = 0; i < TBLSIZ; i++) { fprintf(stdout, "Bucket[%03d]\n", i); for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) { //fprintf(stdout, "%c", *(char *)list_data(element)); asession = (appsess *)list_data(element); fprintf(stdout, "ELEM :%s:", asession->sessid); fprintf(stdout, " Server :%s: \n", asession->serverid); //fprintf(stdout, " Server request_count :%li:\n",asession->request_count); } fprintf(stdout, "\n"); } return; } /* end print_table */ #endif static int appsession_init(void) { static int initialized = 0; int idlen; struct server *s; struct proxy *p = proxy; if (!initialized) { if (!appsession_task_init()) { apools.sessid = NULL; apools.serverid = NULL; apools.ser_waste = 0; apools.ser_use = 0; apools.ser_msize = sizeof(void *); apools.ses_waste = 0; apools.ses_use = 0; apools.ses_msize = sizeof(void *); while (p) { s = p->srv; if (apools.ses_msize < p->appsession_len) apools.ses_msize = p->appsession_len; while (s) { idlen = strlen(s->id); if (apools.ser_msize < idlen) apools.ser_msize = idlen; s = s->next; } p = p->next; } apools.ser_msize ++; /* we use strings, so reserve space for '\0' */ apools.ses_msize ++; } else { fprintf(stderr, "appsession_task_init failed\n"); return -1; } initialized ++; } return 0; } static int appsession_task_init(void) { static int initialized = 0; struct task *t; if (!initialized) { if ((t = pool_alloc(task)) == NULL) return -1; t->next = t->prev = t->rqnext = NULL; t->wq = LIST_HEAD(wait_queue); t->state = TASK_IDLE; t->context = NULL; tv_delayfrom(&t->expire, &now, TBLCHKINT); task_queue(t); t->process = appsession_refresh; initialized ++; } return 0; } static int appsession_refresh(struct task *t) { struct proxy *p = proxy; CHTbl *htbl; ListElmt *element, *last; int i; appsess *asession; void *data; while (p) { if (p->appsession_name != NULL) { htbl = &p->htbl_proxy; /* if we ever give up the use of TBLSIZ, we need to change this */ for (i = 0; i < TBLSIZ; i++) { last = NULL; for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) { asession = (appsess *)list_data(element); if (tv_cmp2_ms(&asession->expire, &now) <= 0) { if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; /* on Linux NULL pointers are catched by sprintf, on solaris -> segfault */ len = sprintf(trash, "appsession_refresh: cleaning up expired Session '%s' on Server %s\n", asession->sessid, asession->serverid?asession->serverid:"(null)"); write(1, trash, len); } /* delete the expired element from within the hash table */ if ((list_rem_next(&htbl->table[i], last, (void **)&data) == 0) && (htbl->table[i].destroy != NULL)) { htbl->table[i].destroy(data); } if (last == NULL) {/* patient lost his head, get a new one */ element = list_head(&htbl->table[i]); if (element == NULL) break; /* no heads left, go to next patient */ } else element = last; }/* end if (tv_cmp2_ms(&asession->expire, &now) <= 0) */ else last = element; }/* end for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) */ } } p = p->next; } tv_delayfrom(&t->expire, &now, TBLCHKINT); /* check expiration every 5 seconds */ return TBLCHKINT; } /* end appsession_refresh */