/* * SSL/TLS transport layer over SOCK_STREAM sockets * * Copyright (C) 2012 EXCELIANCE, Emeric Brun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Acknowledgement: * We'd like to specially thank the Stud project authors for a very clean * and well documented code which helped us understand how the OpenSSL API * ought to be used in non-blocking mode. This is one difficult part which * is not easy to get from the OpenSSL doc, and reading the Stud code made * it much more obvious than the examples in the OpenSSL package. Keep up * the good works, guys ! * * Stud is an extremely efficient and scalable SSL/TLS proxy which combines * particularly well with haproxy. For more info about this project, visit : * https://github.com/bumptech/stud * */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) #include #endif #ifndef OPENSSL_NO_DH #include #endif #ifndef OPENSSL_NO_ENGINE #include #endif #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Warning, these are bits, not integers! */ #define SSL_SOCK_ST_FL_VERIFY_DONE 0x00000001 #define SSL_SOCK_ST_FL_16K_WBFSIZE 0x00000002 #define SSL_SOCK_SEND_UNLIMITED 0x00000004 #define SSL_SOCK_RECV_HEARTBEAT 0x00000008 /* bits 0xFFFF0000 are reserved to store verify errors */ /* Verify errors macros */ #define SSL_SOCK_CA_ERROR_TO_ST(e) (((e > 63) ? 63 : e) << (16)) #define SSL_SOCK_CAEDEPTH_TO_ST(d) (((d > 15) ? 15 : d) << (6+16)) #define SSL_SOCK_CRTERROR_TO_ST(e) (((e > 63) ? 63 : e) << (4+6+16)) #define SSL_SOCK_ST_TO_CA_ERROR(s) ((s >> (16)) & 63) #define SSL_SOCK_ST_TO_CAEDEPTH(s) ((s >> (6+16)) & 15) #define SSL_SOCK_ST_TO_CRTERROR(s) ((s >> (4+6+16)) & 63) /* Supported hash function for TLS tickets */ #ifdef OPENSSL_NO_SHA256 #define HASH_FUNCT EVP_sha1 #else #define HASH_FUNCT EVP_sha256 #endif /* OPENSSL_NO_SHA256 */ /* ssl_methods flags for ssl options */ #define MC_SSL_O_ALL 0x0000 #define MC_SSL_O_NO_SSLV3 0x0001 /* disable SSLv3 */ #define MC_SSL_O_NO_TLSV10 0x0002 /* disable TLSv10 */ #define MC_SSL_O_NO_TLSV11 0x0004 /* disable TLSv11 */ #define MC_SSL_O_NO_TLSV12 0x0008 /* disable TLSv12 */ #define MC_SSL_O_NO_TLSV13 0x0010 /* disable TLSv13 */ /* ssl_methods versions */ enum { CONF_TLSV_NONE = 0, CONF_TLSV_MIN = 1, CONF_SSLV3 = 1, CONF_TLSV10 = 2, CONF_TLSV11 = 3, CONF_TLSV12 = 4, CONF_TLSV13 = 5, CONF_TLSV_MAX = 5, }; /* server and bind verify method, it uses a global value as default */ enum { SSL_SOCK_VERIFY_DEFAULT = 0, SSL_SOCK_VERIFY_REQUIRED = 1, SSL_SOCK_VERIFY_OPTIONAL = 2, SSL_SOCK_VERIFY_NONE = 3, }; int sslconns = 0; int totalsslconns = 0; static struct xprt_ops ssl_sock; int nb_engines = 0; static struct { char *crt_base; /* base directory path for certificates */ char *ca_base; /* base directory path for CAs and CRLs */ int async; /* whether we use ssl async mode */ char *listen_default_ciphers; char *connect_default_ciphers; int listen_default_ssloptions; int connect_default_ssloptions; struct tls_version_filter listen_default_sslmethods; struct tls_version_filter connect_default_sslmethods; int private_cache; /* Force to use a private session cache even if nbproc > 1 */ unsigned int life_time; /* SSL session lifetime in seconds */ unsigned int max_record; /* SSL max record size */ unsigned int default_dh_param; /* SSL maximum DH parameter size */ int ctx_cache; /* max number of entries in the ssl_ctx cache. */ int capture_cipherlist; /* Size of the cipherlist buffer. */ } global_ssl = { #ifdef LISTEN_DEFAULT_CIPHERS .listen_default_ciphers = LISTEN_DEFAULT_CIPHERS, #endif #ifdef CONNECT_DEFAULT_CIPHERS .connect_default_ciphers = CONNECT_DEFAULT_CIPHERS, #endif .listen_default_ssloptions = BC_SSL_O_NONE, .connect_default_ssloptions = SRV_SSL_O_NONE, .listen_default_sslmethods.flags = MC_SSL_O_ALL, .listen_default_sslmethods.min = CONF_TLSV_NONE, .listen_default_sslmethods.max = CONF_TLSV_NONE, .connect_default_sslmethods.flags = MC_SSL_O_ALL, .connect_default_sslmethods.min = CONF_TLSV_NONE, .connect_default_sslmethods.max = CONF_TLSV_NONE, #ifdef DEFAULT_SSL_MAX_RECORD .max_record = DEFAULT_SSL_MAX_RECORD, #endif .default_dh_param = SSL_DEFAULT_DH_PARAM, .ctx_cache = DEFAULT_SSL_CTX_CACHE, .capture_cipherlist = 0, }; #ifdef USE_THREAD static HA_RWLOCK_T *ssl_rwlocks; unsigned long ssl_id_function(void) { return (unsigned long)tid; } void ssl_locking_function(int mode, int n, const char * file, int line) { if (mode & CRYPTO_LOCK) { if (mode & CRYPTO_READ) HA_RWLOCK_RDLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRLOCK(SSL_LOCK, &ssl_rwlocks[n]); } else { if (mode & CRYPTO_READ) HA_RWLOCK_RDUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); } } static int ssl_locking_init(void) { int i; ssl_rwlocks = malloc(sizeof(HA_RWLOCK_T)*CRYPTO_num_locks()); if (!ssl_rwlocks) return -1; for (i = 0 ; i < CRYPTO_num_locks() ; i++) HA_RWLOCK_INIT(&ssl_rwlocks[i]); CRYPTO_set_id_callback(ssl_id_function); CRYPTO_set_locking_callback(ssl_locking_function); return 0; } #endif /* This memory pool is used for capturing clienthello parameters. */ struct ssl_capture { unsigned long long int xxh64; unsigned char ciphersuite_len; char ciphersuite[0]; }; struct pool_head *pool_head_ssl_capture = NULL; static int ssl_capture_ptr_index = -1; static int ssl_pkey_info_index = -1; #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) struct list tlskeys_reference = LIST_HEAD_INIT(tlskeys_reference); #endif #ifndef OPENSSL_NO_ENGINE static unsigned int openssl_engines_initialized; struct list openssl_engines = LIST_HEAD_INIT(openssl_engines); struct ssl_engine_list { struct list list; ENGINE *e; }; #endif #ifndef OPENSSL_NO_DH static int ssl_dh_ptr_index = -1; static DH *global_dh = NULL; static DH *local_dh_1024 = NULL; static DH *local_dh_2048 = NULL; static DH *local_dh_4096 = NULL; static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen); #endif /* OPENSSL_NO_DH */ #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) /* X509V3 Extensions that will be added on generated certificates */ #define X509V3_EXT_SIZE 5 static char *x509v3_ext_names[X509V3_EXT_SIZE] = { "basicConstraints", "nsComment", "subjectKeyIdentifier", "authorityKeyIdentifier", "keyUsage", }; static char *x509v3_ext_values[X509V3_EXT_SIZE] = { "CA:FALSE", "\"OpenSSL Generated Certificate\"", "hash", "keyid,issuer:always", "nonRepudiation,digitalSignature,keyEncipherment" }; /* LRU cache to store generated certificate */ static struct lru64_head *ssl_ctx_lru_tree = NULL; static unsigned int ssl_ctx_lru_seed = 0; static unsigned int ssl_ctx_serial; __decl_hathreads(static HA_RWLOCK_T ssl_ctx_lru_rwlock); #endif // SSL_CTRL_SET_TLSEXT_HOSTNAME static struct ssl_bind_kw ssl_bind_kws[]; #if OPENSSL_VERSION_NUMBER >= 0x1000200fL /* The order here matters for picking a default context, * keep the most common keytype at the bottom of the list */ const char *SSL_SOCK_KEYTYPE_NAMES[] = { "dsa", "ecdsa", "rsa" }; #define SSL_SOCK_NUM_KEYTYPES 3 #else #define SSL_SOCK_NUM_KEYTYPES 1 #endif static struct shared_context *ssl_shctx = NULL; /* ssl shared session cache */ static struct eb_root *sh_ssl_sess_tree; /* ssl shared session tree */ #define sh_ssl_sess_tree_delete(s) ebmb_delete(&(s)->key); #define sh_ssl_sess_tree_insert(s) (struct sh_ssl_sess_hdr *)ebmb_insert(sh_ssl_sess_tree, \ &(s)->key, SSL_MAX_SSL_SESSION_ID_LENGTH); #define sh_ssl_sess_tree_lookup(k) (struct sh_ssl_sess_hdr *)ebmb_lookup(sh_ssl_sess_tree, \ (k), SSL_MAX_SSL_SESSION_ID_LENGTH); /* * This function gives the detail of the SSL error. It is used only * if the debug mode and the verbose mode are activated. It dump all * the SSL error until the stack was empty. */ static forceinline void ssl_sock_dump_errors(struct connection *conn) { unsigned long ret; if (unlikely(global.mode & MODE_DEBUG)) { while(1) { ret = ERR_get_error(); if (ret == 0) return; fprintf(stderr, "fd[%04x] OpenSSL error[0x%lx] %s: %s\n", (unsigned short)conn->handle.fd, ret, ERR_func_error_string(ret), ERR_reason_error_string(ret)); } } } #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) /* * struct alignment works here such that the key.key is the same as key_data * Do not change the placement of key_data */ struct certificate_ocsp { struct ebmb_node key; unsigned char key_data[OCSP_MAX_CERTID_ASN1_LENGTH]; struct chunk response; long expire; }; struct ocsp_cbk_arg { int is_single; int single_kt; union { struct certificate_ocsp *s_ocsp; /* * m_ocsp will have multiple entries dependent on key type * Entry 0 - DSA * Entry 1 - ECDSA * Entry 2 - RSA */ struct certificate_ocsp *m_ocsp[SSL_SOCK_NUM_KEYTYPES]; }; }; #ifndef OPENSSL_NO_ENGINE static int ssl_init_single_engine(const char *engine_id, const char *def_algorithms) { int err_code = ERR_ABORT; ENGINE *engine; struct ssl_engine_list *el; /* grab the structural reference to the engine */ engine = ENGINE_by_id(engine_id); if (engine == NULL) { ha_alert("ssl-engine %s: failed to get structural reference\n", engine_id); goto fail_get; } if (!ENGINE_init(engine)) { /* the engine couldn't initialise, release it */ ha_alert("ssl-engine %s: failed to initialize\n", engine_id); goto fail_init; } if (ENGINE_set_default_string(engine, def_algorithms) == 0) { ha_alert("ssl-engine %s: failed on ENGINE_set_default_string\n", engine_id); goto fail_set_method; } el = calloc(1, sizeof(*el)); el->e = engine; LIST_ADD(&openssl_engines, &el->list); nb_engines++; if (global_ssl.async) global.ssl_used_async_engines = nb_engines; return 0; fail_set_method: /* release the functional reference from ENGINE_init() */ ENGINE_finish(engine); fail_init: /* release the structural reference from ENGINE_by_id() */ ENGINE_free(engine); fail_get: return err_code; } #endif #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* * openssl async fd handler */ static void ssl_async_fd_handler(int fd) { struct connection *conn = fdtab[fd].owner; /* fd is an async enfine fd, we must stop * to poll this fd until it is requested */ fd_stop_recv(fd); fd_cant_recv(fd); /* crypto engine is available, let's notify the associated * connection that it can pursue its processing. */ __conn_sock_want_recv(conn); __conn_sock_want_send(conn); conn_update_sock_polling(conn); } /* * openssl async delayed SSL_free handler */ static void ssl_async_fd_free(int fd) { SSL *ssl = fdtab[fd].owner; OSSL_ASYNC_FD all_fd[32]; size_t num_all_fds = 0; int i; /* We suppose that the async job for a same SSL * * are serialized. So if we are awake it is * because the running job has just finished * and we can remove all async fds safely */ SSL_get_all_async_fds(ssl, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(ssl, all_fd, &num_all_fds); for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); /* Now we can safely call SSL_free, no more pending job in engines */ SSL_free(ssl); sslconns--; HA_ATOMIC_SUB(&jobs, 1); } /* * function used to manage a returned SSL_ERROR_WANT_ASYNC * and enable/disable polling for async fds */ static void inline ssl_async_process_fds(struct connection *conn, SSL *ssl) { OSSL_ASYNC_FD add_fd[32]; OSSL_ASYNC_FD del_fd[32]; size_t num_add_fds = 0; size_t num_del_fds = 0; int i; SSL_get_changed_async_fds(ssl, NULL, &num_add_fds, NULL, &num_del_fds); if (num_add_fds > 32 || num_del_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_changed_async_fds(ssl, add_fd, &num_add_fds, del_fd, &num_del_fds); /* We remove unused fds from the fdtab */ for (i=0 ; i < num_del_fds ; i++) fd_remove(del_fd[i]); /* We add new fds to the fdtab */ for (i=0 ; i < num_add_fds ; i++) { fd_insert(add_fd[i], conn, ssl_async_fd_handler, tid_bit); } num_add_fds = 0; SSL_get_all_async_fds(ssl, NULL, &num_add_fds); if (num_add_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } /* We activate the polling for all known async fds */ SSL_get_all_async_fds(ssl, add_fd, &num_add_fds); for (i=0 ; i < num_add_fds ; i++) { fd_want_recv(add_fd[i]); /* To ensure that the fd cache won't be used * We'll prefer to catch a real RD event * because handling an EAGAIN on this fd will * result in a context switch and also * some engines uses a fd in blocking mode. */ fd_cant_recv(add_fd[i]); } /* We must also prevent the conn_handler * to be called until a read event was * polled on an async fd */ __conn_sock_stop_both(conn); } #endif /* * This function returns the number of seconds elapsed * since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the * date presented un ASN1_GENERALIZEDTIME. * * In parsing error case, it returns -1. */ static long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d) { long epoch; char *p, *end; const unsigned short month_offset[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int year, month; if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1; p = (char *)d->data; end = p + d->length; if (end - p < 4) return -1; year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0'; p += 4; if (end - p < 2) return -1; month = 10 * (p[0] - '0') + p[1] - '0'; if (month < 1 || month > 12) return -1; /* Compute the number of seconds since 1 jan 1970 and the beginning of current month We consider leap years and the current month ( '9') goto nosec; if (end - p < 2) return -1; /* Add the seconds of the current minute */ epoch += 10 * (p[0] - '0') + p[1] - '0'; p += 2; if (p == end) return -1; /* Ignore seconds float part if present */ if (p[0] == '.') { do { if (++p == end) return -1; } while (p[0] >= '0' && p[0] <= '9'); } nosec: if (p[0] == 'Z') { if (end - p != 1) return -1; return epoch; } else if (p[0] == '+') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } else if (p[0] == '-') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } return -1; } static struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE; /* This function starts to check if the OCSP response (in DER format) contained * in chunk 'ocsp_response' is valid (else exits on error). * If 'cid' is not NULL, it will be compared to the OCSP certificate ID * contained in the OCSP Response and exits on error if no match. * If it's a valid OCSP Response: * If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container * pointed by 'ocsp'. * If 'ocsp' is NULL, the function looks up into the OCSP response's * containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted * from the response) and exits on error if not found. Finally, If an OCSP response is * already present in the container, it will be overwritten. * * Note: OCSP response containing more than one OCSP Single response is not * considered valid. * * Returns 0 on success, 1 in error case. */ static int ssl_sock_load_ocsp_response(struct chunk *ocsp_response, struct certificate_ocsp *ocsp, OCSP_CERTID *cid, char **err) { OCSP_RESPONSE *resp; OCSP_BASICRESP *bs = NULL; OCSP_SINGLERESP *sr; OCSP_CERTID *id; unsigned char *p = (unsigned char *)ocsp_response->str; int rc , count_sr; ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL; int reason; int ret = 1; resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p, ocsp_response->len); if (!resp) { memprintf(err, "Unable to parse OCSP response"); goto out; } rc = OCSP_response_status(resp); if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) { memprintf(err, "OCSP response status not successful"); goto out; } bs = OCSP_response_get1_basic(resp); if (!bs) { memprintf(err, "Failed to get basic response from OCSP Response"); goto out; } count_sr = OCSP_resp_count(bs); if (count_sr > 1) { memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr); goto out; } sr = OCSP_resp_get0(bs, 0); if (!sr) { memprintf(err, "Failed to get OCSP single response"); goto out; } id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr); rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd); if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) { memprintf(err, "OCSP single response: certificate status is unknown"); goto out; } if (!nextupd) { memprintf(err, "OCSP single response: missing nextupdate"); goto out; } rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1); if (!rc) { memprintf(err, "OCSP single response: no longer valid."); goto out; } if (cid) { if (OCSP_id_cmp(id, cid)) { memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer"); goto out; } } if (!ocsp) { unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH]; unsigned char *p; rc = i2d_OCSP_CERTID(id, NULL); if (!rc) { memprintf(err, "OCSP single response: Unable to encode Certificate ID"); goto out; } if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) { memprintf(err, "OCSP single response: Certificate ID too long"); goto out; } p = key; memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH); i2d_OCSP_CERTID(id, &p); ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH); if (!ocsp) { memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer"); goto out; } } /* According to comments on "chunk_dup", the previous chunk buffer will be freed */ if (!chunk_dup(&ocsp->response, ocsp_response)) { memprintf(err, "OCSP response: Memory allocation error"); goto out; } ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW; ret = 0; out: ERR_clear_error(); if (bs) OCSP_BASICRESP_free(bs); if (resp) OCSP_RESPONSE_free(resp); return ret; } /* * External function use to update the OCSP response in the OCSP response's * containers tree. The chunk 'ocsp_response' must contain the OCSP response * to update in DER format. * * Returns 0 on success, 1 in error case. */ int ssl_sock_update_ocsp_response(struct chunk *ocsp_response, char **err) { return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err); } /* * This function load the OCSP Resonse in DER format contained in file at * path 'ocsp_path' and call 'ssl_sock_load_ocsp_response' * * Returns 0 on success, 1 in error case. */ static int ssl_sock_load_ocsp_response_from_file(const char *ocsp_path, struct certificate_ocsp *ocsp, OCSP_CERTID *cid, char **err) { int fd = -1; int r = 0; int ret = 1; fd = open(ocsp_path, O_RDONLY); if (fd == -1) { memprintf(err, "Error opening OCSP response file"); goto end; } trash.len = 0; while (trash.len < trash.size) { r = read(fd, trash.str + trash.len, trash.size - trash.len); if (r < 0) { if (errno == EINTR) continue; memprintf(err, "Error reading OCSP response from file"); goto end; } else if (r == 0) { break; } trash.len += r; } close(fd); fd = -1; ret = ssl_sock_load_ocsp_response(&trash, ocsp, cid, err); end: if (fd != -1) close(fd); return ret; } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16], unsigned char *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) { struct tls_keys_ref *ref; struct tls_sess_key *keys; struct connection *conn; int head; int i; int ret = -1; /* error by default */ conn = SSL_get_app_data(s); ref = objt_listener(conn->target)->bind_conf->keys_ref; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); keys = ref->tlskeys; head = ref->tls_ticket_enc_index; if (enc) { memcpy(key_name, keys[head].name, 16); if(!RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH)) goto end; if(!EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[head].aes_key, iv)) goto end; HMAC_Init_ex(hctx, keys[head].hmac_key, 16, HASH_FUNCT(), NULL); ret = 1; } else { for (i = 0; i < TLS_TICKETS_NO; i++) { if (!memcmp(key_name, keys[(head + i) % TLS_TICKETS_NO].name, 16)) goto found; } ret = 0; goto end; found: HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].hmac_key, 16, HASH_FUNCT(), NULL); if(!EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].aes_key, iv)) goto end; /* 2 for key renewal, 1 if current key is still valid */ ret = i ? 2 : 1; } end: HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); return ret; } struct tls_keys_ref *tlskeys_ref_lookup(const char *filename) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->filename && strcmp(filename, ref->filename) == 0) return ref; return NULL; } struct tls_keys_ref *tlskeys_ref_lookupid(int unique_id) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->unique_id == unique_id) return ref; return NULL; } void ssl_sock_update_tlskey_ref(struct tls_keys_ref *ref, struct chunk *tlskey) { HA_RWLOCK_WRLOCK(TLSKEYS_REF_LOCK, &ref->lock); memcpy((char *) (ref->tlskeys + ((ref->tls_ticket_enc_index + 2) % TLS_TICKETS_NO)), tlskey->str, tlskey->len); ref->tls_ticket_enc_index = (ref->tls_ticket_enc_index + 1) % TLS_TICKETS_NO; HA_RWLOCK_WRUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); } int ssl_sock_update_tlskey(char *filename, struct chunk *tlskey, char **err) { struct tls_keys_ref *ref = tlskeys_ref_lookup(filename); if(!ref) { memprintf(err, "Unable to locate the referenced filename: %s", filename); return 1; } ssl_sock_update_tlskey_ref(ref, tlskey); return 0; } /* This function finalize the configuration parsing. Its set all the * automatic ids. It's called just after the basic checks. It returns * 0 on success otherwise ERR_*. */ static int tlskeys_finalize_config(void) { int i = 0; struct tls_keys_ref *ref, *ref2, *ref3; struct list tkr = LIST_HEAD_INIT(tkr); list_for_each_entry(ref, &tlskeys_reference, list) { if (ref->unique_id == -1) { /* Look for the first free id. */ while (1) { list_for_each_entry(ref2, &tlskeys_reference, list) { if (ref2->unique_id == i) { i++; break; } } if (&ref2->list == &tlskeys_reference) break; } /* Uses the unique id and increment it for the next entry. */ ref->unique_id = i; i++; } } /* This sort the reference list by id. */ list_for_each_entry_safe(ref, ref2, &tlskeys_reference, list) { LIST_DEL(&ref->list); list_for_each_entry(ref3, &tkr, list) { if (ref->unique_id < ref3->unique_id) { LIST_ADDQ(&ref3->list, &ref->list); break; } } if (&ref3->list == &tkr) LIST_ADDQ(&tkr, &ref->list); } /* swap root */ LIST_ADD(&tkr, &tlskeys_reference); LIST_DEL(&tkr); return 0; } #endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */ #ifndef OPENSSL_NO_OCSP int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype) { switch (evp_keytype) { case EVP_PKEY_RSA: return 2; case EVP_PKEY_DSA: return 0; case EVP_PKEY_EC: return 1; } return -1; } /* * Callback used to set OCSP status extension content in server hello. */ int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg) { struct certificate_ocsp *ocsp; struct ocsp_cbk_arg *ocsp_arg; char *ssl_buf; EVP_PKEY *ssl_pkey; int key_type; int index; ocsp_arg = arg; ssl_pkey = SSL_get_privatekey(ssl); if (!ssl_pkey) return SSL_TLSEXT_ERR_NOACK; key_type = EVP_PKEY_base_id(ssl_pkey); if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type) ocsp = ocsp_arg->s_ocsp; else { /* For multiple certs per context, we have to find the correct OCSP response based on * the certificate type */ index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index < 0) return SSL_TLSEXT_ERR_NOACK; ocsp = ocsp_arg->m_ocsp[index]; } if (!ocsp || !ocsp->response.str || !ocsp->response.len || (ocsp->expire < now.tv_sec)) return SSL_TLSEXT_ERR_NOACK; ssl_buf = OPENSSL_malloc(ocsp->response.len); if (!ssl_buf) return SSL_TLSEXT_ERR_NOACK; memcpy(ssl_buf, ocsp->response.str, ocsp->response.len); SSL_set_tlsext_status_ocsp_resp(ssl, ssl_buf, ocsp->response.len); return SSL_TLSEXT_ERR_OK; } /* * This function enables the handling of OCSP status extension on 'ctx' if a * file name 'cert_path' suffixed using ".ocsp" is present. * To enable OCSP status extension, the issuer's certificate is mandatory. * It should be present in the certificate's extra chain builded from file * 'cert_path'. If not found, the issuer certificate is loaded from a file * named 'cert_path' suffixed using '.issuer'. * * In addition, ".ocsp" file content is loaded as a DER format of an OCSP * response. If file is empty or content is not a valid OCSP response, * OCSP status extension is enabled but OCSP response is ignored (a warning * is displayed). * * Returns 1 if no ".ocsp" file found, 0 if OCSP status extension is * succesfully enabled, or -1 in other error case. */ static int ssl_sock_load_ocsp(SSL_CTX *ctx, const char *cert_path) { BIO *in = NULL; X509 *x, *xi = NULL, *issuer = NULL; STACK_OF(X509) *chain = NULL; OCSP_CERTID *cid = NULL; SSL *ssl; char ocsp_path[MAXPATHLEN+1]; int i, ret = -1; struct stat st; struct certificate_ocsp *ocsp = NULL, *iocsp; char *warn = NULL; unsigned char *p; pem_password_cb *passwd_cb; void *passwd_cb_userdata; void (*callback) (void); snprintf(ocsp_path, MAXPATHLEN+1, "%s.ocsp", cert_path); if (stat(ocsp_path, &st)) return 1; ssl = SSL_new(ctx); if (!ssl) goto out; x = SSL_get_certificate(ssl); if (!x) goto out; /* Try to lookup for issuer in certificate extra chain */ #ifdef SSL_CTRL_GET_EXTRA_CHAIN_CERTS SSL_CTX_get_extra_chain_certs(ctx, &chain); #else chain = ctx->extra_certs; #endif for (i = 0; i < sk_X509_num(chain); i++) { issuer = sk_X509_value(chain, i); if (X509_check_issued(issuer, x) == X509_V_OK) break; else issuer = NULL; } /* If not found try to load issuer from a suffixed file */ if (!issuer) { char issuer_path[MAXPATHLEN+1]; in = BIO_new(BIO_s_file()); if (!in) goto out; snprintf(issuer_path, MAXPATHLEN+1, "%s.issuer", cert_path); if (BIO_read_filename(in, issuer_path) <= 0) goto out; passwd_cb = SSL_CTX_get_default_passwd_cb(ctx); passwd_cb_userdata = SSL_CTX_get_default_passwd_cb_userdata(ctx); xi = PEM_read_bio_X509_AUX(in, NULL, passwd_cb, passwd_cb_userdata); if (!xi) goto out; if (X509_check_issued(xi, x) != X509_V_OK) goto out; issuer = xi; } cid = OCSP_cert_to_id(0, x, issuer); if (!cid) goto out; i = i2d_OCSP_CERTID(cid, NULL); if (!i || (i > OCSP_MAX_CERTID_ASN1_LENGTH)) goto out; ocsp = calloc(1, sizeof(*ocsp)); if (!ocsp) goto out; p = ocsp->key_data; i2d_OCSP_CERTID(cid, &p); iocsp = (struct certificate_ocsp *)ebmb_insert(&cert_ocsp_tree, &ocsp->key, OCSP_MAX_CERTID_ASN1_LENGTH); if (iocsp == ocsp) ocsp = NULL; #ifndef SSL_CTX_get_tlsext_status_cb # define SSL_CTX_get_tlsext_status_cb(ctx, cb) \ *cb = (void (*) (void))ctx->tlsext_status_cb; #endif SSL_CTX_get_tlsext_status_cb(ctx, &callback); if (!callback) { struct ocsp_cbk_arg *cb_arg = calloc(1, sizeof(*cb_arg)); EVP_PKEY *pkey; cb_arg->is_single = 1; cb_arg->s_ocsp = iocsp; pkey = X509_get_pubkey(x); cb_arg->single_kt = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); SSL_CTX_set_tlsext_status_cb(ctx, ssl_sock_ocsp_stapling_cbk); SSL_CTX_set_tlsext_status_arg(ctx, cb_arg); } else { /* * If the ctx has a status CB, then we have previously set an OCSP staple for this ctx * Update that cb_arg with the new cert's staple */ struct ocsp_cbk_arg *cb_arg; struct certificate_ocsp *tmp_ocsp; int index; int key_type; EVP_PKEY *pkey; #ifdef SSL_CTX_get_tlsext_status_arg SSL_CTX_ctrl(ctx, SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG, 0, &cb_arg); #else cb_arg = ctx->tlsext_status_arg; #endif /* * The following few lines will convert cb_arg from a single ocsp to multi ocsp * the order of operations below matter, take care when changing it */ tmp_ocsp = cb_arg->s_ocsp; index = ssl_sock_get_ocsp_arg_kt_index(cb_arg->single_kt); cb_arg->s_ocsp = NULL; cb_arg->m_ocsp[index] = tmp_ocsp; cb_arg->is_single = 0; cb_arg->single_kt = 0; pkey = X509_get_pubkey(x); key_type = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index >= 0 && !cb_arg->m_ocsp[index]) cb_arg->m_ocsp[index] = iocsp; } ret = 0; warn = NULL; if (ssl_sock_load_ocsp_response_from_file(ocsp_path, iocsp, cid, &warn)) { memprintf(&warn, "Loading '%s': %s. Content will be ignored", ocsp_path, warn ? warn : "failure"); ha_warning("%s.\n", warn); } out: if (ssl) SSL_free(ssl); if (in) BIO_free(in); if (xi) X509_free(xi); if (cid) OCSP_CERTID_free(cid); if (ocsp) free(ocsp); if (warn) free(warn); return ret; } #endif #ifdef OPENSSL_IS_BORINGSSL static int ssl_sock_set_ocsp_response_from_file(SSL_CTX *ctx, const char *cert_path) { char ocsp_path[MAXPATHLEN+1]; struct stat st; int fd = -1, r = 0; snprintf(ocsp_path, MAXPATHLEN+1, "%s.ocsp", cert_path); if (stat(ocsp_path, &st)) return 0; fd = open(ocsp_path, O_RDONLY); if (fd == -1) { ha_warning("Error opening OCSP response file %s.\n", ocsp_path); return -1; } trash.len = 0; while (trash.len < trash.size) { r = read(fd, trash.str + trash.len, trash.size - trash.len); if (r < 0) { if (errno == EINTR) continue; ha_warning("Error reading OCSP response from file %s.\n", ocsp_path); close(fd); return -1; } else if (r == 0) { break; } trash.len += r; } close(fd); return SSL_CTX_set_ocsp_response(ctx, (const uint8_t *)trash.str, trash.len); } #endif #if (OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL && !defined LIBRESSL_VERSION_NUMBER) #define CT_EXTENSION_TYPE 18 static int sctl_ex_index = -1; /* * Try to parse Signed Certificate Timestamp List structure. This function * makes only basic test if the data seems like SCTL. No signature validation * is performed. */ static int ssl_sock_parse_sctl(struct chunk *sctl) { int ret = 1; int len, pos, sct_len; unsigned char *data; if (sctl->len < 2) goto out; data = (unsigned char *)sctl->str; len = (data[0] << 8) | data[1]; if (len + 2 != sctl->len) goto out; data = data + 2; pos = 0; while (pos < len) { if (len - pos < 2) goto out; sct_len = (data[pos] << 8) | data[pos + 1]; if (pos + sct_len + 2 > len) goto out; pos += sct_len + 2; } ret = 0; out: return ret; } static int ssl_sock_load_sctl_from_file(const char *sctl_path, struct chunk **sctl) { int fd = -1; int r = 0; int ret = 1; *sctl = NULL; fd = open(sctl_path, O_RDONLY); if (fd == -1) goto end; trash.len = 0; while (trash.len < trash.size) { r = read(fd, trash.str + trash.len, trash.size - trash.len); if (r < 0) { if (errno == EINTR) continue; goto end; } else if (r == 0) { break; } trash.len += r; } ret = ssl_sock_parse_sctl(&trash); if (ret) goto end; *sctl = calloc(1, sizeof(**sctl)); if (!chunk_dup(*sctl, &trash)) { free(*sctl); *sctl = NULL; goto end; } end: if (fd != -1) close(fd); return ret; } int ssl_sock_sctl_add_cbk(SSL *ssl, unsigned ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg) { struct chunk *sctl = add_arg; *out = (unsigned char *)sctl->str; *outlen = sctl->len; return 1; } int ssl_sock_sctl_parse_cbk(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg) { return 1; } static int ssl_sock_load_sctl(SSL_CTX *ctx, const char *cert_path) { char sctl_path[MAXPATHLEN+1]; int ret = -1; struct stat st; struct chunk *sctl = NULL; snprintf(sctl_path, MAXPATHLEN+1, "%s.sctl", cert_path); if (stat(sctl_path, &st)) return 1; if (ssl_sock_load_sctl_from_file(sctl_path, &sctl)) goto out; if (!SSL_CTX_add_server_custom_ext(ctx, CT_EXTENSION_TYPE, ssl_sock_sctl_add_cbk, NULL, sctl, ssl_sock_sctl_parse_cbk, NULL)) { free(sctl); goto out; } SSL_CTX_set_ex_data(ctx, sctl_ex_index, sctl); ret = 0; out: return ret; } #endif void ssl_sock_infocbk(const SSL *ssl, int where, int ret) { struct connection *conn = SSL_get_app_data(ssl); BIO *write_bio; (void)ret; /* shut gcc stupid warning */ if (where & SSL_CB_HANDSHAKE_START) { /* Disable renegotiation (CVE-2009-3555) */ if ((conn->flags & (CO_FL_CONNECTED | CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == CO_FL_CONNECTED) { conn->flags |= CO_FL_ERROR; conn->err_code = CO_ER_SSL_RENEG; } } if ((where & SSL_CB_ACCEPT_LOOP) == SSL_CB_ACCEPT_LOOP) { if (!(conn->xprt_st & SSL_SOCK_ST_FL_16K_WBFSIZE)) { /* Long certificate chains optimz If write and read bios are differents, we consider that the buffering was activated, so we rise the output buffer size from 4k to 16k */ write_bio = SSL_get_wbio(ssl); if (write_bio != SSL_get_rbio(ssl)) { BIO_set_write_buffer_size(write_bio, 16384); conn->xprt_st |= SSL_SOCK_ST_FL_16K_WBFSIZE; } } } } /* Callback is called for each certificate of the chain during a verify ok is set to 1 if preverify detect no error on current certificate. Returns 0 to break the handshake, 1 otherwise. */ int ssl_sock_bind_verifycbk(int ok, X509_STORE_CTX *x_store) { SSL *ssl; struct connection *conn; int err, depth; ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_app_data(ssl); conn->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE; if (ok) /* no errors */ return ok; depth = X509_STORE_CTX_get_error_depth(x_store); err = X509_STORE_CTX_get_error(x_store); /* check if CA error needs to be ignored */ if (depth > 0) { if (!SSL_SOCK_ST_TO_CA_ERROR(conn->xprt_st)) { conn->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err); conn->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth); } if (objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CA_FAIL; return 0; } if (!SSL_SOCK_ST_TO_CRTERROR(conn->xprt_st)) conn->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err); /* check if certificate error needs to be ignored */ if (objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CRT_FAIL; return 0; } static inline void ssl_sock_parse_clienthello(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl) { struct ssl_capture *capture; unsigned char *msg; unsigned char *end; size_t rec_len; /* This function is called for "from client" and "to server" * connections. The combination of write_p == 0 and content_type == 22 * is only avalaible during "from client" connection. */ /* "write_p" is set to 0 is the bytes are received messages, * otherwise it is set to 1. */ if (write_p != 0) return; /* content_type contains the type of message received or sent * according with the SSL/TLS protocol spec. This message is * encoded with one byte. The value 256 (two bytes) is used * for designing the SSL/TLS record layer. According with the * rfc6101, the expected message (other than 256) are: * - change_cipher_spec(20) * - alert(21) * - handshake(22) * - application_data(23) * - (255) * We are interessed by the handshake and specially the client * hello. */ if (content_type != 22) return; /* The message length is at least 4 bytes, containing the * message type and the message length. */ if (len < 4) return; /* First byte of the handshake message id the type of * message. The konwn types are: * - hello_request(0) * - client_hello(1) * - server_hello(2) * - certificate(11) * - server_key_exchange (12) * - certificate_request(13) * - server_hello_done(14) * We are interested by the client hello. */ msg = (unsigned char *)buf; if (msg[0] != 1) return; /* Next three bytes are the length of the message. The total length * must be this decoded length + 4. If the length given as argument * is not the same, we abort the protocol dissector. */ rec_len = (msg[1] << 16) + (msg[2] << 8) + msg[3]; if (len < rec_len + 4) return; msg += 4; end = msg + rec_len; if (end < msg) return; /* Expect 2 bytes for protocol version (1 byte for major and 1 byte * for minor, the random, composed by 4 bytes for the unix time and * 28 bytes for unix payload, and them 1 byte for the session id. So * we jump 1 + 1 + 4 + 28 + 1 bytes. */ msg += 1 + 1 + 4 + 28 + 1; if (msg > end) return; /* Next two bytes are the ciphersuite length. */ if (msg + 2 > end) return; rec_len = (msg[0] << 8) + msg[1]; msg += 2; if (msg + rec_len > end || msg + rec_len < msg) return; capture = pool_alloc_dirty(pool_head_ssl_capture); if (!capture) return; /* Compute the xxh64 of the ciphersuite. */ capture->xxh64 = XXH64(msg, rec_len, 0); /* Capture the ciphersuite. */ capture->ciphersuite_len = (global_ssl.capture_cipherlist < rec_len) ? global_ssl.capture_cipherlist : rec_len; memcpy(capture->ciphersuite, msg, capture->ciphersuite_len); SSL_set_ex_data(ssl, ssl_capture_ptr_index, capture); } /* Callback is called for ssl protocol analyse */ void ssl_sock_msgcbk(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { #ifdef TLS1_RT_HEARTBEAT /* test heartbeat received (write_p is set to 0 for a received record) */ if ((content_type == TLS1_RT_HEARTBEAT) && (write_p == 0)) { struct connection *conn = SSL_get_app_data(ssl); const unsigned char *p = buf; unsigned int payload; conn->xprt_st |= SSL_SOCK_RECV_HEARTBEAT; /* Check if this is a CVE-2014-0160 exploitation attempt. */ if (*p != TLS1_HB_REQUEST) return; if (len < 1 + 2 + 16) /* 1 type + 2 size + 0 payload + 16 padding */ goto kill_it; payload = (p[1] * 256) + p[2]; if (3 + payload + 16 <= len) return; /* OK no problem */ kill_it: /* We have a clear heartbleed attack (CVE-2014-0160), the * advertised payload is larger than the advertised packet * length, so we have garbage in the buffer between the * payload and the end of the buffer (p+len). We can't know * if the SSL stack is patched, and we don't know if we can * safely wipe out the area between p+3+len and payload. * So instead, we prevent the response from being sent by * setting the max_send_fragment to 0 and we report an SSL * error, which will kill this connection. It will be reported * above as SSL_ERROR_SSL while an other handshake failure with * a heartbeat message will be reported as SSL_ERROR_SYSCALL. */ ssl->max_send_fragment = 0; SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_SSL_HANDSHAKE_FAILURE); return; } #endif if (global_ssl.capture_cipherlist > 0) ssl_sock_parse_clienthello(write_p, version, content_type, buf, len, ssl); } #ifdef OPENSSL_NPN_NEGOTIATED /* This callback is used so that the server advertises the list of * negociable protocols for NPN. */ static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { struct ssl_bind_conf *conf = arg; *data = (const unsigned char *)conf->npn_str; *len = conf->npn_len; return SSL_TLSEXT_ERR_OK; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation /* This callback is used so that the server advertises the list of * negociable protocols for ALPN. */ static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, void *arg) { struct ssl_bind_conf *conf = arg; if (SSL_select_next_proto((unsigned char**) out, outlen, (const unsigned char *)conf->alpn_str, conf->alpn_len, server, server_len) != OPENSSL_NPN_NEGOTIATED) { return SSL_TLSEXT_ERR_NOACK; } return SSL_TLSEXT_ERR_OK; } #endif #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifndef SSL_NO_GENERATE_CERTIFICATES /* Create a X509 certificate with the specified servername and serial. This * function returns a SSL_CTX object or NULL if an error occurs. */ static SSL_CTX * ssl_sock_do_create_cert(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; EVP_PKEY *capkey = bind_conf->ca_sign_pkey; SSL_CTX *ssl_ctx = NULL; X509 *newcrt = NULL; EVP_PKEY *pkey = NULL; SSL *tmp_ssl = NULL; X509_NAME *name; const EVP_MD *digest; X509V3_CTX ctx; unsigned int i; int key_type; /* Get the private key of the default certificate and use it */ #if (OPENSSL_VERSION_NUMBER >= 0x10002000L && !defined LIBRESSL_VERSION_NUMBER) pkey = SSL_CTX_get0_privatekey(bind_conf->default_ctx); #else tmp_ssl = SSL_new(bind_conf->default_ctx); if (tmp_ssl) pkey = SSL_get_privatekey(tmp_ssl); #endif if (!pkey) goto mkcert_error; /* Create the certificate */ if (!(newcrt = X509_new())) goto mkcert_error; /* Set version number for the certificate (X509v3) and the serial * number */ if (X509_set_version(newcrt, 2L) != 1) goto mkcert_error; ASN1_INTEGER_set(X509_get_serialNumber(newcrt), HA_ATOMIC_ADD(&ssl_ctx_serial, 1)); /* Set duration for the certificate */ if (!X509_gmtime_adj(X509_get_notBefore(newcrt), (long)-60*60*24) || !X509_gmtime_adj(X509_get_notAfter(newcrt),(long)60*60*24*365)) goto mkcert_error; /* set public key in the certificate */ if (X509_set_pubkey(newcrt, pkey) != 1) goto mkcert_error; /* Set issuer name from the CA */ if (!(name = X509_get_subject_name(cacert))) goto mkcert_error; if (X509_set_issuer_name(newcrt, name) != 1) goto mkcert_error; /* Set the subject name using the same, but the CN */ name = X509_NAME_dup(name); if (X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC, (const unsigned char *)servername, -1, -1, 0) != 1) { X509_NAME_free(name); goto mkcert_error; } if (X509_set_subject_name(newcrt, name) != 1) { X509_NAME_free(name); goto mkcert_error; } X509_NAME_free(name); /* Add x509v3 extensions as specified */ X509V3_set_ctx(&ctx, cacert, newcrt, NULL, NULL, 0); for (i = 0; i < X509V3_EXT_SIZE; i++) { X509_EXTENSION *ext; if (!(ext = X509V3_EXT_conf(NULL, &ctx, x509v3_ext_names[i], x509v3_ext_values[i]))) goto mkcert_error; if (!X509_add_ext(newcrt, ext, -1)) { X509_EXTENSION_free(ext); goto mkcert_error; } X509_EXTENSION_free(ext); } /* Sign the certificate with the CA private key */ key_type = EVP_PKEY_base_id(capkey); if (key_type == EVP_PKEY_DSA) digest = EVP_sha1(); else if (key_type == EVP_PKEY_RSA) digest = EVP_sha256(); else if (key_type == EVP_PKEY_EC) digest = EVP_sha256(); else { #if (OPENSSL_VERSION_NUMBER >= 0x1000000fL) int nid; if (EVP_PKEY_get_default_digest_nid(capkey, &nid) <= 0) goto mkcert_error; if (!(digest = EVP_get_digestbynid(nid))) goto mkcert_error; #else goto mkcert_error; #endif } if (!(X509_sign(newcrt, capkey, digest))) goto mkcert_error; /* Create and set the new SSL_CTX */ if (!(ssl_ctx = SSL_CTX_new(SSLv23_server_method()))) goto mkcert_error; if (!SSL_CTX_use_PrivateKey(ssl_ctx, pkey)) goto mkcert_error; if (!SSL_CTX_use_certificate(ssl_ctx, newcrt)) goto mkcert_error; if (!SSL_CTX_check_private_key(ssl_ctx)) goto mkcert_error; if (newcrt) X509_free(newcrt); #ifndef OPENSSL_NO_DH SSL_CTX_set_tmp_dh_callback(ssl_ctx, ssl_get_tmp_dh); #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) { const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); EC_KEY *ecc; int nid; if ((nid = OBJ_sn2nid(ecdhe)) == NID_undef) goto end; if (!(ecc = EC_KEY_new_by_curve_name(nid))) goto end; SSL_CTX_set_tmp_ecdh(ssl_ctx, ecc); EC_KEY_free(ecc); } #endif end: return ssl_ctx; mkcert_error: if (tmp_ssl) SSL_free(tmp_ssl); if (ssl_ctx) SSL_CTX_free(ssl_ctx); if (newcrt) X509_free(newcrt); return NULL; } SSL_CTX * ssl_sock_create_cert(struct connection *conn, const char *servername, unsigned int key) { struct bind_conf *bind_conf = objt_listener(conn->target)->bind_conf; return ssl_sock_do_create_cert(servername, bind_conf, conn->xprt_ctx); } /* Do a lookup for a certificate in the LRU cache used to store generated * certificates and immediately assign it to the SSL session if not null. */ SSL_CTX * ssl_sock_assign_generated_cert(unsigned int key, struct bind_conf *bind_conf, SSL *ssl) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_RDLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_lookup(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (lru && lru->domain) { if (ssl) SSL_set_SSL_CTX(ssl, (SSL_CTX *)lru->data); HA_RWLOCK_RDUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return (SSL_CTX *)lru->data; } HA_RWLOCK_RDUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); } return NULL; } /* Same as but without SSL session. This * function is not thread-safe, it should only be used to check if a certificate * exists in the lru cache (with no warranty it will not be removed by another * thread). It is kept for backward compatibility. */ SSL_CTX * ssl_sock_get_generated_cert(unsigned int key, struct bind_conf *bind_conf) { return ssl_sock_assign_generated_cert(key, bind_conf, NULL); } /* Set a certificate int the LRU cache used to store generated * certificate. Return 0 on success, otherwise -1 */ int ssl_sock_set_generated_cert(SSL_CTX *ssl_ctx, unsigned int key, struct bind_conf *bind_conf) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (!lru) { HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return -1; } if (lru->domain && lru->data) lru->free((SSL_CTX *)lru->data); lru64_commit(lru, ssl_ctx, bind_conf->ca_sign_cert, 0, (void (*)(void *))SSL_CTX_free); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 0; } return -1; } /* Compute the key of the certificate. */ unsigned int ssl_sock_generated_cert_key(const void *data, size_t len) { return XXH32(data, len, ssl_ctx_lru_seed); } /* Generate a cert and immediately assign it to the SSL session so that the cert's * refcount is maintained regardless of the cert's presence in the LRU cache. */ static int ssl_sock_generate_certificate(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; SSL_CTX *ssl_ctx = NULL; struct lru64 *lru = NULL; unsigned int key; key = ssl_sock_generated_cert_key(servername, strlen(servername)); if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, cacert, 0); if (lru && lru->domain) ssl_ctx = (SSL_CTX *)lru->data; if (!ssl_ctx && lru) { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); lru64_commit(lru, ssl_ctx, cacert, 0, (void (*)(void *))SSL_CTX_free); } SSL_set_SSL_CTX(ssl, ssl_ctx); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 1; } else { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); SSL_set_SSL_CTX(ssl, ssl_ctx); /* No LRU cache, this CTX will be released as soon as the session dies */ SSL_CTX_free(ssl_ctx); return 1; } return 0; } static int ssl_sock_generate_certificate_from_conn(struct bind_conf *bind_conf, SSL *ssl) { unsigned int key; struct connection *conn = SSL_get_app_data(ssl); conn_get_to_addr(conn); if (conn->flags & CO_FL_ADDR_TO_SET) { key = ssl_sock_generated_cert_key(&conn->addr.to, get_addr_len(&conn->addr.to)); if (ssl_sock_assign_generated_cert(key, bind_conf, ssl)) return 1; } return 0; } #endif /* !defined SSL_NO_GENERATE_CERTIFICATES */ #ifndef SSL_OP_CIPHER_SERVER_PREFERENCE /* needs OpenSSL >= 0.9.7 */ #define SSL_OP_CIPHER_SERVER_PREFERENCE 0 #endif #ifndef SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION /* needs OpenSSL >= 0.9.7 */ #define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0 #define SSL_renegotiate_pending(arg) 0 #endif #ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 0.9.8 */ #define SSL_OP_SINGLE_ECDH_USE 0 #endif #ifndef SSL_OP_NO_TICKET /* needs OpenSSL >= 0.9.8 */ #define SSL_OP_NO_TICKET 0 #endif #ifndef SSL_OP_NO_COMPRESSION /* needs OpenSSL >= 0.9.9 */ #define SSL_OP_NO_COMPRESSION 0 #endif #ifdef OPENSSL_NO_SSL3 /* SSLv3 support removed */ #undef SSL_OP_NO_SSLv3 #define SSL_OP_NO_SSLv3 0 #endif #ifndef SSL_OP_NO_TLSv1_1 /* needs OpenSSL >= 1.0.1 */ #define SSL_OP_NO_TLSv1_1 0 #endif #ifndef SSL_OP_NO_TLSv1_2 /* needs OpenSSL >= 1.0.1 */ #define SSL_OP_NO_TLSv1_2 0 #endif #ifndef SSL_OP_NO_TLSv1_3 /* needs OpenSSL >= 1.1.1 */ #define SSL_OP_NO_TLSv1_3 0 #endif #ifndef SSL_OP_SINGLE_DH_USE /* needs OpenSSL >= 0.9.6 */ #define SSL_OP_SINGLE_DH_USE 0 #endif #ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 1.0.0 */ #define SSL_OP_SINGLE_ECDH_USE 0 #endif #ifndef SSL_MODE_RELEASE_BUFFERS /* needs OpenSSL >= 1.0.0 */ #define SSL_MODE_RELEASE_BUFFERS 0 #endif #ifndef SSL_MODE_SMALL_BUFFERS /* needs small_records.patch */ #define SSL_MODE_SMALL_BUFFERS 0 #endif #if (OPENSSL_VERSION_NUMBER < 0x1010000fL) typedef enum { SET_CLIENT, SET_SERVER } set_context_func; static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_SSLv3 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, SSLv3_server_method()) : SSL_CTX_set_ssl_version(ctx, SSLv3_client_method()); #endif } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_client_method()); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_1 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_1_client_method()); #endif } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_2 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_2_client_method()); #endif } /* TLS 1.2 is the last supported version in this context. */ static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {} /* Unusable in this context. */ static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {} #else /* openssl >= 1.1.0 */ typedef enum { SET_MIN, SET_MAX } set_context_func; static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, SSL3_VERSION) : SSL_CTX_set_min_proto_version(ctx, SSL3_VERSION); } static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, SSL3_VERSION) : SSL_set_min_proto_version(ssl, SSL3_VERSION); } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_VERSION); } static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_VERSION); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_1_VERSION); } static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_1_VERSION); } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION); } static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_2_VERSION) : SSL_set_min_proto_version(ssl, TLS1_2_VERSION); } static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION); #endif } static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_3_VERSION) : SSL_set_min_proto_version(ssl, TLS1_3_VERSION); #endif } #endif static void ctx_set_None_func(SSL_CTX *ctx, set_context_func c) { } static void ssl_set_None_func(SSL *ssl, set_context_func c) { } static struct { int option; uint16_t flag; void (*ctx_set_version)(SSL_CTX *, set_context_func); void (*ssl_set_version)(SSL *, set_context_func); const char *name; } methodVersions[] = { {0, 0, ctx_set_None_func, ssl_set_None_func, "NONE"}, /* CONF_TLSV_NONE */ {SSL_OP_NO_SSLv3, MC_SSL_O_NO_SSLV3, ctx_set_SSLv3_func, ssl_set_SSLv3_func, "SSLv3"}, /* CONF_SSLV3 */ {SSL_OP_NO_TLSv1, MC_SSL_O_NO_TLSV10, ctx_set_TLSv10_func, ssl_set_TLSv10_func, "TLSv1.0"}, /* CONF_TLSV10 */ {SSL_OP_NO_TLSv1_1, MC_SSL_O_NO_TLSV11, ctx_set_TLSv11_func, ssl_set_TLSv11_func, "TLSv1.1"}, /* CONF_TLSV11 */ {SSL_OP_NO_TLSv1_2, MC_SSL_O_NO_TLSV12, ctx_set_TLSv12_func, ssl_set_TLSv12_func, "TLSv1.2"}, /* CONF_TLSV12 */ {SSL_OP_NO_TLSv1_3, MC_SSL_O_NO_TLSV13, ctx_set_TLSv13_func, ssl_set_TLSv13_func, "TLSv1.3"}, /* CONF_TLSV13 */ }; static void ssl_sock_switchctx_set(SSL *ssl, SSL_CTX *ctx) { struct pkey_info *pkinfo; pkinfo = SSL_CTX_get_ex_data(ctx, ssl_pkey_info_index); if (pkinfo) SSL_set_ex_data(ssl, ssl_pkey_info_index, pkinfo); SSL_set_verify(ssl, SSL_CTX_get_verify_mode(ctx), ssl_sock_bind_verifycbk); SSL_set_client_CA_list(ssl, SSL_dup_CA_list(SSL_CTX_get_client_CA_list(ctx))); SSL_set_SSL_CTX(ssl, ctx); } #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) || defined(OPENSSL_IS_BORINGSSL) static int ssl_sock_switchctx_err_cbk(SSL *ssl, int *al, void *priv) { struct bind_conf *s = priv; (void)al; /* shut gcc stupid warning */ if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) || s->generate_certs) return SSL_TLSEXT_ERR_OK; return SSL_TLSEXT_ERR_NOACK; } #ifdef OPENSSL_IS_BORINGSSL static int ssl_sock_switchctx_cbk(const struct ssl_early_callback_ctx *ctx) { SSL *ssl = ctx->ssl; #else static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *arg) { #endif struct connection *conn; struct bind_conf *s; const uint8_t *extension_data; size_t extension_len; int has_rsa = 0, has_ecdsa = 0, has_ecdsa_sig = 0; char *wildp = NULL; const uint8_t *servername; size_t servername_len; struct ebmb_node *node, *n, *node_ecdsa = NULL, *node_rsa = NULL, *node_anonymous = NULL; int allow_early = 0; int i; conn = SSL_get_app_data(ssl); s = objt_listener(conn->target)->bind_conf; if (s->ssl_conf.early_data) allow_early = 1; #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #endif /* * The server_name extension was given too much extensibility when it * was written, so parsing the normal case is a bit complex. */ size_t len; if (extension_len <= 2) goto abort; /* Extract the length of the supplied list of names. */ len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; /* * The list in practice only has a single element, so we only consider * the first one. */ if (len == 0 || *extension_data++ != TLSEXT_NAMETYPE_host_name) goto abort; extension_len = len - 1; /* Now we can finally pull out the byte array with the actual hostname. */ if (extension_len <= 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len == 0 || len + 2 > extension_len || len > TLSEXT_MAXLEN_host_name || memchr(extension_data, 0, len) != NULL) goto abort; servername = extension_data; servername_len = len; } else { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) { goto allow_early; } #endif /* without SNI extension, is the default_ctx (need SSL_TLSEXT_ERR_NOACK) */ if (!s->strict_sni) { ssl_sock_switchctx_set(ssl, s->default_ctx); goto allow_early; } goto abort; } /* extract/check clientHello informations */ #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #endif uint8_t sign; size_t len; if (extension_len < 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; if (len % 2 != 0) goto abort; for (; len > 0; len -= 2) { extension_data++; /* hash */ sign = *extension_data++; switch (sign) { case TLSEXT_signature_rsa: has_rsa = 1; break; case TLSEXT_signature_ecdsa: has_ecdsa_sig = 1; break; default: continue; } if (has_ecdsa_sig && has_rsa) break; } } else { /* without TLSEXT_TYPE_signature_algorithms extension (< TLS 1.2) */ has_rsa = 1; } if (has_ecdsa_sig) { /* in very rare case: has ecdsa sign but not a ECDSA cipher */ const SSL_CIPHER *cipher; size_t len; const uint8_t *cipher_suites; #ifdef OPENSSL_IS_BORINGSSL len = ctx->cipher_suites_len; cipher_suites = ctx->cipher_suites; #else len = SSL_client_hello_get0_ciphers(ssl, &cipher_suites); #endif if (len % 2 != 0) goto abort; for (; len != 0; len -= 2, cipher_suites += 2) { #ifdef OPENSSL_IS_BORINGSSL uint16_t cipher_suite = (cipher_suites[0] << 8) | cipher_suites[1]; cipher = SSL_get_cipher_by_value(cipher_suite); #else cipher = SSL_CIPHER_find(ssl, cipher_suites); #endif if (cipher && SSL_CIPHER_get_auth_nid(cipher) == NID_auth_ecdsa) { has_ecdsa = 1; break; } } } for (i = 0; i < trash.size && i < servername_len; i++) { trash.str[i] = tolower(servername[i]); if (!wildp && (trash.str[i] == '.')) wildp = &trash.str[i]; } trash.str[i] = 0; /* lookup in full qualified names */ node = ebst_lookup(&s->sni_ctx, trash.str); /* lookup a not neg filter */ for (n = node; n; n = ebmb_next_dup(n)) { if (!container_of(n, struct sni_ctx, name)->neg) { switch(container_of(n, struct sni_ctx, name)->kinfo.sig) { case TLSEXT_signature_ecdsa: if (has_ecdsa) { node_ecdsa = n; goto find_one; } break; case TLSEXT_signature_rsa: if (has_rsa && !node_rsa) { node_rsa = n; if (!has_ecdsa) goto find_one; } break; default: /* TLSEXT_signature_anonymous|dsa */ if (!node_anonymous) node_anonymous = n; break; } } } if (wildp) { /* lookup in wildcards names */ node = ebst_lookup(&s->sni_w_ctx, wildp); for (n = node; n; n = ebmb_next_dup(n)) { if (!container_of(n, struct sni_ctx, name)->neg) { switch(container_of(n, struct sni_ctx, name)->kinfo.sig) { case TLSEXT_signature_ecdsa: if (has_ecdsa) { node_ecdsa = n; goto find_one; } break; case TLSEXT_signature_rsa: if (has_rsa && !node_rsa) { node_rsa = n; if (!has_ecdsa) goto find_one; } break; default: /* TLSEXT_signature_anonymous|dsa */ if (!node_anonymous) node_anonymous = n; break; } } } } find_one: /* select by key_signature priority order */ node = node_ecdsa ? node_ecdsa : (node_rsa ? node_rsa : node_anonymous); if (node) { /* switch ctx */ struct ssl_bind_conf *conf = container_of(node, struct sni_ctx, name)->conf; ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); if (conf) { methodVersions[conf->ssl_methods.min].ssl_set_version(ssl, SET_MIN); methodVersions[conf->ssl_methods.max].ssl_set_version(ssl, SET_MAX); if (conf->early_data) allow_early = 1; } goto allow_early; } #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(trash.str, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ goto allow_early; } #endif if (!s->strict_sni) { /* no certificate match, is the default_ctx */ ssl_sock_switchctx_set(ssl, s->default_ctx); } allow_early: #ifdef OPENSSL_IS_BORINGSSL if (allow_early) SSL_set_early_data_enabled(ssl, 1); #else if (!allow_early) SSL_set_max_early_data(ssl, 0); #endif return 1; abort: /* abort handshake (was SSL_TLSEXT_ERR_ALERT_FATAL) */ conn->err_code = CO_ER_SSL_HANDSHAKE; #ifdef OPENSSL_IS_BORINGSSL return ssl_select_cert_error; #else *al = SSL_AD_UNRECOGNIZED_NAME; return 0; #endif } #else /* OPENSSL_IS_BORINGSSL */ /* Sets the SSL ctx of to match the advertised server name. Returns a * warning when no match is found, which implies the default (first) cert * will keep being used. */ static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *priv) { const char *servername; const char *wildp = NULL; struct ebmb_node *node, *n; struct bind_conf *s = priv; int i; (void)al; /* shut gcc stupid warning */ servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (!servername) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) return SSL_TLSEXT_ERR_OK; #endif if (s->strict_sni) return SSL_TLSEXT_ERR_ALERT_FATAL; ssl_sock_switchctx_set(ssl, s->default_ctx); return SSL_TLSEXT_ERR_NOACK; } for (i = 0; i < trash.size; i++) { if (!servername[i]) break; trash.str[i] = tolower(servername[i]); if (!wildp && (trash.str[i] == '.')) wildp = &trash.str[i]; } trash.str[i] = 0; /* lookup in full qualified names */ node = ebst_lookup(&s->sni_ctx, trash.str); /* lookup a not neg filter */ for (n = node; n; n = ebmb_next_dup(n)) { if (!container_of(n, struct sni_ctx, name)->neg) { node = n; break; } } if (!node && wildp) { /* lookup in wildcards names */ node = ebst_lookup(&s->sni_w_ctx, wildp); } if (!node || container_of(node, struct sni_ctx, name)->neg) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(servername, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ return SSL_TLSEXT_ERR_OK; } #endif if (s->strict_sni) return SSL_TLSEXT_ERR_ALERT_FATAL; ssl_sock_switchctx_set(ssl, s->default_ctx); return SSL_TLSEXT_ERR_OK; } /* switch ctx */ ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); return SSL_TLSEXT_ERR_OK; } #endif /* (!) OPENSSL_IS_BORINGSSL */ #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ #ifndef OPENSSL_NO_DH static DH * ssl_get_dh_1024(void) { static unsigned char dh1024_p[]={ 0xFA,0xF9,0x2A,0x22,0x2A,0xA7,0x7F,0xE1,0x67,0x4E,0x53,0xF7, 0x56,0x13,0xC3,0xB1,0xE3,0x29,0x6B,0x66,0x31,0x6A,0x7F,0xB3, 0xC2,0x68,0x6B,0xCB,0x1D,0x57,0x39,0x1D,0x1F,0xFF,0x1C,0xC9, 0xA6,0xA4,0x98,0x82,0x31,0x5D,0x25,0xFF,0x8A,0xE0,0x73,0x96, 0x81,0xC8,0x83,0x79,0xC1,0x5A,0x04,0xF8,0x37,0x0D,0xA8,0x3D, 0xAE,0x74,0xBC,0xDB,0xB6,0xA4,0x75,0xD9,0x71,0x8A,0xA0,0x17, 0x9E,0x2D,0xC8,0xA8,0xDF,0x2C,0x5F,0x82,0x95,0xF8,0x92,0x9B, 0xA7,0x33,0x5F,0x89,0x71,0xC8,0x2D,0x6B,0x18,0x86,0xC4,0x94, 0x22,0xA5,0x52,0x8D,0xF6,0xF6,0xD2,0x37,0x92,0x0F,0xA5,0xCC, 0xDB,0x7B,0x1D,0x3D,0xA1,0x31,0xB7,0x80,0x8F,0x0B,0x67,0x5E, 0x36,0xA5,0x60,0x0C,0xF1,0x95,0x33,0x8B, }; static unsigned char dh1024_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh1024_p, sizeof dh1024_p, NULL); g = BN_bin2bn(dh1024_g, sizeof dh1024_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_2048(void) { static unsigned char dh2048_p[]={ 0xEC,0x86,0xF8,0x70,0xA0,0x33,0x16,0xEC,0x05,0x1A,0x73,0x59, 0xCD,0x1F,0x8B,0xF8,0x29,0xE4,0xD2,0xCF,0x52,0xDD,0xC2,0x24, 0x8D,0xB5,0x38,0x9A,0xFB,0x5C,0xA4,0xE4,0xB2,0xDA,0xCE,0x66, 0x50,0x74,0xA6,0x85,0x4D,0x4B,0x1D,0x30,0xB8,0x2B,0xF3,0x10, 0xE9,0xA7,0x2D,0x05,0x71,0xE7,0x81,0xDF,0x8B,0x59,0x52,0x3B, 0x5F,0x43,0x0B,0x68,0xF1,0xDB,0x07,0xBE,0x08,0x6B,0x1B,0x23, 0xEE,0x4D,0xCC,0x9E,0x0E,0x43,0xA0,0x1E,0xDF,0x43,0x8C,0xEC, 0xBE,0xBE,0x90,0xB4,0x51,0x54,0xB9,0x2F,0x7B,0x64,0x76,0x4E, 0x5D,0xD4,0x2E,0xAE,0xC2,0x9E,0xAE,0x51,0x43,0x59,0xC7,0x77, 0x9C,0x50,0x3C,0x0E,0xED,0x73,0x04,0x5F,0xF1,0x4C,0x76,0x2A, 0xD8,0xF8,0xCF,0xFC,0x34,0x40,0xD1,0xB4,0x42,0x61,0x84,0x66, 0x42,0x39,0x04,0xF8,0x68,0xB2,0x62,0xD7,0x55,0xED,0x1B,0x74, 0x75,0x91,0xE0,0xC5,0x69,0xC1,0x31,0x5C,0xDB,0x7B,0x44,0x2E, 0xCE,0x84,0x58,0x0D,0x1E,0x66,0x0C,0xC8,0x44,0x9E,0xFD,0x40, 0x08,0x67,0x5D,0xFB,0xA7,0x76,0x8F,0x00,0x11,0x87,0xE9,0x93, 0xF9,0x7D,0xC4,0xBC,0x74,0x55,0x20,0xD4,0x4A,0x41,0x2F,0x43, 0x42,0x1A,0xC1,0xF2,0x97,0x17,0x49,0x27,0x37,0x6B,0x2F,0x88, 0x7E,0x1C,0xA0,0xA1,0x89,0x92,0x27,0xD9,0x56,0x5A,0x71,0xC1, 0x56,0x37,0x7E,0x3A,0x9D,0x05,0xE7,0xEE,0x5D,0x8F,0x82,0x17, 0xBC,0xE9,0xC2,0x93,0x30,0x82,0xF9,0xF4,0xC9,0xAE,0x49,0xDB, 0xD0,0x54,0xB4,0xD9,0x75,0x4D,0xFA,0x06,0xB8,0xD6,0x38,0x41, 0xB7,0x1F,0x77,0xF3, }; static unsigned char dh2048_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh2048_p, sizeof dh2048_p, NULL); g = BN_bin2bn(dh2048_g, sizeof dh2048_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_4096(void) { static unsigned char dh4096_p[]={ 0xDE,0x16,0x94,0xCD,0x99,0x58,0x07,0xF1,0xF7,0x32,0x96,0x11, 0x04,0x82,0xD4,0x84,0x72,0x80,0x99,0x06,0xCA,0xF0,0xA3,0x68, 0x07,0xCE,0x64,0x50,0xE7,0x74,0x45,0x20,0x80,0x5E,0x4D,0xAD, 0xA5,0xB6,0xED,0xFA,0x80,0x6C,0x3B,0x35,0xC4,0x9A,0x14,0x6B, 0x32,0xBB,0xFD,0x1F,0x17,0x8E,0xB7,0x1F,0xD6,0xFA,0x3F,0x7B, 0xEE,0x16,0xA5,0x62,0x33,0x0D,0xED,0xBC,0x4E,0x58,0xE5,0x47, 0x4D,0xE9,0xAB,0x8E,0x38,0xD3,0x6E,0x90,0x57,0xE3,0x22,0x15, 0x33,0xBD,0xF6,0x43,0x45,0xB5,0x10,0x0A,0xBE,0x2C,0xB4,0x35, 0xB8,0x53,0x8D,0xAD,0xFB,0xA7,0x1F,0x85,0x58,0x41,0x7A,0x79, 0x20,0x68,0xB3,0xE1,0x3D,0x08,0x76,0xBF,0x86,0x0D,0x49,0xE3, 0x82,0x71,0x8C,0xB4,0x8D,0x81,0x84,0xD4,0xE7,0xBE,0x91,0xDC, 0x26,0x39,0x48,0x0F,0x35,0xC4,0xCA,0x65,0xE3,0x40,0x93,0x52, 0x76,0x58,0x7D,0xDD,0x51,0x75,0xDC,0x69,0x61,0xBF,0x47,0x2C, 0x16,0x68,0x2D,0xC9,0x29,0xD3,0xE6,0xC0,0x99,0x48,0xA0,0x9A, 0xC8,0x78,0xC0,0x6D,0x81,0x67,0x12,0x61,0x3F,0x71,0xBA,0x41, 0x1F,0x6C,0x89,0x44,0x03,0xBA,0x3B,0x39,0x60,0xAA,0x28,0x55, 0x59,0xAE,0xB8,0xFA,0xCB,0x6F,0xA5,0x1A,0xF7,0x2B,0xDD,0x52, 0x8A,0x8B,0xE2,0x71,0xA6,0x5E,0x7E,0xD8,0x2E,0x18,0xE0,0x66, 0xDF,0xDD,0x22,0x21,0x99,0x52,0x73,0xA6,0x33,0x20,0x65,0x0E, 0x53,0xE7,0x6B,0x9B,0xC5,0xA3,0x2F,0x97,0x65,0x76,0xD3,0x47, 0x23,0x77,0x12,0xB6,0x11,0x7B,0x24,0xED,0xF1,0xEF,0xC0,0xE2, 0xA3,0x7E,0x67,0x05,0x3E,0x96,0x4D,0x45,0xC2,0x18,0xD1,0x73, 0x9E,0x07,0xF3,0x81,0x6E,0x52,0x63,0xF6,0x20,0x76,0xB9,0x13, 0xD2,0x65,0x30,0x18,0x16,0x09,0x16,0x9E,0x8F,0xF1,0xD2,0x10, 0x5A,0xD3,0xD4,0xAF,0x16,0x61,0xDA,0x55,0x2E,0x18,0x5E,0x14, 0x08,0x54,0x2E,0x2A,0x25,0xA2,0x1A,0x9B,0x8B,0x32,0xA9,0xFD, 0xC2,0x48,0x96,0xE1,0x80,0xCA,0xE9,0x22,0x17,0xBB,0xCE,0x3E, 0x9E,0xED,0xC7,0xF1,0x1F,0xEC,0x17,0x21,0xDC,0x7B,0x82,0x48, 0x8E,0xBB,0x4B,0x9D,0x5B,0x04,0x04,0xDA,0xDB,0x39,0xDF,0x01, 0x40,0xC3,0xAA,0x26,0x23,0x89,0x75,0xC6,0x0B,0xD0,0xA2,0x60, 0x6A,0xF1,0xCC,0x65,0x18,0x98,0x1B,0x52,0xD2,0x74,0x61,0xCC, 0xBD,0x60,0xAE,0xA3,0xA0,0x66,0x6A,0x16,0x34,0x92,0x3F,0x41, 0x40,0x31,0x29,0xC0,0x2C,0x63,0xB2,0x07,0x8D,0xEB,0x94,0xB8, 0xE8,0x47,0x92,0x52,0x93,0x6A,0x1B,0x7E,0x1A,0x61,0xB3,0x1B, 0xF0,0xD6,0x72,0x9B,0xF1,0xB0,0xAF,0xBF,0x3E,0x65,0xEF,0x23, 0x1D,0x6F,0xFF,0x70,0xCD,0x8A,0x4C,0x8A,0xA0,0x72,0x9D,0xBE, 0xD4,0xBB,0x24,0x47,0x4A,0x68,0xB5,0xF5,0xC6,0xD5,0x7A,0xCD, 0xCA,0x06,0x41,0x07,0xAD,0xC2,0x1E,0xE6,0x54,0xA7,0xAD,0x03, 0xD9,0x12,0xC1,0x9C,0x13,0xB1,0xC9,0x0A,0x43,0x8E,0x1E,0x08, 0xCE,0x50,0x82,0x73,0x5F,0xA7,0x55,0x1D,0xD9,0x59,0xAC,0xB5, 0xEA,0x02,0x7F,0x6C,0x5B,0x74,0x96,0x98,0x67,0x24,0xA3,0x0F, 0x15,0xFC,0xA9,0x7D,0x3E,0x67,0xD1,0x70,0xF8,0x97,0xF3,0x67, 0xC5,0x8C,0x88,0x44,0x08,0x02,0xC7,0x2B, }; static unsigned char dh4096_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh4096_p, sizeof dh4096_p, NULL); g = BN_bin2bn(dh4096_g, sizeof dh4096_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } /* Returns Diffie-Hellman parameters matching the private key length but not exceeding global_ssl.default_dh_param */ static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen) { DH *dh = NULL; EVP_PKEY *pkey = SSL_get_privatekey(ssl); int type; type = pkey ? EVP_PKEY_base_id(pkey) : EVP_PKEY_NONE; /* The keylen supplied by OpenSSL can only be 512 or 1024. See ssl3_send_server_key_exchange() in ssl/s3_srvr.c */ if (type == EVP_PKEY_RSA || type == EVP_PKEY_DSA) { keylen = EVP_PKEY_bits(pkey); } if (keylen > global_ssl.default_dh_param) { keylen = global_ssl.default_dh_param; } if (keylen >= 4096) { dh = local_dh_4096; } else if (keylen >= 2048) { dh = local_dh_2048; } else { dh = local_dh_1024; } return dh; } static DH * ssl_sock_get_dh_from_file(const char *filename) { DH *dh = NULL; BIO *in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, filename) <= 0) goto end; dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL); end: if (in) BIO_free(in); return dh; } int ssl_sock_load_global_dh_param_from_file(const char *filename) { global_dh = ssl_sock_get_dh_from_file(filename); if (global_dh) { return 0; } return -1; } /* Loads Diffie-Hellman parameter from a file. Returns 1 if loaded, else -1 if an error occured, and 0 if parameter not found. */ int ssl_sock_load_dh_params(SSL_CTX *ctx, const char *file) { int ret = -1; DH *dh = ssl_sock_get_dh_from_file(file); if (dh) { ret = 1; SSL_CTX_set_tmp_dh(ctx, dh); if (ssl_dh_ptr_index >= 0) { /* store a pointer to the DH params to avoid complaining about ssl-default-dh-param not being set for this SSL_CTX */ SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, dh); } } else if (global_dh) { SSL_CTX_set_tmp_dh(ctx, global_dh); ret = 0; /* DH params not found */ } else { /* Clear openssl global errors stack */ ERR_clear_error(); if (global_ssl.default_dh_param <= 1024) { /* we are limited to DH parameter of 1024 bits anyway */ if (local_dh_1024 == NULL) local_dh_1024 = ssl_get_dh_1024(); if (local_dh_1024 == NULL) goto end; SSL_CTX_set_tmp_dh(ctx, local_dh_1024); } else { SSL_CTX_set_tmp_dh_callback(ctx, ssl_get_tmp_dh); } ret = 0; /* DH params not found */ } end: if (dh) DH_free(dh); return ret; } #endif static int ssl_sock_add_cert_sni(SSL_CTX *ctx, struct bind_conf *s, struct ssl_bind_conf *conf, struct pkey_info kinfo, char *name, int order) { struct sni_ctx *sc; int wild = 0, neg = 0; struct ebmb_node *node; if (*name == '!') { neg = 1; name++; } if (*name == '*') { wild = 1; name++; } /* !* filter is a nop */ if (neg && wild) return order; if (*name) { int j, len; len = strlen(name); for (j = 0; j < len && j < trash.size; j++) trash.str[j] = tolower(name[j]); if (j >= trash.size) return order; trash.str[j] = 0; /* Check for duplicates. */ if (wild) node = ebst_lookup(&s->sni_w_ctx, trash.str); else node = ebst_lookup(&s->sni_ctx, trash.str); for (; node; node = ebmb_next_dup(node)) { sc = ebmb_entry(node, struct sni_ctx, name); if (sc->ctx == ctx && sc->conf == conf && sc->neg == neg) return order; } sc = malloc(sizeof(struct sni_ctx) + len + 1); if (!sc) return order; memcpy(sc->name.key, trash.str, len + 1); sc->ctx = ctx; sc->conf = conf; sc->kinfo = kinfo; sc->order = order++; sc->neg = neg; if (kinfo.sig != TLSEXT_signature_anonymous) SSL_CTX_set_ex_data(ctx, ssl_pkey_info_index, &sc->kinfo); if (wild) ebst_insert(&s->sni_w_ctx, &sc->name); else ebst_insert(&s->sni_ctx, &sc->name); } return order; } /* The following code is used for loading multiple crt files into * SSL_CTX's based on CN/SAN */ #if OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined(LIBRESSL_VERSION_NUMBER) /* This is used to preload the certifcate, private key * and Cert Chain of a file passed in via the crt * argument * * This way, we do not have to read the file multiple times */ struct cert_key_and_chain { X509 *cert; EVP_PKEY *key; unsigned int num_chain_certs; /* This is an array of X509 pointers */ X509 **chain_certs; }; #define SSL_SOCK_POSSIBLE_KT_COMBOS (1<<(SSL_SOCK_NUM_KEYTYPES)) struct key_combo_ctx { SSL_CTX *ctx; int order; }; /* Map used for processing multiple keypairs for a single purpose * * This maps CN/SNI name to certificate type */ struct sni_keytype { int keytypes; /* BITMASK for keytypes */ struct ebmb_node name; /* node holding the servername value */ }; /* Frees the contents of a cert_key_and_chain */ static void ssl_sock_free_cert_key_and_chain_contents(struct cert_key_and_chain *ckch) { int i; if (!ckch) return; /* Free the certificate and set pointer to NULL */ if (ckch->cert) X509_free(ckch->cert); ckch->cert = NULL; /* Free the key and set pointer to NULL */ if (ckch->key) EVP_PKEY_free(ckch->key); ckch->key = NULL; /* Free each certificate in the chain */ for (i = 0; i < ckch->num_chain_certs; i++) { if (ckch->chain_certs[i]) X509_free(ckch->chain_certs[i]); } /* Free the chain obj itself and set to NULL */ if (ckch->num_chain_certs > 0) { free(ckch->chain_certs); ckch->num_chain_certs = 0; ckch->chain_certs = NULL; } } /* checks if a key and cert exists in the ckch */ static int ssl_sock_is_ckch_valid(struct cert_key_and_chain *ckch) { return (ckch->cert != NULL && ckch->key != NULL); } /* Loads the contents of a crt file (path) into a cert_key_and_chain * This allows us to carry the contents of the file without having to * read the file multiple times. * * returns: * 0 on Success * 1 on SSL Failure * 2 on file not found */ static int ssl_sock_load_crt_file_into_ckch(const char *path, struct cert_key_and_chain *ckch, char **err) { BIO *in; X509 *ca = NULL; int ret = 1; ssl_sock_free_cert_key_and_chain_contents(ckch); in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, path) <= 0) goto end; /* Read Private Key */ ckch->key = PEM_read_bio_PrivateKey(in, NULL, NULL, NULL); if (ckch->key == NULL) { memprintf(err, "%sunable to load private key from file '%s'.\n", err && *err ? *err : "", path); goto end; } /* Seek back to beginning of file */ if (BIO_reset(in) == -1) { memprintf(err, "%san error occurred while reading the file '%s'.\n", err && *err ? *err : "", path); goto end; } /* Read Certificate */ ckch->cert = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL); if (ckch->cert == NULL) { memprintf(err, "%sunable to load certificate from file '%s'.\n", err && *err ? *err : "", path); goto end; } /* Read Certificate Chain */ while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) { /* Grow the chain certs */ ckch->num_chain_certs++; ckch->chain_certs = realloc(ckch->chain_certs, (ckch->num_chain_certs * sizeof(X509 *))); /* use - 1 here since we just incremented it above */ ckch->chain_certs[ckch->num_chain_certs - 1] = ca; } ret = ERR_get_error(); if (ret && (ERR_GET_LIB(ret) != ERR_LIB_PEM && ERR_GET_REASON(ret) != PEM_R_NO_START_LINE)) { memprintf(err, "%sunable to load certificate chain from file '%s'.\n", err && *err ? *err : "", path); ret = 1; goto end; } ret = 0; end: ERR_clear_error(); if (in) BIO_free(in); /* Something went wrong in one of the reads */ if (ret != 0) ssl_sock_free_cert_key_and_chain_contents(ckch); return ret; } /* Loads the info in ckch into ctx * Currently, this does not process any information about ocsp, dhparams or * sctl * Returns * 0 on success * 1 on failure */ static int ssl_sock_put_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch, SSL_CTX *ctx, char **err) { int i = 0; if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) { memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n", err && *err ? *err : "", path); return 1; } if (!SSL_CTX_use_certificate(ctx, ckch->cert)) { memprintf(err, "%sunable to load SSL certificate into SSL Context '%s'.\n", err && *err ? *err : "", path); return 1; } /* Load all certs in the ckch into the ctx_chain for the ssl_ctx */ for (i = 0; i < ckch->num_chain_certs; i++) { if (!SSL_CTX_add1_chain_cert(ctx, ckch->chain_certs[i])) { memprintf(err, "%sunable to load chain certificate #%d into SSL Context '%s'. Make sure you are linking against Openssl >= 1.0.2.\n", err && *err ? *err : "", (i+1), path); return 1; } } if (SSL_CTX_check_private_key(ctx) <= 0) { memprintf(err, "%sinconsistencies between private key and certificate loaded from PEM file '%s'.\n", err && *err ? *err : "", path); return 1; } return 0; } static void ssl_sock_populate_sni_keytypes_hplr(const char *str, struct eb_root *sni_keytypes, int key_index) { struct sni_keytype *s_kt = NULL; struct ebmb_node *node; int i; for (i = 0; i < trash.size; i++) { if (!str[i]) break; trash.str[i] = tolower(str[i]); } trash.str[i] = 0; node = ebst_lookup(sni_keytypes, trash.str); if (!node) { /* CN not found in tree */ s_kt = malloc(sizeof(struct sni_keytype) + i + 1); /* Using memcpy here instead of strncpy. * strncpy will cause sig_abrt errors under certain versions of gcc with -O2 * See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60792 */ memcpy(s_kt->name.key, trash.str, i+1); s_kt->keytypes = 0; ebst_insert(sni_keytypes, &s_kt->name); } else { /* CN found in tree */ s_kt = container_of(node, struct sni_keytype, name); } /* Mark that this CN has the keytype of key_index via keytypes mask */ s_kt->keytypes |= 1<= 0) { /* Important line is here */ ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; } } /* Do the above logic for each SAN */ #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(certs_and_keys[n].cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { /* Important line is here */ ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; } } } } } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ } /* If no files found, return error */ if (eb_is_empty(&sni_keytypes_map)) { memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n", err && *err ? *err : "", path); rv = 1; goto end; } /* We now have a map of CN/SAN to keytypes that are loaded in * Iterate through the map to create the SSL_CTX's (if needed) * and add each CTX to the SNI tree * * Some math here: * There are 2^n - 1 possibile combinations, each unique * combination is denoted by the key in the map. Each key * has a value between 1 and 2^n - 1. Conveniently, the array * of SSL_CTX* is sized 2^n. So, we can simply use the i'th * entry in the array to correspond to the unique combo (key) * associated with i. This unique key combo (i) will be associated * with combos[i-1] */ node = ebmb_first(&sni_keytypes_map); while (node) { SSL_CTX *cur_ctx; char cur_file[MAXPATHLEN+1]; const struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; str = (char *)container_of(node, struct sni_keytype, name)->name.key; i = container_of(node, struct sni_keytype, name)->keytypes; cur_ctx = key_combos[i-1].ctx; if (cur_ctx == NULL) { /* need to create SSL_CTX */ cur_ctx = SSL_CTX_new(SSLv23_server_method()); if (cur_ctx == NULL) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); rv = 1; goto end; } /* Load all required certs/keys/chains/OCSPs info into SSL_CTX */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (i & (1<= 0) SSL_CTX_set_ex_data(cur_ctx, ssl_dh_ptr_index, NULL); rv = ssl_sock_load_dh_params(cur_ctx, NULL); if (rv < 0) { if (err) memprintf(err, "%sunable to load DH parameters from file '%s'.\n", *err ? *err : "", path); rv = 1; goto end; } #endif /* Update key_combos */ key_combos[i-1].ctx = cur_ctx; } /* Update SNI Tree */ key_combos[i-1].order = ssl_sock_add_cert_sni(cur_ctx, bind_conf, ssl_conf, kinfo, str, key_combos[i-1].order); node = ebmb_next(node); } /* Mark a default context if none exists, using the ctx that has the most shared keys */ if (!bind_conf->default_ctx) { for (i = SSL_SOCK_POSSIBLE_KT_COMBOS - 1; i >= 0; i--) { if (key_combos[i].ctx) { bind_conf->default_ctx = key_combos[i].ctx; bind_conf->default_ssl_conf = ssl_conf; break; } } } end: if (names) sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) ssl_sock_free_cert_key_and_chain_contents(&certs_and_keys[n]); node = ebmb_first(&sni_keytypes_map); while (node) { next = ebmb_next(node); ebmb_delete(node); node = next; } return rv; } #else /* This is a dummy, that just logs an error and returns error */ static int ssl_sock_load_multi_cert(const char *path, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, char **err) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", path, strerror(errno)); return 1; } #endif /* #if OPENSSL_VERSION_NUMBER >= 0x1000200fL: Support for loading multiple certs into a single SSL_CTX */ /* Loads a certificate key and CA chain from a file. Returns 0 on error, -1 if * an early error happens and the caller must call SSL_CTX_free() by itelf. */ static int ssl_sock_load_cert_chain_file(SSL_CTX *ctx, const char *file, struct bind_conf *s, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount) { BIO *in; X509 *x = NULL, *ca; int i, err; int ret = -1; int order = 0; X509_NAME *xname; char *str; pem_password_cb *passwd_cb; void *passwd_cb_userdata; EVP_PKEY *pkey; struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names; #endif in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, file) <= 0) goto end; passwd_cb = SSL_CTX_get_default_passwd_cb(ctx); passwd_cb_userdata = SSL_CTX_get_default_passwd_cb_userdata(ctx); x = PEM_read_bio_X509_AUX(in, NULL, passwd_cb, passwd_cb_userdata); if (x == NULL) goto end; pkey = X509_get_pubkey(x); if (pkey) { kinfo.bits = EVP_PKEY_bits(pkey); switch(EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: kinfo.sig = TLSEXT_signature_rsa; break; case EVP_PKEY_EC: kinfo.sig = TLSEXT_signature_ecdsa; break; case EVP_PKEY_DSA: kinfo.sig = TLSEXT_signature_dsa; break; } EVP_PKEY_free(pkey); } if (fcount) { while (fcount--) order = ssl_sock_add_cert_sni(ctx, s, ssl_conf, kinfo, sni_filter[fcount], order); } else { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { order = ssl_sock_add_cert_sni(ctx, s, ssl_conf, kinfo, str, order); OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ xname = X509_get_subject_name(x); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { order = ssl_sock_add_cert_sni(ctx, s, ssl_conf, kinfo, str, order); OPENSSL_free(str); } } } ret = 0; /* the caller must not free the SSL_CTX argument anymore */ if (!SSL_CTX_use_certificate(ctx, x)) goto end; #ifdef SSL_CTX_clear_extra_chain_certs SSL_CTX_clear_extra_chain_certs(ctx); #else if (ctx->extra_certs != NULL) { sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; } #endif while ((ca = PEM_read_bio_X509(in, NULL, passwd_cb, passwd_cb_userdata))) { if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) { X509_free(ca); goto end; } } err = ERR_get_error(); if (!err || (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE)) { /* we successfully reached the last cert in the file */ ret = 1; } ERR_clear_error(); end: if (x) X509_free(x); if (in) BIO_free(in); return ret; } static int ssl_sock_load_cert_file(const char *path, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, char **err) { int ret; SSL_CTX *ctx; ctx = SSL_CTX_new(SSLv23_server_method()); if (!ctx) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); return 1; } if (SSL_CTX_use_PrivateKey_file(ctx, path, SSL_FILETYPE_PEM) <= 0) { memprintf(err, "%sunable to load SSL private key from PEM file '%s'.\n", err && *err ? *err : "", path); SSL_CTX_free(ctx); return 1; } ret = ssl_sock_load_cert_chain_file(ctx, path, bind_conf, ssl_conf, sni_filter, fcount); if (ret <= 0) { memprintf(err, "%sunable to load SSL certificate from PEM file '%s'.\n", err && *err ? *err : "", path); if (ret < 0) /* serious error, must do that ourselves */ SSL_CTX_free(ctx); return 1; } if (SSL_CTX_check_private_key(ctx) <= 0) { memprintf(err, "%sinconsistencies between private key and certificate loaded from PEM file '%s'.\n", err && *err ? *err : "", path); return 1; } /* we must not free the SSL_CTX anymore below, since it's already in * the tree, so it will be discovered and cleaned in time. */ #ifndef OPENSSL_NO_DH /* store a NULL pointer to indicate we have not yet loaded a custom DH param file */ if (ssl_dh_ptr_index >= 0) { SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, NULL); } ret = ssl_sock_load_dh_params(ctx, path); if (ret < 0) { if (err) memprintf(err, "%sunable to load DH parameters from file '%s'.\n", *err ? *err : "", path); return 1; } #endif #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) ret = ssl_sock_load_ocsp(ctx, path); if (ret < 0) { if (err) memprintf(err, "%s '%s.ocsp' is present and activates OCSP but it is impossible to compute the OCSP certificate ID (maybe the issuer could not be found)'.\n", *err ? *err : "", path); return 1; } #elif (defined OPENSSL_IS_BORINGSSL) ssl_sock_set_ocsp_response_from_file(ctx, path); #endif #if (OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL && !defined LIBRESSL_VERSION_NUMBER) if (sctl_ex_index >= 0) { ret = ssl_sock_load_sctl(ctx, path); if (ret < 0) { if (err) memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n", *err ? *err : "", path); return 1; } } #endif #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME if (bind_conf->default_ctx) { memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n", err && *err ? *err : ""); return 1; } #endif if (!bind_conf->default_ctx) { bind_conf->default_ctx = ctx; bind_conf->default_ssl_conf = ssl_conf; } return 0; } int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, char **err) { struct dirent **de_list; int i, n; DIR *dir; struct stat buf; char *end; char fp[MAXPATHLEN+1]; int cfgerr = 0; #if OPENSSL_VERSION_NUMBER >= 0x1000200fL int is_bundle; int j; #endif if (stat(path, &buf) == 0) { dir = opendir(path); if (!dir) return ssl_sock_load_cert_file(path, bind_conf, NULL, NULL, 0, err); /* strip trailing slashes, including first one */ for (end = path + strlen(path) - 1; end >= path && *end == '/'; end--) *end = 0; n = scandir(path, &de_list, 0, alphasort); if (n < 0) { memprintf(err, "%sunable to scan directory '%s' : %s.\n", err && *err ? *err : "", path, strerror(errno)); cfgerr++; } else { for (i = 0; i < n; i++) { struct dirent *de = de_list[i]; end = strrchr(de->d_name, '.'); if (end && (!strcmp(end, ".issuer") || !strcmp(end, ".ocsp") || !strcmp(end, ".sctl"))) goto ignore_entry; snprintf(fp, sizeof(fp), "%s/%s", path, de->d_name); if (stat(fp, &buf) != 0) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", fp, strerror(errno)); cfgerr++; goto ignore_entry; } if (!S_ISREG(buf.st_mode)) goto ignore_entry; #if OPENSSL_VERSION_NUMBER >= 0x1000200fL is_bundle = 0; /* Check if current entry in directory is part of a multi-cert bundle */ if (end) { for (j = 0; j < SSL_SOCK_NUM_KEYTYPES; j++) { if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) { is_bundle = 1; break; } } if (is_bundle) { char dp[MAXPATHLEN+1] = {0}; /* this will be the filename w/o the keytype */ int dp_len; dp_len = end - de->d_name; snprintf(dp, dp_len + 1, "%s", de->d_name); /* increment i and free de until we get to a non-bundle cert * Note here that we look at de_list[i + 1] before freeing de * this is important since ignore_entry will free de */ while (i + 1 < n && !strncmp(de_list[i + 1]->d_name, dp, dp_len)) { free(de); i++; de = de_list[i]; } snprintf(fp, sizeof(fp), "%s/%s", path, dp); ssl_sock_load_multi_cert(fp, bind_conf, NULL, NULL, 0, err); /* Successfully processed the bundle */ goto ignore_entry; } } #endif cfgerr += ssl_sock_load_cert_file(fp, bind_conf, NULL, NULL, 0, err); ignore_entry: free(de); } free(de_list); } closedir(dir); return cfgerr; } cfgerr = ssl_sock_load_multi_cert(path, bind_conf, NULL, NULL, 0, err); return cfgerr; } /* Make sure openssl opens /dev/urandom before the chroot. The work is only * done once. Zero is returned if the operation fails. No error is returned * if the random is said as not implemented, because we expect that openssl * will use another method once needed. */ static int ssl_initialize_random() { unsigned char random; static int random_initialized = 0; if (!random_initialized && RAND_bytes(&random, 1) != 0) random_initialized = 1; return random_initialized; } /* release ssl bind conf */ void ssl_sock_free_ssl_conf(struct ssl_bind_conf *conf) { if (conf) { #ifdef OPENSSL_NPN_NEGOTIATED free(conf->npn_str); conf->npn_str = NULL; #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation free(conf->alpn_str); conf->alpn_str = NULL; #endif free(conf->ca_file); conf->ca_file = NULL; free(conf->crl_file); conf->crl_file = NULL; free(conf->ciphers); conf->ciphers = NULL; free(conf->curves); conf->curves = NULL; free(conf->ecdhe); conf->ecdhe = NULL; } } int ssl_sock_load_cert_list_file(char *file, struct bind_conf *bind_conf, struct proxy *curproxy, char **err) { char thisline[CRT_LINESIZE]; char path[MAXPATHLEN+1]; FILE *f; struct stat buf; int linenum = 0; int cfgerr = 0; if ((f = fopen(file, "r")) == NULL) { memprintf(err, "cannot open file '%s' : %s", file, strerror(errno)); return 1; } while (fgets(thisline, sizeof(thisline), f) != NULL) { int arg, newarg, cur_arg, i, ssl_b = 0, ssl_e = 0; char *end; char *args[MAX_CRT_ARGS + 1]; char *line = thisline; char *crt_path; struct ssl_bind_conf *ssl_conf = NULL; linenum++; end = line + strlen(line); if (end-line == sizeof(thisline)-1 && *(end-1) != '\n') { /* Check if we reached the limit and the last char is not \n. * Watch out for the last line without the terminating '\n'! */ memprintf(err, "line %d too long in file '%s', limit is %d characters", linenum, file, (int)sizeof(thisline)-1); cfgerr = 1; break; } arg = 0; newarg = 1; while (*line) { if (*line == '#' || *line == '\n' || *line == '\r') { /* end of string, end of loop */ *line = 0; break; } else if (isspace(*line)) { newarg = 1; *line = 0; } else if (*line == '[') { if (ssl_b) { memprintf(err, "too many '[' on line %d in file '%s'.", linenum, file); cfgerr = 1; break; } if (!arg) { memprintf(err, "file must start with a cert on line %d in file '%s'", linenum, file); cfgerr = 1; break; } ssl_b = arg; newarg = 1; *line = 0; } else if (*line == ']') { if (ssl_e) { memprintf(err, "too many ']' on line %d in file '%s'.", linenum, file); cfgerr = 1; break; } if (!ssl_b) { memprintf(err, "missing '[' in line %d in file '%s'.", linenum, file); cfgerr = 1; break; } ssl_e = arg; newarg = 1; *line = 0; } else if (newarg) { if (arg == MAX_CRT_ARGS) { memprintf(err, "too many args on line %d in file '%s'.", linenum, file); cfgerr = 1; break; } newarg = 0; args[arg++] = line; } line++; } if (cfgerr) break; args[arg++] = line; /* empty line */ if (!*args[0]) continue; crt_path = args[0]; if (*crt_path != '/' && global_ssl.crt_base) { if ((strlen(global_ssl.crt_base) + 1 + strlen(crt_path)) > MAXPATHLEN) { memprintf(err, "'%s' : path too long on line %d in file '%s'", crt_path, linenum, file); cfgerr = 1; break; } snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, crt_path); crt_path = path; } ssl_conf = calloc(1, sizeof *ssl_conf); cur_arg = ssl_b ? ssl_b : 1; while (cur_arg < ssl_e) { newarg = 0; for (i = 0; ssl_bind_kws[i].kw != NULL; i++) { if (strcmp(ssl_bind_kws[i].kw, args[cur_arg]) == 0) { newarg = 1; cfgerr = ssl_bind_kws[i].parse(args, cur_arg, curproxy, ssl_conf, err); if (cur_arg + 1 + ssl_bind_kws[i].skip > ssl_e) { memprintf(err, "ssl args out of '[]' for %s on line %d in file '%s'", args[cur_arg], linenum, file); cfgerr = 1; } cur_arg += 1 + ssl_bind_kws[i].skip; break; } } if (!cfgerr && !newarg) { memprintf(err, "unknown ssl keyword %s on line %d in file '%s'.", args[cur_arg], linenum, file); cfgerr = 1; break; } } if (cfgerr) { ssl_sock_free_ssl_conf(ssl_conf); free(ssl_conf); ssl_conf = NULL; break; } if (stat(crt_path, &buf) == 0) { cfgerr = ssl_sock_load_cert_file(crt_path, bind_conf, ssl_conf, &args[cur_arg], arg - cur_arg - 1, err); } else { cfgerr = ssl_sock_load_multi_cert(crt_path, bind_conf, ssl_conf, &args[cur_arg], arg - cur_arg - 1, err); } if (cfgerr) { memprintf(err, "error processing line %d in file '%s' : %s", linenum, file, *err); break; } } fclose(f); return cfgerr; } /* Create an initial CTX used to start the SSL connection before switchctx */ static int ssl_sock_initial_ctx(struct bind_conf *bind_conf) { SSL_CTX *ctx = NULL; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | SSL_OP_CIPHER_SERVER_PREFERENCE; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; struct tls_version_filter *conf_ssl_methods = &bind_conf->ssl_conf.ssl_methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; int cfgerr = 0; ctx = SSL_CTX_new(SSLv23_server_method()); bind_conf->initial_ctx = ctx; if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("Proxy '%s': no-sslv3/no-tlsv1x are ignored for bind '%s' at [%s:%d]. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); else flags = conf_ssl_methods->flags; min = conf_ssl_methods->min; max = conf_ssl_methods->max; /* start with TLSv10 to remove SSLv3 per default */ if (!min && (!max || max >= CONF_TLSV10)) min = CONF_TLSV10; /* Real min and max should be determinate with configuration and openssl's capabilities */ if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("Proxy '%s': SSL/TLS versions range not contiguous for bind '%s' at [%s:%d]. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr += 1; } /* save real min/max in bind_conf */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; #if (OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any suprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_SERVER); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; if (bind_conf->ssl_options & BC_SSL_O_PREF_CLIE_CIPH) options &= ~SSL_OP_CIPHER_SERVER_PREFERENCE; SSL_CTX_set_options(ctx, options); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); if (global_ssl.life_time) SSL_CTX_set_timeout(ctx, global_ssl.life_time); #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifdef OPENSSL_IS_BORINGSSL SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #elif (OPENSSL_VERSION_NUMBER >= 0x10101000L) SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #else SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); #endif SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); #endif return cfgerr; } static inline void sh_ssl_sess_free_blocks(struct shared_block *first, struct shared_block *block) { if (first == block) { struct sh_ssl_sess_hdr *sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; if (first->len > 0) sh_ssl_sess_tree_delete(sh_ssl_sess); } } /* return first block from sh_ssl_sess */ static inline struct shared_block *sh_ssl_sess_first_block(struct sh_ssl_sess_hdr *sh_ssl_sess) { return (struct shared_block *)((unsigned char *)sh_ssl_sess - ((struct shared_block *)NULL)->data); } /* store a session into the cache * s_id : session id padded with zero to SSL_MAX_SSL_SESSION_ID_LENGTH * data: asn1 encoded session * data_len: asn1 encoded session length * Returns 1 id session was stored (else 0) */ static int sh_ssl_sess_store(unsigned char *s_id, unsigned char *data, int data_len) { struct shared_block *first; struct sh_ssl_sess_hdr *sh_ssl_sess, *oldsh_ssl_sess; first = shctx_row_reserve_hot(ssl_shctx, data_len + sizeof(struct sh_ssl_sess_hdr)); if (!first) { /* Could not retrieve enough free blocks to store that session */ return 0; } /* STORE the key in the first elem */ sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; memcpy(sh_ssl_sess->key_data, s_id, SSL_MAX_SSL_SESSION_ID_LENGTH); first->len = sizeof(struct sh_ssl_sess_hdr); /* it returns the already existing node or current node if none, never returns null */ oldsh_ssl_sess = sh_ssl_sess_tree_insert(sh_ssl_sess); if (oldsh_ssl_sess != sh_ssl_sess) { /* NOTE: Row couldn't be in use because we lock read & write function */ /* release the reserved row */ shctx_row_dec_hot(ssl_shctx, first); /* replace the previous session already in the tree */ sh_ssl_sess = oldsh_ssl_sess; /* ignore the previous session data, only use the header */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_inc_hot(ssl_shctx, first); first->len = sizeof(struct sh_ssl_sess_hdr); } if (shctx_row_data_append(ssl_shctx, first, data, data_len) < 0) { shctx_row_dec_hot(ssl_shctx, first); return 0; } shctx_row_dec_hot(ssl_shctx, first); return 1; } /* SSL callback used when a new session is created while connecting to a server */ static int ssl_sess_new_srv_cb(SSL *ssl, SSL_SESSION *sess) { struct connection *conn = SSL_get_app_data(ssl); struct server *s; s = objt_server(conn->target); if (!(s->ssl_ctx.options & SRV_SSL_O_NO_REUSE)) { int len; unsigned char *ptr; len = i2d_SSL_SESSION(sess, NULL); if (s->ssl_ctx.reused_sess[tid].ptr && s->ssl_ctx.reused_sess[tid].allocated_size >= len) { ptr = s->ssl_ctx.reused_sess[tid].ptr; } else { free(s->ssl_ctx.reused_sess[tid].ptr); ptr = s->ssl_ctx.reused_sess[tid].ptr = malloc(len); s->ssl_ctx.reused_sess[tid].allocated_size = len; } if (s->ssl_ctx.reused_sess[tid].ptr) { s->ssl_ctx.reused_sess[tid].size = i2d_SSL_SESSION(sess, &ptr); } } else { free(s->ssl_ctx.reused_sess[tid].ptr); s->ssl_ctx.reused_sess[tid].ptr = NULL; } return 0; } /* SSL callback used on new session creation */ int sh_ssl_sess_new_cb(SSL *ssl, SSL_SESSION *sess) { unsigned char encsess[SHSESS_MAX_DATA_LEN]; /* encoded session */ unsigned char encid[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* encoded id */ unsigned char *p; int data_len; unsigned int sid_length, sid_ctx_length; const unsigned char *sid_data; const unsigned char *sid_ctx_data; /* Session id is already stored in to key and session id is known * so we dont store it to keep size. */ sid_data = SSL_SESSION_get_id(sess, &sid_length); sid_ctx_data = SSL_SESSION_get0_id_context(sess, &sid_ctx_length); SSL_SESSION_set1_id(sess, sid_data, 0); SSL_SESSION_set1_id_context(sess, sid_ctx_data, 0); /* check if buffer is large enough for the ASN1 encoded session */ data_len = i2d_SSL_SESSION(sess, NULL); if (data_len > SHSESS_MAX_DATA_LEN) goto err; p = encsess; /* process ASN1 session encoding before the lock */ i2d_SSL_SESSION(sess, &p); memcpy(encid, sid_data, sid_length); if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) memset(encid + sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH-sid_length); shctx_lock(ssl_shctx); /* store to cache */ sh_ssl_sess_store(encid, encsess, data_len); shctx_unlock(ssl_shctx); err: /* reset original length values */ SSL_SESSION_set1_id(sess, sid_data, sid_length); SSL_SESSION_set1_id_context(sess, sid_ctx_data, sid_ctx_length); return 0; /* do not increment session reference count */ } /* SSL callback used on lookup an existing session cause none found in internal cache */ SSL_SESSION *sh_ssl_sess_get_cb(SSL *ssl, __OPENSSL_110_CONST__ unsigned char *key, int key_len, int *do_copy) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char data[SHSESS_MAX_DATA_LEN], *p; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; SSL_SESSION *sess; struct shared_block *first; global.shctx_lookups++; /* allow the session to be freed automatically by openssl */ *do_copy = 0; /* tree key is zeros padded sessionid */ if (key_len < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, key, key_len); memset(tmpkey + key_len, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - key_len); key = tmpkey; } /* lock cache */ shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(key); if (!sh_ssl_sess) { /* no session found: unlock cache and exit */ shctx_unlock(ssl_shctx); global.shctx_misses++; return NULL; } /* sh_ssl_sess (shared_block->data) is at the end of shared_block */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_data_get(ssl_shctx, first, data, sizeof(struct sh_ssl_sess_hdr), first->len-sizeof(struct sh_ssl_sess_hdr)); shctx_unlock(ssl_shctx); /* decode ASN1 session */ p = data; sess = d2i_SSL_SESSION(NULL, (const unsigned char **)&p, first->len-sizeof(struct sh_ssl_sess_hdr)); /* Reset session id and session id contenxt */ if (sess) { SSL_SESSION_set1_id(sess, key, key_len); SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); } return sess; } /* SSL callback used to signal session is no more used in internal cache */ void sh_ssl_sess_remove_cb(SSL_CTX *ctx, SSL_SESSION *sess) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; unsigned int sid_length; const unsigned char *sid_data; (void)ctx; sid_data = SSL_SESSION_get_id(sess, &sid_length); /* tree key is zeros padded sessionid */ if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, sid_data, sid_length); memset(tmpkey+sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - sid_length); sid_data = tmpkey; } shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(sid_data); if (sh_ssl_sess) { /* free session */ sh_ssl_sess_tree_delete(sh_ssl_sess); } /* unlock cache */ shctx_unlock(ssl_shctx); } /* Set session cache mode to server and disable openssl internal cache. * Set shared cache callbacks on an ssl context. * Shared context MUST be firstly initialized */ void ssl_set_shctx(SSL_CTX *ctx) { SSL_CTX_set_session_id_context(ctx, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); if (!ssl_shctx) { SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF); return; } SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); /* Set callbacks */ SSL_CTX_sess_set_new_cb(ctx, sh_ssl_sess_new_cb); SSL_CTX_sess_set_get_cb(ctx, sh_ssl_sess_get_cb); SSL_CTX_sess_set_remove_cb(ctx, sh_ssl_sess_remove_cb); } int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, SSL_CTX *ctx) { struct proxy *curproxy = bind_conf->frontend; int cfgerr = 0; int verify = SSL_VERIFY_NONE; struct ssl_bind_conf __maybe_unused *ssl_conf_cur; const char *conf_ciphers; const char *conf_curves = NULL; if (ssl_conf) { struct tls_version_filter *conf_ssl_methods = &ssl_conf->ssl_methods; int i, min, max; int flags = MC_SSL_O_ALL; /* Real min and max should be determinate with configuration and openssl's capabilities */ min = conf_ssl_methods->min ? conf_ssl_methods->min : bind_conf->ssl_conf.ssl_methods.min; max = conf_ssl_methods->max ? conf_ssl_methods->max : bind_conf->ssl_conf.ssl_methods.max; if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); min = max = CONF_TLSV_NONE; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) max = i; else min = max = i; } /* save real min/max */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; if (!min) { ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr += 1; } } switch ((ssl_conf && ssl_conf->verify) ? ssl_conf->verify : bind_conf->ssl_conf.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_OPTIONAL: verify = SSL_VERIFY_PEER; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT; break; } SSL_CTX_set_verify(ctx, verify, ssl_sock_bind_verifycbk); if (verify & SSL_VERIFY_PEER) { char *ca_file = (ssl_conf && ssl_conf->ca_file) ? ssl_conf->ca_file : bind_conf->ssl_conf.ca_file; char *crl_file = (ssl_conf && ssl_conf->crl_file) ? ssl_conf->crl_file : bind_conf->ssl_conf.crl_file; if (ca_file) { /* load CAfile to verify */ if (!SSL_CTX_load_verify_locations(ctx, ca_file, NULL)) { ha_alert("Proxy '%s': unable to load CA file '%s' for bind '%s' at [%s:%d].\n", curproxy->id, ca_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } if (!((ssl_conf && ssl_conf->no_ca_names) || bind_conf->ssl_conf.no_ca_names)) { /* set CA names for client cert request, function returns void */ SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(ca_file)); } } else { ha_alert("Proxy '%s': verify is enabled but no CA file specified for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } #ifdef X509_V_FLAG_CRL_CHECK if (crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(ctx); if (!store || !X509_STORE_load_locations(store, crl_file, NULL)) { ha_alert("Proxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n", curproxy->id, crl_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif ERR_clear_error(); } #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) if(bind_conf->keys_ref) { if (!SSL_CTX_set_tlsext_ticket_key_cb(ctx, ssl_tlsext_ticket_key_cb)) { ha_alert("Proxy '%s': unable to set callback for TLS ticket validation for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } } #endif ssl_set_shctx(ctx); conf_ciphers = (ssl_conf && ssl_conf->ciphers) ? ssl_conf->ciphers : bind_conf->ssl_conf.ciphers; if (conf_ciphers && !SSL_CTX_set_cipher_list(ctx, conf_ciphers)) { ha_alert("Proxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n", curproxy->id, conf_ciphers, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } #ifndef OPENSSL_NO_DH /* If tune.ssl.default-dh-param has not been set, neither has ssl-default-dh-file and no static DH params were in the certificate file. */ if (global_ssl.default_dh_param == 0 && global_dh == NULL && (ssl_dh_ptr_index == -1 || SSL_CTX_get_ex_data(ctx, ssl_dh_ptr_index) == NULL)) { STACK_OF(SSL_CIPHER) * ciphers = NULL; const SSL_CIPHER * cipher = NULL; char cipher_description[128]; /* The description of ciphers using an Ephemeral Diffie Hellman key exchange contains " Kx=DH " or " Kx=DH(". Beware of " Kx=DH/", which is not ephemeral DH. */ const char dhe_description[] = " Kx=DH "; const char dhe_export_description[] = " Kx=DH("; int idx = 0; int dhe_found = 0; SSL *ssl = NULL; ssl = SSL_new(ctx); if (ssl) { ciphers = SSL_get_ciphers(ssl); if (ciphers) { for (idx = 0; idx < sk_SSL_CIPHER_num(ciphers); idx++) { cipher = sk_SSL_CIPHER_value(ciphers, idx); if (SSL_CIPHER_description(cipher, cipher_description, sizeof (cipher_description)) == cipher_description) { if (strstr(cipher_description, dhe_description) != NULL || strstr(cipher_description, dhe_export_description) != NULL) { dhe_found = 1; break; } } } } SSL_free(ssl); ssl = NULL; } if (dhe_found) { ha_warning("Setting tune.ssl.default-dh-param to 1024 by default, if your workload permits it you should set it to at least 2048. Please set a value >= 1024 to make this warning disappear.\n"); } global_ssl.default_dh_param = 1024; } if (global_ssl.default_dh_param >= 1024) { if (local_dh_1024 == NULL) { local_dh_1024 = ssl_get_dh_1024(); } if (global_ssl.default_dh_param >= 2048) { if (local_dh_2048 == NULL) { local_dh_2048 = ssl_get_dh_2048(); } if (global_ssl.default_dh_param >= 4096) { if (local_dh_4096 == NULL) { local_dh_4096 = ssl_get_dh_4096(); } } } } #endif /* OPENSSL_NO_DH */ SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk); #if OPENSSL_VERSION_NUMBER >= 0x00907000L SSL_CTX_set_msg_callback(ctx, ssl_sock_msgcbk); #endif #ifdef OPENSSL_NPN_NEGOTIATED ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->npn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.npn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, ssl_conf_cur); #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->alpn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.alpn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_alpn_select_cb(ctx, ssl_sock_advertise_alpn_protos, ssl_conf_cur); #endif #if OPENSSL_VERSION_NUMBER >= 0x1000200fL conf_curves = (ssl_conf && ssl_conf->curves) ? ssl_conf->curves : bind_conf->ssl_conf.curves; if (conf_curves) { if (!SSL_CTX_set1_curves_list(ctx, conf_curves)) { ha_alert("Proxy '%s': unable to set SSL curves list to '%s' for bind '%s' at [%s:%d].\n", curproxy->id, conf_curves, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } #if defined(SSL_CTX_set_ecdh_auto) (void)SSL_CTX_set_ecdh_auto(ctx, 1); #endif } #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) if (!conf_curves) { int i; EC_KEY *ecdh; #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : NULL); if (ecdhe == NULL) { SSL_CTX_set_dh_auto(ctx, 1); return cfgerr; } #else const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); #endif i = OBJ_sn2nid(ecdhe); if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) { ha_alert("Proxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n", curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } else { SSL_CTX_set_tmp_ecdh(ctx, ecdh); EC_KEY_free(ecdh); } } #endif return cfgerr; } static int ssl_sock_srv_hostcheck(const char *pattern, const char *hostname) { const char *pattern_wildcard, *pattern_left_label_end, *hostname_left_label_end; size_t prefixlen, suffixlen; /* Trivial case */ if (strcmp(pattern, hostname) == 0) return 1; /* The rest of this logic is based on RFC 6125, section 6.4.3 * (http://tools.ietf.org/html/rfc6125#section-6.4.3) */ pattern_wildcard = NULL; pattern_left_label_end = pattern; while (*pattern_left_label_end != '.') { switch (*pattern_left_label_end) { case 0: /* End of label not found */ return 0; case '*': /* If there is more than one wildcards */ if (pattern_wildcard) return 0; pattern_wildcard = pattern_left_label_end; break; } pattern_left_label_end++; } /* If it's not trivial and there is no wildcard, it can't * match */ if (!pattern_wildcard) return 0; /* Make sure all labels match except the leftmost */ hostname_left_label_end = strchr(hostname, '.'); if (!hostname_left_label_end || strcmp(pattern_left_label_end, hostname_left_label_end) != 0) return 0; /* Make sure the leftmost label of the hostname is long enough * that the wildcard can match */ if (hostname_left_label_end - hostname < (pattern_left_label_end - pattern) - 1) return 0; /* Finally compare the string on either side of the * wildcard */ prefixlen = pattern_wildcard - pattern; suffixlen = pattern_left_label_end - (pattern_wildcard + 1); if ((prefixlen && (memcmp(pattern, hostname, prefixlen) != 0)) || (suffixlen && (memcmp(pattern_wildcard + 1, hostname_left_label_end - suffixlen, suffixlen) != 0))) return 0; return 1; } static int ssl_sock_srv_verifycbk(int ok, X509_STORE_CTX *ctx) { SSL *ssl; struct connection *conn; const char *servername; const char *sni; int depth; X509 *cert; STACK_OF(GENERAL_NAME) *alt_names; int i; X509_NAME *cert_subject; char *str; if (ok == 0) return ok; ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_app_data(ssl); /* We're checking if the provided hostnames match the desired one. The * desired hostname comes from the SNI we presented if any, or if not * provided then it may have been explicitly stated using a "verifyhost" * directive. If neither is set, we don't care about the name so the * verification is OK. */ servername = SSL_get_servername(conn->xprt_ctx, TLSEXT_NAMETYPE_host_name); sni = servername; if (!servername) { servername = objt_server(conn->target)->ssl_ctx.verify_host; if (!servername) return ok; } /* We only need to verify the CN on the actual server cert, * not the indirect CAs */ depth = X509_STORE_CTX_get_error_depth(ctx); if (depth != 0) return ok; /* At this point, the cert is *not* OK unless we can find a * hostname match */ ok = 0; cert = X509_STORE_CTX_get_current_cert(ctx); /* It seems like this might happen if verify peer isn't set */ if (!cert) return ok; alt_names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL); if (alt_names) { for (i = 0; !ok && i < sk_GENERAL_NAME_num(alt_names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(alt_names, i); if (name->type == GEN_DNS) { #if OPENSSL_VERSION_NUMBER < 0x00907000L if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.ia5) >= 0) { #else if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { #endif ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(alt_names, GENERAL_NAME_free); } cert_subject = X509_get_subject_name(cert); i = -1; while (!ok && (i = X509_NAME_get_index_by_NID(cert_subject, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(cert_subject, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } /* report the mismatch and indicate if SNI was used or not */ if (!ok && !conn->err_code) conn->err_code = sni ? CO_ER_SSL_MISMATCH_SNI : CO_ER_SSL_MISMATCH; return ok; } /* prepare ssl context from servers options. Returns an error count */ int ssl_sock_prepare_srv_ctx(struct server *srv) { struct proxy *curproxy = srv->proxy; int cfgerr = 0; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; int verify = SSL_VERIFY_NONE; SSL_CTX *ctx = NULL; struct tls_version_filter *conf_ssl_methods = &srv->ssl_ctx.methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); cfgerr++; } /* Automatic memory computations need to know we use SSL there */ global.ssl_used_backend = 1; /* Initiate SSL context for current server */ if (!srv->ssl_ctx.reused_sess) { if ((srv->ssl_ctx.reused_sess = calloc(1, global.nbthread*sizeof(*srv->ssl_ctx.reused_sess))) == NULL) { ha_alert("Proxy '%s', server '%s' [%s:%d] out of memory.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; return cfgerr; } } if (srv->use_ssl) srv->xprt = &ssl_sock; if (srv->check.use_ssl) srv->check.xprt = &ssl_sock; ctx = SSL_CTX_new(SSLv23_client_method()); if (!ctx) { ha_alert("config : %s '%s', server '%s': unable to allocate ssl context.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr++; return cfgerr; } if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("config : %s '%s': no-sslv3/no-tlsv1x are ignored for server '%s'. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id); else flags = conf_ssl_methods->flags; /* Real min and max should be determinate with configuration and openssl's capabilities */ if (conf_ssl_methods->min) flags |= (methodVersions[conf_ssl_methods->min].flag - 1); if (conf_ssl_methods->max) flags |= ~((methodVersions[conf_ssl_methods->max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("config : %s '%s': SSL/TLS versions range not contiguous for server '%s'. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("config : %s '%s': all SSL/TLS versions are disabled for server '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr += 1; } #if (OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any suprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_CLIENT); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; SSL_CTX_set_options(ctx, options); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); srv->ssl_ctx.ctx = ctx; if (srv->ssl_ctx.client_crt) { if (SSL_CTX_use_PrivateKey_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt, SSL_FILETYPE_PEM) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load SSL private key from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_use_certificate_chain_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load ssl certificate from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_check_private_key(srv->ssl_ctx.ctx) <= 0) { ha_alert("config : %s '%s', server '%s': inconsistencies between private key and certificate loaded from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } } if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) verify = SSL_VERIFY_PEER; switch (srv->ssl_ctx.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER; break; } SSL_CTX_set_verify(srv->ssl_ctx.ctx, verify, (srv->ssl_ctx.verify_host || (verify & SSL_VERIFY_PEER)) ? ssl_sock_srv_verifycbk : NULL); if (verify & SSL_VERIFY_PEER) { if (srv->ssl_ctx.ca_file) { /* load CAfile to verify */ if (!SSL_CTX_load_verify_locations(srv->ssl_ctx.ctx, srv->ssl_ctx.ca_file, NULL)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to load CA file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ca_file); cfgerr++; } } else { if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled by default but no CA file specified. If you're running on a LAN where you're certain to trust the server's certificate, please set an explicit 'verify none' statement on the 'server' line, or use 'ssl-server-verify none' in the global section to disable server-side verifications by default.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); else ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled but no CA file specified.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; } #ifdef X509_V_FLAG_CRL_CHECK if (srv->ssl_ctx.crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(srv->ssl_ctx.ctx); if (!store || !X509_STORE_load_locations(store, srv->ssl_ctx.crl_file, NULL)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to configure CRL file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.crl_file); cfgerr++; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif } SSL_CTX_set_session_cache_mode(srv->ssl_ctx.ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE); SSL_CTX_sess_set_new_cb(srv->ssl_ctx.ctx, ssl_sess_new_srv_cb); if (srv->ssl_ctx.ciphers && !SSL_CTX_set_cipher_list(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphers)) { ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set SSL cipher list to '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphers); cfgerr++; } return cfgerr; } /* Walks down the two trees in bind_conf and prepares all certs. The pointer may * be NULL, in which case nothing is done. Returns the number of errors * encountered. */ int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node; struct sni_ctx *sni; int err = 0; /* Automatic memory computations need to know we use SSL there */ global.ssl_used_frontend = 1; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); err++; } /* Create initial_ctx used to start the ssl connection before do switchctx */ if (!bind_conf->initial_ctx) { err += ssl_sock_initial_ctx(bind_conf); /* It should not be necessary to call this function, but it's necessary first to check and move all initialisation related to initial_ctx in ssl_sock_initial_ctx. */ err += ssl_sock_prepare_ctx(bind_conf, NULL, bind_conf->initial_ctx); } if (bind_conf->default_ctx) err += ssl_sock_prepare_ctx(bind_conf, bind_conf->default_ssl_conf, bind_conf->default_ctx); node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ err += ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx); node = ebmb_next(node); } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ err += ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx); node = ebmb_next(node); } return err; } /* Prepares all the contexts for a bind_conf and allocates the shared SSL * context if needed. Returns < 0 on error, 0 on success. The warnings and * alerts are directly emitted since the rest of the stack does it below. */ int ssl_sock_prepare_bind_conf(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; int alloc_ctx; int err; if (!bind_conf->is_ssl) { if (bind_conf->default_ctx) { ha_warning("Proxy '%s': A certificate was specified but SSL was not enabled on bind '%s' at [%s:%d] (use 'ssl').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } return 0; } if (!bind_conf->default_ctx) { if (bind_conf->strict_sni && !bind_conf->generate_certs) { ha_warning("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d], ssl connections will fail (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } else { ha_alert("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d] (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); return -1; } } if (!ssl_shctx && global.tune.sslcachesize) { alloc_ctx = shctx_init(&ssl_shctx, global.tune.sslcachesize, sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE, sizeof(*sh_ssl_sess_tree), ((global.nbthread > 1) || (!global_ssl.private_cache && (global.nbproc > 1))) ? 1 : 0); if (alloc_ctx < 0) { if (alloc_ctx == SHCTX_E_INIT_LOCK) ha_alert("Unable to initialize the lock for the shared SSL session cache. You can retry using the global statement 'tune.ssl.force-private-cache' but it could increase CPU usage due to renegotiations if nbproc > 1.\n"); else ha_alert("Unable to allocate SSL session cache.\n"); return -1; } /* free block callback */ ssl_shctx->free_block = sh_ssl_sess_free_blocks; /* init the root tree within the extra space */ sh_ssl_sess_tree = (void *)ssl_shctx + sizeof(struct shared_context); *sh_ssl_sess_tree = EB_ROOT_UNIQUE; } err = 0; /* initialize all certificate contexts */ err += ssl_sock_prepare_all_ctx(bind_conf); /* initialize CA variables if the certificates generation is enabled */ err += ssl_sock_load_ca(bind_conf); return -err; } /* release ssl context allocated for servers. */ void ssl_sock_free_srv_ctx(struct server *srv) { if (srv->ssl_ctx.ctx) SSL_CTX_free(srv->ssl_ctx.ctx); } /* Walks down the two trees in bind_conf and frees all the certs. The pointer may * be NULL, in which case nothing is done. The default_ctx is nullified too. */ void ssl_sock_free_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node, *back; struct sni_ctx *sni; node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); if (!sni->order) { /* only free the CTX on its first occurrence */ SSL_CTX_free(sni->ctx); ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); if (!sni->order) { /* only free the CTX on its first occurrence */ SSL_CTX_free(sni->ctx); ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } SSL_CTX_free(bind_conf->initial_ctx); bind_conf->initial_ctx = NULL; bind_conf->default_ctx = NULL; bind_conf->default_ssl_conf = NULL; } /* Destroys all the contexts for a bind_conf. This is used during deinit(). */ void ssl_sock_destroy_bind_conf(struct bind_conf *bind_conf) { ssl_sock_free_ca(bind_conf); ssl_sock_free_all_ctx(bind_conf); ssl_sock_free_ssl_conf(&bind_conf->ssl_conf); free(bind_conf->ca_sign_file); free(bind_conf->ca_sign_pass); if (bind_conf->keys_ref) { free(bind_conf->keys_ref->filename); free(bind_conf->keys_ref->tlskeys); LIST_DEL(&bind_conf->keys_ref->list); free(bind_conf->keys_ref); } bind_conf->keys_ref = NULL; bind_conf->ca_sign_pass = NULL; bind_conf->ca_sign_file = NULL; } /* Load CA cert file and private key used to generate certificates */ int ssl_sock_load_ca(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; FILE *fp; X509 *cacert = NULL; EVP_PKEY *capkey = NULL; int err = 0; if (!bind_conf->generate_certs) return err; #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (global_ssl.ctx_cache) { ssl_ctx_lru_tree = lru64_new(global_ssl.ctx_cache); HA_RWLOCK_INIT(&ssl_ctx_lru_rwlock); } ssl_ctx_lru_seed = (unsigned int)time(NULL); ssl_ctx_serial = now_ms; #endif if (!bind_conf->ca_sign_file) { ha_alert("Proxy '%s': cannot enable certificate generation, " "no CA certificate File configured at [%s:%d].\n", px->id, bind_conf->file, bind_conf->line); goto load_error; } /* read in the CA certificate */ if (!(fp = fopen(bind_conf->ca_sign_file, "r"))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto load_error; } if (!(cacert = PEM_read_X509(fp, NULL, NULL, NULL))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } rewind(fp); if (!(capkey = PEM_read_PrivateKey(fp, NULL, NULL, bind_conf->ca_sign_pass))) { ha_alert("Proxy '%s': Failed to read CA private key file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } fclose (fp); bind_conf->ca_sign_cert = cacert; bind_conf->ca_sign_pkey = capkey; return err; read_error: fclose (fp); if (capkey) EVP_PKEY_free(capkey); if (cacert) X509_free(cacert); load_error: bind_conf->generate_certs = 0; err++; return err; } /* Release CA cert and private key used to generate certificated */ void ssl_sock_free_ca(struct bind_conf *bind_conf) { if (bind_conf->ca_sign_pkey) EVP_PKEY_free(bind_conf->ca_sign_pkey); if (bind_conf->ca_sign_cert) X509_free(bind_conf->ca_sign_cert); bind_conf->ca_sign_pkey = NULL; bind_conf->ca_sign_cert = NULL; } /* * This function is called if SSL * context is not yet allocated. The function * is designed to be called before any other data-layer operation and sets the * handshake flag on the connection. It is safe to call it multiple times. * It returns 0 on success and -1 in error case. */ static int ssl_sock_init(struct connection *conn) { /* already initialized */ if (conn->xprt_ctx) return 0; if (!conn_ctrl_ready(conn)) return 0; if (global.maxsslconn && sslconns >= global.maxsslconn) { conn->err_code = CO_ER_SSL_TOO_MANY; return -1; } /* If it is in client mode initiate SSL session in connect state otherwise accept state */ if (objt_server(conn->target)) { int may_retry = 1; retry_connect: /* Alloc a new SSL session ctx */ conn->xprt_ctx = SSL_new(objt_server(conn->target)->ssl_ctx.ctx); if (!conn->xprt_ctx) { if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } /* set fd on SSL session context */ if (!SSL_set_fd(conn->xprt_ctx, conn->handle.fd)) { SSL_free(conn->xprt_ctx); conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } /* set connection pointer */ if (!SSL_set_app_data(conn->xprt_ctx, conn)) { SSL_free(conn->xprt_ctx); conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } SSL_set_connect_state(conn->xprt_ctx); if (objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { const unsigned char *ptr = objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr; SSL_SESSION *sess = d2i_SSL_SESSION(NULL, &ptr, objt_server(conn->target)->ssl_ctx.reused_sess[tid].size); if(sess && !SSL_set_session(conn->xprt_ctx, sess)) { SSL_SESSION_free(sess); free(objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } else if (sess) { SSL_SESSION_free(sess); } } /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; sslconns++; totalsslconns++; return 0; } else if (objt_listener(conn->target)) { int may_retry = 1; retry_accept: /* Alloc a new SSL session ctx */ conn->xprt_ctx = SSL_new(objt_listener(conn->target)->bind_conf->initial_ctx); if (!conn->xprt_ctx) { if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } /* set fd on SSL session context */ if (!SSL_set_fd(conn->xprt_ctx, conn->handle.fd)) { SSL_free(conn->xprt_ctx); conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } /* set connection pointer */ if (!SSL_set_app_data(conn->xprt_ctx, conn)) { SSL_free(conn->xprt_ctx); conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; return -1; } SSL_set_accept_state(conn->xprt_ctx); /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; #if OPENSSL_VERSION_NUMBER >= 0x10101000L || defined(OPENSSL_IS_BORINGSSL) conn->flags |= CO_FL_EARLY_SSL_HS; #endif sslconns++; totalsslconns++; return 0; } /* don't know how to handle such a target */ conn->err_code = CO_ER_SSL_NO_TARGET; return -1; } /* This is the callback which is used when an SSL handshake is pending. It * updates the FD status if it wants some polling before being called again. * It returns 0 if it fails in a fatal way or needs to poll to go further, * otherwise it returns non-zero and removes itself from the connection's * flags (the bit is provided in by the caller). */ int ssl_sock_handshake(struct connection *conn, unsigned int flag) { int ret; if (!conn_ctrl_ready(conn)) return 0; if (!conn->xprt_ctx) goto out_error; #if OPENSSL_VERSION_NUMBER >= 0x10101000L /* * Check if we have early data. If we do, we have to read them * before SSL_do_handshake() is called, And there's no way to * detect early data, except to try to read them */ if (conn->flags & CO_FL_EARLY_SSL_HS) { size_t read_data; ret = SSL_read_early_data(conn->xprt_ctx, &conn->tmp_early_data, 1, &read_data); if (ret == SSL_READ_EARLY_DATA_ERROR) goto check_error; if (ret == SSL_READ_EARLY_DATA_SUCCESS) { conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN); return 1; } else conn->flags &= ~CO_FL_EARLY_SSL_HS; } #endif /* If we use SSL_do_handshake to process a reneg initiated by * the remote peer, it sometimes returns SSL_ERROR_SSL. * Usually SSL_write and SSL_read are used and process implicitly * the reneg handshake. * Here we use SSL_peek as a workaround for reneg. */ if ((conn->flags & CO_FL_CONNECTED) && SSL_renegotiate_pending(conn->xprt_ctx)) { char c; ret = SSL_peek(conn->xprt_ctx, &c, 1); if (ret <= 0) { /* handshake may have not been completed, let's find why */ ret = SSL_get_error(conn->xprt_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ __conn_sock_stop_recv(conn); __conn_sock_want_send(conn); fd_cant_send(conn->handle.fd); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake may have been completed but we have * no more data to read. */ if (!SSL_renegotiate_pending(conn->xprt_ctx)) { ret = 1; goto reneg_ok; } /* SSL handshake needs to read, L4 connection is ready */ if (conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; __conn_sock_stop_send(conn); __conn_sock_want_recv(conn); fd_cant_recv(conn->handle.fd); return 0; } #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(conn, conn->xprt_ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #ifdef OPENSSL_NO_HEARTBEATS /* BoringSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(LIBRESSL_VERSION_NUMBER) OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)conn->xprt_ctx); empty_handshake = state == TLS_ST_BEFORE; #else empty_handshake = !((SSL *)conn->xprt_ctx)->packet_length; #endif if (empty_handshake) { if (!errno) { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } /* read some data: consider handshake completed */ goto reneg_ok; } ret = SSL_do_handshake(conn->xprt_ctx); check_error: if (ret != 1) { /* handshake did not complete, let's find why */ ret = SSL_get_error(conn->xprt_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ __conn_sock_stop_recv(conn); __conn_sock_want_send(conn); fd_cant_send(conn->handle.fd); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* SSL handshake needs to read, L4 connection is ready */ if (conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; __conn_sock_stop_send(conn); __conn_sock_want_recv(conn); fd_cant_recv(conn->handle.fd); return 0; } #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(conn, conn->xprt_ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #ifdef OPENSSL_NO_HEARTBEATS /* BoringSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(LIBRESSL_VERSION_NUMBER) OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)conn->xprt_ctx); empty_handshake = state == TLS_ST_BEFORE; #else empty_handshake = !((SSL *)conn->xprt_ctx)->packet_length; #endif if (empty_handshake) { if (!errno) { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (conn->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) else { /* * If the server refused the early data, we have to send a * 425 to the client, as we no longer have the data to sent * them again. */ if ((conn->flags & CO_FL_EARLY_DATA) && (objt_server(conn->target))) { if (SSL_get_early_data_status(conn->xprt_ctx) == SSL_EARLY_DATA_REJECTED) { conn->err_code = CO_ER_SSL_EARLY_FAILED; goto out_error; } } } #endif reneg_ok: #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* ASYNC engine API doesn't support moving read/write * buffers. So we disable ASYNC mode right after * the handshake to avoid buffer oveflows. */ if (global_ssl.async) SSL_clear_mode(conn->xprt_ctx, SSL_MODE_ASYNC); #endif /* Handshake succeeded */ if (!SSL_session_reused(conn->xprt_ctx)) { if (objt_server(conn->target)) { update_freq_ctr(&global.ssl_be_keys_per_sec, 1); if (global.ssl_be_keys_per_sec.curr_ctr > global.ssl_be_keys_max) global.ssl_be_keys_max = global.ssl_be_keys_per_sec.curr_ctr; } else { update_freq_ctr(&global.ssl_fe_keys_per_sec, 1); if (global.ssl_fe_keys_per_sec.curr_ctr > global.ssl_fe_keys_max) global.ssl_fe_keys_max = global.ssl_fe_keys_per_sec.curr_ctr; } } #ifdef OPENSSL_IS_BORINGSSL if ((conn->flags & CO_FL_EARLY_SSL_HS) && !SSL_in_early_data(conn->xprt_ctx)) conn->flags &= ~CO_FL_EARLY_SSL_HS; #endif /* The connection is now established at both layers, it's time to leave */ conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN); return 1; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); /* free resumed session if exists */ if (objt_server(conn->target) && objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { free(objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } /* Fail on all other handshake errors */ conn->flags |= CO_FL_ERROR; if (!conn->err_code) conn->err_code = CO_ER_SSL_HANDSHAKE; return 0; } /* Receive up to bytes from connection 's socket and store them * into buffer . Only one call to recv() is performed, unless the * buffer wraps, in which case a second call may be performed. The connection's * flags are updated with whatever special event is detected (error, read0, * empty). The caller is responsible for taking care of those events and * avoiding the call if inappropriate. The function does not call the * connection's polling update function, so the caller is responsible for this. */ static int ssl_sock_to_buf(struct connection *conn, struct buffer *buf, int count) { int ret, done = 0; int try; conn_refresh_polling_flags(conn); if (!conn->xprt_ctx) goto out_error; if (conn->flags & CO_FL_HANDSHAKE) /* a handshake was requested */ return 0; /* let's realign the buffer to optimize I/O */ if (buffer_empty(buf)) { buf->p = buf->data; } /* read the largest possible block. For this, we perform only one call * to recv() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. A new attempt is made on * EINTR too. */ while (count > 0) { int need_out = 0; /* first check if we have some room after p+i */ try = buf->data + buf->size - (buf->p + buf->i); /* otherwise continue between data and p-o */ if (try <= 0) { try = buf->p - (buf->data + buf->o); if (try <= 0) break; } if (try > count) try = count; if (((conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == CO_FL_EARLY_SSL_HS) && conn->tmp_early_data != -1) { *bi_end(buf) = conn->tmp_early_data; done++; try--; count--; buf->i++; conn->tmp_early_data = -1; continue; } #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) if (conn->flags & CO_FL_EARLY_SSL_HS) { size_t read_length; ret = SSL_read_early_data(conn->xprt_ctx, bi_end(buf), try, &read_length); if (ret == SSL_READ_EARLY_DATA_SUCCESS && read_length > 0) conn->flags |= CO_FL_EARLY_DATA; if (ret == SSL_READ_EARLY_DATA_SUCCESS || ret == SSL_READ_EARLY_DATA_FINISH) { if (ret == SSL_READ_EARLY_DATA_FINISH) { /* * We're done reading the early data, * let's make the handshake */ conn->flags &= ~CO_FL_EARLY_SSL_HS; conn->flags |= CO_FL_SSL_WAIT_HS; need_out = 1; if (read_length == 0) break; } ret = read_length; } } else #endif ret = SSL_read(conn->xprt_ctx, bi_end(buf), try); #ifdef OPENSSL_IS_BORINGSSL if (conn->flags & CO_FL_EARLY_SSL_HS) { if (SSL_in_early_data(conn->xprt_ctx)) { if (ret > 0) conn->flags |= CO_FL_EARLY_DATA; } else { conn->flags &= ~(CO_FL_EARLY_SSL_HS); } } #endif if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { buf->i += ret; done += ret; count -= ret; } else { ret = SSL_get_error(conn->xprt_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* handshake is running, and it needs to enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_want_send(conn); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(conn->xprt_ctx, SSL_MODE_ASYNC); #endif break; } else if (ret == SSL_ERROR_WANT_READ) { if (SSL_renegotiate_pending(conn->xprt_ctx)) { /* handshake is running, and it may need to re-enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_want_recv(conn); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(conn->xprt_ctx, SSL_MODE_ASYNC); #endif break; } /* we need to poll for retry a read later */ fd_cant_recv(conn->handle.fd); break; } else if (ret == SSL_ERROR_ZERO_RETURN) goto read0; /* For SSL_ERROR_SYSCALL, make sure to clear the error * stack before shutting down the connection for * reading. */ if (ret == SSL_ERROR_SYSCALL && (!errno || errno == EAGAIN)) goto clear_ssl_error; /* otherwise it's a real error */ goto out_error; } if (need_out) break; } leave: conn_cond_update_sock_polling(conn); return done; clear_ssl_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); read0: conn_sock_read0(conn); goto leave; out_error: conn->flags |= CO_FL_ERROR; /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); goto leave; } /* Send all pending bytes from buffer to connection 's socket. * may contain some CO_SFL_* flags to hint the system about other * pending data for example, but this flag is ignored at the moment. * Only one call to send() is performed, unless the buffer wraps, in which case * a second call may be performed. The connection's flags are updated with * whatever special event is detected (error, empty). The caller is responsible * for taking care of those events and avoiding the call if inappropriate. The * function does not call the connection's polling update function, so the caller * is responsible for this. */ static int ssl_sock_from_buf(struct connection *conn, struct buffer *buf, int flags) { int ret, try, done; done = 0; conn_refresh_polling_flags(conn); if (!conn->xprt_ctx) goto out_error; if (conn->flags & CO_FL_HANDSHAKE) /* a handshake was requested */ return 0; /* send the largest possible block. For this we perform only one call * to send() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. */ while (buf->o) { #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) size_t written_data; #endif try = bo_contig_data(buf); if (!(flags & CO_SFL_STREAMER) && !(conn->xprt_st & SSL_SOCK_SEND_UNLIMITED) && global_ssl.max_record && try > global_ssl.max_record) { try = global_ssl.max_record; } else { /* we need to keep the information about the fact that * we're not limiting the upcoming send(), because if it * fails, we'll have to retry with at least as many data. */ conn->xprt_st |= SSL_SOCK_SEND_UNLIMITED; } #if (OPENSSL_VERSION_NUMBER >= 0x10101000L) if (!SSL_is_init_finished(conn->xprt_ctx)) { unsigned int max_early; if (objt_listener(conn->target)) max_early = SSL_get_max_early_data(conn->xprt_ctx); else { if (SSL_get0_session(conn->xprt_ctx)) max_early = SSL_SESSION_get_max_early_data(SSL_get0_session(conn->xprt_ctx)); else max_early = 0; } if (try + conn->sent_early_data > max_early) { try -= (try + conn->sent_early_data) - max_early; if (try <= 0) { if (!(conn->flags & CO_FL_EARLY_SSL_HS)) conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; break; } } ret = SSL_write_early_data(conn->xprt_ctx, bo_ptr(buf), try, &written_data); if (ret == 1) { ret = written_data; conn->sent_early_data += ret; if (objt_server(conn->target)) { conn->flags &= ~CO_FL_EARLY_SSL_HS; conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN | CO_FL_EARLY_DATA; } } } else #endif ret = SSL_write(conn->xprt_ctx, bo_ptr(buf), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { conn->xprt_st &= ~SSL_SOCK_SEND_UNLIMITED; buf->o -= ret; done += ret; if (likely(buffer_empty(buf))) /* optimize data alignment in the buffer */ buf->p = buf->data; } else { ret = SSL_get_error(conn->xprt_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { if (SSL_renegotiate_pending(conn->xprt_ctx)) { /* handshake is running, and it may need to re-enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_want_send(conn); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(conn->xprt_ctx, SSL_MODE_ASYNC); #endif break; } /* we need to poll to retry a write later */ fd_cant_send(conn->handle.fd); break; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake is running, and it needs to enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_want_recv(conn); #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(conn->xprt_ctx, SSL_MODE_ASYNC); #endif break; } goto out_error; } } leave: conn_cond_update_sock_polling(conn); return done; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); conn->flags |= CO_FL_ERROR; goto leave; } static void ssl_sock_close(struct connection *conn) { if (conn->xprt_ctx) { #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) { OSSL_ASYNC_FD all_fd[32], afd; size_t num_all_fds = 0; int i; SSL_get_all_async_fds(conn->xprt_ctx, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(conn->xprt_ctx, all_fd, &num_all_fds); /* If an async job is pending, we must try to to catch the end using polling before calling SSL_free */ if (num_all_fds && SSL_waiting_for_async(conn->xprt_ctx)) { for (i=0 ; i < num_all_fds ; i++) { /* switch on an handler designed to * handle the SSL_free */ afd = all_fd[i]; fdtab[afd].iocb = ssl_async_fd_free; fdtab[afd].owner = conn->xprt_ctx; fd_want_recv(afd); /* To ensure that the fd cache won't be used * and we'll catch a real RD event. */ fd_cant_recv(afd); } conn->xprt_ctx = NULL; HA_ATOMIC_ADD(&jobs, 1); return; } /* Else we can remove the fds from the fdtab * and call SSL_free. * note: we do a fd_remove and not a delete * because the fd is owned by the engine. * the engine is responsible to close */ for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); } #endif SSL_free(conn->xprt_ctx); conn->xprt_ctx = NULL; sslconns--; } } /* This function tries to perform a clean shutdown on an SSL connection, and in * any case, flags the connection as reusable if no handshake was in progress. */ static void ssl_sock_shutw(struct connection *conn, int clean) { if (conn->flags & CO_FL_HANDSHAKE) return; if (!clean) /* don't sent notify on SSL_shutdown */ SSL_set_quiet_shutdown(conn->xprt_ctx, 1); /* no handshake was in progress, try a clean ssl shutdown */ if (SSL_shutdown(conn->xprt_ctx) <= 0) { /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); } } /* used for ppv2 pkey alog (can be used for logging) */ int ssl_sock_get_pkey_algo(struct connection *conn, struct chunk *out) { struct pkey_info *pkinfo; int bits = 0; int sig = TLSEXT_signature_anonymous; int len = -1; if (!ssl_sock_is_ssl(conn)) return 0; pkinfo = SSL_get_ex_data(conn->xprt_ctx, ssl_pkey_info_index); if (pkinfo) { sig = pkinfo->sig; bits = pkinfo->bits; } else { /* multicert and generated cert have no pkey info */ X509 *crt; EVP_PKEY *pkey; crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) return 0; pkey = X509_get_pubkey(crt); if (pkey) { bits = EVP_PKEY_bits(pkey); switch(EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: sig = TLSEXT_signature_rsa; break; case EVP_PKEY_EC: sig = TLSEXT_signature_ecdsa; break; case EVP_PKEY_DSA: sig = TLSEXT_signature_dsa; break; } EVP_PKEY_free(pkey); } } switch(sig) { case TLSEXT_signature_rsa: len = chunk_printf(out, "RSA%d", bits); break; case TLSEXT_signature_ecdsa: len = chunk_printf(out, "EC%d", bits); break; case TLSEXT_signature_dsa: len = chunk_printf(out, "DSA%d", bits); break; default: return 0; } if (len < 0) return 0; return 1; } /* used for ppv2 cert signature (can be used for logging) */ const char *ssl_sock_get_cert_sig(struct connection *conn) { __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; X509 *crt; if (!ssl_sock_is_ssl(conn)) return NULL; crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) return NULL; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); return OBJ_nid2sn(OBJ_obj2nid(algorithm)); } /* used for ppv2 authority */ const char *ssl_sock_get_sni(struct connection *conn) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME if (!ssl_sock_is_ssl(conn)) return NULL; return SSL_get_servername(conn->xprt_ctx, TLSEXT_NAMETYPE_host_name); #else return 0; #endif } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_cipher_name(struct connection *conn) { if (!ssl_sock_is_ssl(conn)) return NULL; return SSL_get_cipher_name(conn->xprt_ctx); } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_proto_version(struct connection *conn) { if (!ssl_sock_is_ssl(conn)) return NULL; return SSL_get_version(conn->xprt_ctx); } /* Extract a serial from a cert, and copy it to a chunk. * Returns 1 if serial is found and copied, 0 if no serial found and * -1 if output is not large enough. */ static int ssl_sock_get_serial(X509 *crt, struct chunk *out) { ASN1_INTEGER *serial; serial = X509_get_serialNumber(crt); if (!serial) return 0; if (out->size < serial->length) return -1; memcpy(out->str, serial->data, serial->length); out->len = serial->length; return 1; } /* Extract a cert to der, and copy it to a chunk. * Returns 1 if cert is found and copied, 0 on der convertion failure and * -1 if output is not large enough. */ static int ssl_sock_crt2der(X509 *crt, struct chunk *out) { int len; unsigned char *p = (unsigned char *)out->str;; len =i2d_X509(crt, NULL); if (len <= 0) return 1; if (out->size < len) return -1; i2d_X509(crt,&p); out->len = len; return 1; } /* Copy Date in ASN1_UTCTIME format in struct chunk out. * Returns 1 if serial is found and copied, 0 if no valid time found * and -1 if output is not large enough. */ static int ssl_sock_get_time(ASN1_TIME *tm, struct chunk *out) { if (tm->type == V_ASN1_GENERALIZEDTIME) { ASN1_GENERALIZEDTIME *gentm = (ASN1_GENERALIZEDTIME *)tm; if (gentm->length < 12) return 0; if (gentm->data[0] != 0x32 || gentm->data[1] != 0x30) return 0; if (out->size < gentm->length-2) return -1; memcpy(out->str, gentm->data+2, gentm->length-2); out->len = gentm->length-2; return 1; } else if (tm->type == V_ASN1_UTCTIME) { ASN1_UTCTIME *utctm = (ASN1_UTCTIME *)tm; if (utctm->length < 10) return 0; if (utctm->data[0] >= 0x35) return 0; if (out->size < utctm->length) return -1; memcpy(out->str, utctm->data, utctm->length); out->len = utctm->length; return 1; } return 0; } /* Extract an entry from a X509_NAME and copy its value to an output chunk. * Returns 1 if entry found, 0 if entry not found, or -1 if output not large enough. */ static int ssl_sock_get_dn_entry(X509_NAME *a, const struct chunk *entry, int pos, struct chunk *out) { X509_NAME_ENTRY *ne; ASN1_OBJECT *obj; ASN1_STRING *data; const unsigned char *data_ptr; int data_len; int i, j, n; int cur = 0; const char *s; char tmp[128]; int name_count; name_count = X509_NAME_entry_count(a); out->len = 0; for (i = 0; i < name_count; i++) { if (pos < 0) j = (name_count-1) - i; else j = i; ne = X509_NAME_get_entry(a, j); obj = X509_NAME_ENTRY_get_object(ne); data = X509_NAME_ENTRY_get_data(ne); data_ptr = ASN1_STRING_get0_data(data); data_len = ASN1_STRING_length(data); n = OBJ_obj2nid(obj); if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) { i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj); s = tmp; } if (chunk_strcasecmp(entry, s) != 0) continue; if (pos < 0) cur--; else cur++; if (cur != pos) continue; if (data_len > out->size) return -1; memcpy(out->str, data_ptr, data_len); out->len = data_len; return 1; } return 0; } /* Extract and format full DN from a X509_NAME and copy result into a chunk * Returns 1 if dn entries exits, 0 if no dn entry found or -1 if output is not large enough. */ static int ssl_sock_get_dn_oneline(X509_NAME *a, struct chunk *out) { X509_NAME_ENTRY *ne; ASN1_OBJECT *obj; ASN1_STRING *data; const unsigned char *data_ptr; int data_len; int i, n, ln; int l = 0; const char *s; char *p; char tmp[128]; int name_count; name_count = X509_NAME_entry_count(a); out->len = 0; p = out->str; for (i = 0; i < name_count; i++) { ne = X509_NAME_get_entry(a, i); obj = X509_NAME_ENTRY_get_object(ne); data = X509_NAME_ENTRY_get_data(ne); data_ptr = ASN1_STRING_get0_data(data); data_len = ASN1_STRING_length(data); n = OBJ_obj2nid(obj); if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) { i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj); s = tmp; } ln = strlen(s); l += 1 + ln + 1 + data_len; if (l > out->size) return -1; out->len = l; *(p++)='/'; memcpy(p, s, ln); p += ln; *(p++)='='; memcpy(p, data_ptr, data_len); p += data_len; } if (!out->len) return 0; return 1; } /* Sets advertised SNI for outgoing connections. Please set to NULL * to disable SNI. */ void ssl_sock_set_servername(struct connection *conn, const char *hostname) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME char *prev_name; if (!ssl_sock_is_ssl(conn)) return; /* if the SNI changes, we must destroy the reusable context so that a * new connection will present a new SNI. As an optimization we could * later imagine having a small cache of ssl_ctx to hold a few SNI per * server. */ prev_name = (char *)SSL_get_servername(conn->xprt_ctx, TLSEXT_NAMETYPE_host_name); if ((!prev_name && hostname) || (prev_name && (!hostname || strcmp(hostname, prev_name) != 0))) SSL_set_session(conn->xprt_ctx, NULL); SSL_set_tlsext_host_name(conn->xprt_ctx, hostname); #endif } /* Extract peer certificate's common name into the chunk dest * Returns * the len of the extracted common name * or 0 if no CN found in DN * or -1 on error case (i.e. no peer certificate) */ int ssl_sock_get_remote_common_name(struct connection *conn, struct chunk *dest) { X509 *crt = NULL; X509_NAME *name; const char find_cn[] = "CN"; const struct chunk find_cn_chunk = { .str = (char *)&find_cn, .len = sizeof(find_cn)-1 }; int result = -1; if (!ssl_sock_is_ssl(conn)) goto out; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(conn->xprt_ctx); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; result = ssl_sock_get_dn_entry(name, &find_cn_chunk, 1, dest); out: if (crt) X509_free(crt); return result; } /* returns 1 if client passed a certificate for this session, 0 if not */ int ssl_sock_get_cert_used_sess(struct connection *conn) { X509 *crt = NULL; if (!ssl_sock_is_ssl(conn)) return 0; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(conn->xprt_ctx); if (!crt) return 0; X509_free(crt); return 1; } /* returns 1 if client passed a certificate for this connection, 0 if not */ int ssl_sock_get_cert_used_conn(struct connection *conn) { if (!ssl_sock_is_ssl(conn)) return 0; return SSL_SOCK_ST_FL_VERIFY_DONE & conn->xprt_st ? 1 : 0; } /* returns result from SSL verify */ unsigned int ssl_sock_get_verify_result(struct connection *conn) { if (!ssl_sock_is_ssl(conn)) return (unsigned int)X509_V_ERR_APPLICATION_VERIFICATION; return (unsigned int)SSL_get_verify_result(conn->xprt_ctx); } /* Returns the application layer protocol name in and when known. * Zero is returned if the protocol name was not found, otherwise non-zero is * returned. The string is allocated in the SSL context and doesn't have to be * freed by the caller. NPN is also checked if available since older versions * of openssl (1.0.1) which are more common in field only support this one. */ static int ssl_sock_get_alpn(const struct connection *conn, const char **str, int *len) { if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; *str = NULL; #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation SSL_get0_alpn_selected(conn->xprt_ctx, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif #ifdef OPENSSL_NPN_NEGOTIATED SSL_get0_next_proto_negotiated(conn->xprt_ctx, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif return 0; } /***** Below are some sample fetching functions for ACL/patterns *****/ static int smp_fetch_ssl_fc_has_early(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; smp->flags = 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = ((conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) ? 1 : 0; return 1; } /* boolean, returns true if client cert was present */ static int smp_fetch_ssl_fc_has_crt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } smp->flags = 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = SSL_SOCK_ST_FL_VERIFY_DONE & conn->xprt_st ? 1 : 0; return 1; } /* binary, returns a certificate in a binary chunk (der/raw). * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_der(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_crt2der(crt, smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns serial of certificate in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_serial(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_serial(crt, smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns the client certificate's SHA-1 fingerprint (SHA-1 hash of DER-encoded certificate) in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sha1(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; const EVP_MD *digest; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; smp_trash = get_trash_chunk(); digest = EVP_sha1(); X509_digest(crt, digest, (unsigned char *)smp_trash->str, (unsigned int *)&smp_trash->len); smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns certificate's notafter date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notafter(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_get_notAfter(crt), smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's issuer * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_i_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; name = X509_get_issuer_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args && args[0].type == ARGT_STR) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns notbefore date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notbefore(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_get_notBefore(crt), smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's subject * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_s_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct chunk *smp_trash; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args && args[0].type == ARGT_STR) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* integer, returns true if current session use a client certificate */ static int smp_fetch_ssl_c_used(const struct arg *args, struct sample *smp, const char *kw, void *private) { X509 *crt; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } /* SSL_get_peer_certificate returns a ptr on allocated X509 struct */ crt = SSL_get_peer_certificate(conn->xprt_ctx); if (crt) { X509_free(crt); } smp->data.type = SMP_T_BOOL; smp->data.u.sint = (crt != NULL); return 1; } /* integer, returns the certificate version * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_version(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) return 0; smp->data.u.sint = (unsigned int)(1 + X509_get_version(crt)); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); smp->data.type = SMP_T_SINT; return 1; } /* string, returns the certificate's signature algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sig_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; int nid; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) return 0; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.str = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.str) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.len = strlen(smp->data.u.str.str); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 1; } /* string, returns the certificate's key algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_key_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; ASN1_OBJECT *algorithm; int nid; struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(conn->xprt_ctx); else crt = SSL_get_certificate(conn->xprt_ctx); if (!crt) return 0; X509_PUBKEY_get0_param(&algorithm, NULL, NULL, NULL, X509_get_X509_PUBKEY(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.str = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.str) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.len = strlen(smp->data.u.str.str); if (cert_peer) X509_free(crt); return 1; } /* boolean, returns true if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock); return 1; } /* boolean, returns true if client present a SNI */ static int smp_fetch_ssl_fc_has_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct connection *conn = objt_conn(smp->sess->origin); smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock) && conn->xprt_ctx && SSL_get_servername(conn->xprt_ctx, TLSEXT_NAMETYPE_host_name) != NULL; return 1; #else return 0; #endif } /* boolean, returns true if client session has been resumed. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_is_resumed(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock) && conn->xprt_ctx && SSL_session_reused(conn->xprt_ctx); return 1; } /* string, returns the used cipher if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_cipher(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.str.str = (char *)SSL_get_cipher_name(conn->xprt_ctx); if (!smp->data.u.str.str) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.len = strlen(smp->data.u.str.str); return 1; } /* integer, returns the algoritm's keysize if front conn. transport layer * is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_alg_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; int sint; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; if (!SSL_get_cipher_bits(conn->xprt_ctx, &sint)) return 0; smp->data.u.sint = sint; smp->data.type = SMP_T_SINT; return 1; } /* integer, returns the used keysize if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_use_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.sint = (unsigned int)SSL_get_cipher_bits(conn->xprt_ctx, NULL); if (!smp->data.u.sint) return 0; smp->data.type = SMP_T_SINT; return 1; } #ifdef OPENSSL_NPN_NEGOTIATED static int smp_fetch_ssl_fc_npn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.str.str = NULL; SSL_get0_next_proto_negotiated(conn->xprt_ctx, (const unsigned char **)&smp->data.u.str.str, (unsigned *)&smp->data.u.str.len); if (!smp->data.u.str.str) return 0; return 1; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation static int smp_fetch_ssl_fc_alpn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.str.str = NULL; SSL_get0_alpn_selected(conn->xprt_ctx, (const unsigned char **)&smp->data.u.str.str, (unsigned *)&smp->data.u.str.len); if (!smp->data.u.str.str) return 0; return 1; } #endif /* string, returns the used protocol if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_protocol(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.str.str = (char *)SSL_get_version(conn->xprt_ctx); if (!smp->data.u.str.str) return 0; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.len = strlen(smp->data.u.str.str); return 1; } /* binary, returns the SSL stream id if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_session_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { #if OPENSSL_VERSION_NUMBER > 0x0090800fL struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; SSL_SESSION *ssl_sess; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_BIN; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ssl_sess = SSL_get_session(conn->xprt_ctx); if (!ssl_sess) return 0; smp->data.u.str.str = (char *)SSL_SESSION_get_id(ssl_sess, (unsigned int *)&smp->data.u.str.len); if (!smp->data.u.str.str || !smp->data.u.str.len) return 0; return 1; #else return 0; #endif } static int smp_fetch_ssl_fc_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct connection *conn; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; smp->data.u.str.str = (char *)SSL_get_servername(conn->xprt_ctx, TLSEXT_NAMETYPE_host_name); if (!smp->data.u.str.str) return 0; smp->data.u.str.len = strlen(smp->data.u.str.str); return 1; #else return 0; #endif } static int smp_fetch_ssl_fc_cl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; capture = SSL_get_ex_data(conn->xprt_ctx, ssl_capture_ptr_index); if (!capture) return 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_BIN; smp->data.u.str.str = capture->ciphersuite; smp->data.u.str.len = capture->ciphersuite_len; return 1; } static int smp_fetch_ssl_fc_cl_hex(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct chunk *data; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); dump_binary(data, smp->data.u.str.str, smp->data.u.str.len); smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } static int smp_fetch_ssl_fc_cl_xxh64(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; capture = SSL_get_ex_data(conn->xprt_ctx, ssl_capture_ptr_index); if (!capture) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = capture->xxh64; return 1; } static int smp_fetch_ssl_fc_cl_str(const struct arg *args, struct sample *smp, const char *kw, void *private) { #if (OPENSSL_VERSION_NUMBER >= 0x1000200fL) && !defined(LIBRESSL_VERSION_NUMBER) struct chunk *data; int i; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); for (i = 0; i + 1 < smp->data.u.str.len; i += 2) { const char *str; const SSL_CIPHER *cipher; const unsigned char *bin = (const unsigned char *)smp->data.u.str.str + i; uint16_t id = (bin[0] << 8) | bin[1]; #if defined(OPENSSL_IS_BORINGSSL) cipher = SSL_get_cipher_by_value(id); #else struct connection *conn = objt_conn(smp->sess->origin); cipher = SSL_CIPHER_find(conn->xprt_ctx, bin); #endif str = SSL_CIPHER_get_name(cipher); if (!str || strcmp(str, "(NONE)") == 0) chunk_appendf(data, "%sUNKNOWN(%04x)", i == 0 ? "" : ",", id); else chunk_appendf(data, "%s%s", i == 0 ? "" : ",", str); } smp->data.type = SMP_T_STR; smp->data.u.str = *data; return 1; #else return smp_fetch_ssl_fc_cl_xxh64(args, smp, kw, private); #endif } static int smp_fetch_ssl_fc_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { #if OPENSSL_VERSION_NUMBER > 0x0090800fL struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; int finished_len; struct chunk *finished_trash; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } finished_trash = get_trash_chunk(); if (!SSL_session_reused(conn->xprt_ctx)) finished_len = SSL_get_peer_finished(conn->xprt_ctx, finished_trash->str, finished_trash->size); else finished_len = SSL_get_finished(conn->xprt_ctx, finished_trash->str, finished_trash->size); if (!finished_len) return 0; finished_trash->len = finished_len; smp->data.u.str = *finished_trash; smp->data.type = SMP_T_BIN; return 1; #else return 0; #endif } /* integer, returns the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->data.type = SMP_T_SINT; smp->data.u.sint = (unsigned long long int)SSL_SOCK_ST_TO_CA_ERROR(conn->xprt_st); smp->flags = 0; return 1; } /* integer, returns the depth of the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err_depth(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CAEDEPTH(conn->xprt_st); smp->flags = 0; return 1; } /* integer, returns the first verify error on client certificate */ static int smp_fetch_ssl_c_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CRTERROR(conn->xprt_st); smp->flags = 0; return 1; } /* integer, returns the verify result on client cert */ static int smp_fetch_ssl_c_verify(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (!(conn->flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!conn->xprt_ctx) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_get_verify_result(conn->xprt_ctx); smp->flags = 0; return 1; } /* parse the "ca-file" bind keyword */ static int ssl_bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CAfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&conf->ca_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(&conf->ca_file, "%s", args[cur_arg + 1]); return 0; } static int bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ca_file(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ca-sign-file" bind keyword */ static int bind_parse_ca_sign_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CAfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&conf->ca_sign_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(&conf->ca_sign_file, "%s", args[cur_arg + 1]); return 0; } /* parse the "ca-sign-pass" bind keyword */ static int bind_parse_ca_sign_pass(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CAkey password", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } memprintf(&conf->ca_sign_pass, "%s", args[cur_arg + 1]); return 0; } /* parse the "ciphers" bind keyword */ static int ssl_bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->ciphers); conf->ciphers = strdup(args[cur_arg + 1]); return 0; } static int bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ciphers(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "crt" bind keyword */ static int bind_parse_crt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { char path[MAXPATHLEN]; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing certificate location", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/' ) && global_ssl.crt_base) { if ((strlen(global_ssl.crt_base) + 1 + strlen(args[cur_arg + 1]) + 1) > MAXPATHLEN) { memprintf(err, "'%s' : path too long", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, args[cur_arg + 1]); if (ssl_sock_load_cert(path, conf, err) > 0) return ERR_ALERT | ERR_FATAL; return 0; } if (ssl_sock_load_cert(args[cur_arg + 1], conf, err) > 0) return ERR_ALERT | ERR_FATAL; return 0; } /* parse the "crt-list" bind keyword */ static int bind_parse_crt_list(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing certificate location", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (ssl_sock_load_cert_list_file(args[cur_arg + 1], conf, px, err) > 0) { memprintf(err, "'%s' : %s", args[cur_arg], *err); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "crl-file" bind keyword */ static int ssl_bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #ifndef X509_V_FLAG_CRL_CHECK if (err) memprintf(err, "'%s' : library does not support CRL verify", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CRLfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&conf->crl_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(&conf->crl_file, "%s", args[cur_arg + 1]); return 0; #endif } static int bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_crl_file(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "curves" bind keyword keyword */ static int ssl_bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if OPENSSL_VERSION_NUMBER >= 0x1000200fL if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing curve suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->curves = strdup(args[cur_arg + 1]); return 0; #else if (err) memprintf(err, "'%s' : library does not support curve suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_curves(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ecdhe" bind keyword keyword */ static int ssl_bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if OPENSSL_VERSION_NUMBER < 0x0090800fL if (err) memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (too old)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #elif defined(OPENSSL_NO_ECDH) if (err) memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (disabled via OPENSSL_NO_ECDH)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing named curve", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->ecdhe = strdup(args[cur_arg + 1]); return 0; #endif } static int bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ecdhe(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "crt-ignore-err" and "ca-ignore-err" bind keywords */ static int bind_parse_ignore_err(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { int code; char *p = args[cur_arg + 1]; unsigned long long *ignerr = &conf->crt_ignerr; if (!*p) { if (err) memprintf(err, "'%s' : missing error IDs list", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg], "ca-ignore-err") == 0) ignerr = &conf->ca_ignerr; if (strcmp(p, "all") == 0) { *ignerr = ~0ULL; return 0; } while (p) { code = atoi(p); if ((code <= 0) || (code > 63)) { if (err) memprintf(err, "'%s' : ID '%d' out of range (1..63) in error IDs list '%s'", args[cur_arg], code, args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } *ignerr |= 1ULL << code; p = strchr(p, ','); if (p) p++; } return 0; } /* parse tls_method_options "no-xxx" and "force-xxx" */ static int parse_tls_method_options(char *arg, struct tls_version_filter *methods, char **err) { uint16_t v; char *p; p = strchr(arg, '-'); if (!p) goto fail; p++; if (!strcmp(p, "sslv3")) v = CONF_SSLV3; else if (!strcmp(p, "tlsv10")) v = CONF_TLSV10; else if (!strcmp(p, "tlsv11")) v = CONF_TLSV11; else if (!strcmp(p, "tlsv12")) v = CONF_TLSV12; else if (!strcmp(p, "tlsv13")) v = CONF_TLSV13; else goto fail; if (!strncmp(arg, "no-", 3)) methods->flags |= methodVersions[v].flag; else if (!strncmp(arg, "force-", 6)) methods->min = methods->max = v; else goto fail; return 0; fail: if (err) memprintf(err, "'%s' : option not implemented", arg); return ERR_ALERT | ERR_FATAL; } static int bind_parse_tls_method_options(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return parse_tls_method_options(args[cur_arg], &conf->ssl_conf.ssl_methods, err); } static int srv_parse_tls_method_options(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { return parse_tls_method_options(args[*cur_arg], &newsrv->ssl_ctx.methods, err); } /* parse tls_method min/max: "ssl-min-ver" and "ssl-max-ver" */ static int parse_tls_method_minmax(char **args, int cur_arg, struct tls_version_filter *methods, char **err) { uint16_t i, v = 0; char *argv = args[cur_arg + 1]; if (!*argv) { if (err) memprintf(err, "'%s' : missing the ssl/tls version", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (!strcmp(argv, methodVersions[i].name)) v = i; if (!v) { if (err) memprintf(err, "'%s' : unknown ssl/tls version", args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } if (!strcmp("ssl-min-ver", args[cur_arg])) methods->min = v; else if (!strcmp("ssl-max-ver", args[cur_arg])) methods->max = v; else { if (err) memprintf(err, "'%s' : option not implemented", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } return 0; } static int ssl_bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if (OPENSSL_VERSION_NUMBER < 0x10101000L) || !defined(OPENSSL_IS_BORINGSSL) ha_warning("crt-list: ssl-min-ver and ssl-max-ver are not supported with this Openssl version (skipped).\n"); #endif return parse_tls_method_minmax(args, cur_arg, &conf->ssl_methods, err); } static int bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return parse_tls_method_minmax(args, cur_arg, &conf->ssl_conf.ssl_methods, err); } static int srv_parse_tls_method_minmax(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { return parse_tls_method_minmax(args, *cur_arg, &newsrv->ssl_ctx.methods, err); } /* parse the "no-tls-tickets" bind keyword */ static int bind_parse_no_tls_tickets(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_options |= BC_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "allow-0rtt" bind keyword */ static int ssl_bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { conf->early_data = 1; return 0; } static int bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_conf.early_data = 1; return 0; } /* parse the "npn" bind keyword */ static int ssl_bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #ifdef OPENSSL_NPN_NEGOTIATED char *p1, *p2; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->npn_str); /* the NPN string is built as a suite of ( )*, * so we reuse each comma to store the next and need * one more for the end of the string. */ conf->npn_len = strlen(args[cur_arg + 1]) + 1; conf->npn_str = calloc(1, conf->npn_len + 1); memcpy(conf->npn_str + 1, args[cur_arg + 1], conf->npn_len); /* replace commas with the name length */ p1 = conf->npn_str; p2 = p1 + 1; while (1) { p2 = memchr(p1 + 1, ',', conf->npn_str + conf->npn_len - (p1 + 1)); if (!p2) p2 = p1 + 1 + strlen(p1 + 1); if (p2 - (p1 + 1) > 255) { *p2 = '\0'; memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[cur_arg], p1 + 1); return ERR_ALERT | ERR_FATAL; } *p1 = p2 - (p1 + 1); p1 = p2; if (!*p2) break; *(p2++) = '\0'; } return 0; #else if (err) memprintf(err, "'%s' : library does not support TLS NPN extension", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_npn(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "alpn" bind keyword */ static int ssl_bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation char *p1, *p2; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing the comma-delimited ALPN protocol suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->alpn_str); /* the ALPN string is built as a suite of ( )*, * so we reuse each comma to store the next and need * one more for the end of the string. */ conf->alpn_len = strlen(args[cur_arg + 1]) + 1; conf->alpn_str = calloc(1, conf->alpn_len + 1); memcpy(conf->alpn_str + 1, args[cur_arg + 1], conf->alpn_len); /* replace commas with the name length */ p1 = conf->alpn_str; p2 = p1 + 1; while (1) { p2 = memchr(p1 + 1, ',', conf->alpn_str + conf->alpn_len - (p1 + 1)); if (!p2) p2 = p1 + 1 + strlen(p1 + 1); if (p2 - (p1 + 1) > 255) { *p2 = '\0'; memprintf(err, "'%s' : ALPN protocol name too long : '%s'", args[cur_arg], p1 + 1); return ERR_ALERT | ERR_FATAL; } *p1 = p2 - (p1 + 1); p1 = p2; if (!*p2) break; *(p2++) = '\0'; } return 0; #else if (err) memprintf(err, "'%s' : library does not support TLS ALPN extension", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_alpn(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ssl" bind keyword */ static int bind_parse_ssl(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->xprt = &ssl_sock; conf->is_ssl = 1; if (global_ssl.listen_default_ciphers && !conf->ssl_conf.ciphers) conf->ssl_conf.ciphers = strdup(global_ssl.listen_default_ciphers); conf->ssl_options |= global_ssl.listen_default_ssloptions; conf->ssl_conf.ssl_methods.flags |= global_ssl.listen_default_sslmethods.flags; if (!conf->ssl_conf.ssl_methods.min) conf->ssl_conf.ssl_methods.min = global_ssl.listen_default_sslmethods.min; if (!conf->ssl_conf.ssl_methods.max) conf->ssl_conf.ssl_methods.max = global_ssl.listen_default_sslmethods.max; return 0; } /* parse the "prefer-client-ciphers" bind keyword */ static int bind_parse_pcc(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_options |= BC_SSL_O_PREF_CLIE_CIPH; return 0; } /* parse the "generate-certificates" bind keyword */ static int bind_parse_generate_certs(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) conf->generate_certs = 1; #else memprintf(err, "%sthis version of openssl cannot generate SSL certificates.\n", err && *err ? *err : ""); #endif return 0; } /* parse the "strict-sni" bind keyword */ static int bind_parse_strict_sni(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->strict_sni = 1; return 0; } /* parse the "tls-ticket-keys" bind keyword */ static int bind_parse_tls_ticket_keys(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) FILE *f; int i = 0; char thisline[LINESIZE]; struct tls_keys_ref *keys_ref; if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing TLS ticket keys file path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } keys_ref = tlskeys_ref_lookup(args[cur_arg + 1]); if(keys_ref) { conf->keys_ref = keys_ref; return 0; } keys_ref = malloc(sizeof(*keys_ref)); keys_ref->tlskeys = malloc(TLS_TICKETS_NO * sizeof(struct tls_sess_key)); if ((f = fopen(args[cur_arg + 1], "r")) == NULL) { if (err) memprintf(err, "'%s' : unable to load ssl tickets keys file", args[cur_arg+1]); return ERR_ALERT | ERR_FATAL; } keys_ref->filename = strdup(args[cur_arg + 1]); while (fgets(thisline, sizeof(thisline), f) != NULL) { int len = strlen(thisline); /* Strip newline characters from the end */ if(thisline[len - 1] == '\n') thisline[--len] = 0; if(thisline[len - 1] == '\r') thisline[--len] = 0; if (base64dec(thisline, len, (char *) (keys_ref->tlskeys + i % TLS_TICKETS_NO), sizeof(struct tls_sess_key)) != sizeof(struct tls_sess_key)) { if (err) memprintf(err, "'%s' : unable to decode base64 key on line %d", args[cur_arg+1], i + 1); fclose(f); return ERR_ALERT | ERR_FATAL; } i++; } if (i < TLS_TICKETS_NO) { if (err) memprintf(err, "'%s' : please supply at least %d keys in the tls-tickets-file", args[cur_arg+1], TLS_TICKETS_NO); fclose(f); return ERR_ALERT | ERR_FATAL; } fclose(f); /* Use penultimate key for encryption, handle when TLS_TICKETS_NO = 1 */ i -= 2; keys_ref->tls_ticket_enc_index = i < 0 ? 0 : i % TLS_TICKETS_NO; keys_ref->unique_id = -1; HA_RWLOCK_INIT(&keys_ref->lock); conf->keys_ref = keys_ref; LIST_ADD(&tlskeys_reference, &keys_ref->list); return 0; #else if (err) memprintf(err, "'%s' : TLS ticket callback extension not supported", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */ } /* parse the "verify" bind keyword */ static int ssl_bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing verify method", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg + 1], "none") == 0) conf->verify = SSL_SOCK_VERIFY_NONE; else if (strcmp(args[cur_arg + 1], "optional") == 0) conf->verify = SSL_SOCK_VERIFY_OPTIONAL; else if (strcmp(args[cur_arg + 1], "required") == 0) conf->verify = SSL_SOCK_VERIFY_REQUIRED; else { if (err) memprintf(err, "'%s' : unknown verify method '%s', only 'none', 'optional', and 'required' are supported\n", args[cur_arg], args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } return 0; } static int bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_verify(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "no-ca-names" bind keyword */ static int ssl_bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { conf->no_ca_names = 1; return 0; } static int bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_no_ca_names(args, cur_arg, px, &conf->ssl_conf, err); } /************** "server" keywords ****************/ /* parse the "ca-file" server keyword */ static int srv_parse_ca_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CAfile path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&newsrv->ssl_ctx.ca_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.ca_file, "%s", args[*cur_arg + 1]); return 0; } /* parse the "check-sni" server keyword */ static int srv_parse_check_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing SNI", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } newsrv->check.sni = strdup(args[*cur_arg + 1]); if (!newsrv->check.sni) { memprintf(err, "'%s' : failed to allocate memory", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "check-ssl" server keyword */ static int srv_parse_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->check.use_ssl = 1; if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers) newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers); newsrv->ssl_ctx.options |= global_ssl.connect_default_ssloptions; newsrv->ssl_ctx.methods.flags |= global_ssl.connect_default_sslmethods.flags; if (!newsrv->ssl_ctx.methods.min) newsrv->ssl_ctx.methods.min = global_ssl.connect_default_sslmethods.min; if (!newsrv->ssl_ctx.methods.max) newsrv->ssl_ctx.methods.max = global_ssl.connect_default_sslmethods.max; return 0; } /* parse the "ciphers" server keyword */ static int srv_parse_ciphers(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = strdup(args[*cur_arg + 1]); return 0; } /* parse the "crl-file" server keyword */ static int srv_parse_crl_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #ifndef X509_V_FLAG_CRL_CHECK if (err) memprintf(err, "'%s' : library does not support CRL verify", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CRLfile path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&newsrv->ssl_ctx.crl_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.crl_file, "%s", args[*cur_arg + 1]); return 0; #endif } /* parse the "crt" server keyword */ static int srv_parse_crt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing certificate file path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.crt_base) memprintf(&newsrv->ssl_ctx.client_crt, "%s/%s", global_ssl.crt_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.client_crt, "%s", args[*cur_arg + 1]); return 0; } /* parse the "no-check-ssl" server keyword */ static int srv_parse_no_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->check.use_ssl = 0; free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = NULL; newsrv->ssl_ctx.options &= ~global_ssl.connect_default_ssloptions; return 0; } /* parse the "no-send-proxy-v2-ssl" server keyword */ static int srv_parse_no_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts &= ~SRV_PP_V2; newsrv->pp_opts &= ~SRV_PP_V2_SSL; return 0; } /* parse the "no-send-proxy-v2-ssl-cn" server keyword */ static int srv_parse_no_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts &= ~SRV_PP_V2; newsrv->pp_opts &= ~SRV_PP_V2_SSL; newsrv->pp_opts &= ~SRV_PP_V2_SSL_CN; return 0; } /* parse the "no-ssl" server keyword */ static int srv_parse_no_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->use_ssl = 0; free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = NULL; return 0; } /* parse the "allow-0rtt" server keyword */ static int srv_parse_allow_0rtt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_EARLY_DATA; return 0; } /* parse the "no-ssl-reuse" server keyword */ static int srv_parse_no_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_NO_REUSE; return 0; } /* parse the "no-tls-tickets" server keyword */ static int srv_parse_no_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "send-proxy-v2-ssl" server keyword */ static int srv_parse_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts |= SRV_PP_V2; newsrv->pp_opts |= SRV_PP_V2_SSL; return 0; } /* parse the "send-proxy-v2-ssl-cn" server keyword */ static int srv_parse_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts |= SRV_PP_V2; newsrv->pp_opts |= SRV_PP_V2_SSL; newsrv->pp_opts |= SRV_PP_V2_SSL_CN; return 0; } /* parse the "sni" server keyword */ static int srv_parse_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME memprintf(err, "'%s' : the current SSL library doesn't support the SNI TLS extension", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #else char *arg; arg = args[*cur_arg + 1]; if (!*arg) { memprintf(err, "'%s' : missing sni expression", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->sni_expr); newsrv->sni_expr = strdup(arg); return 0; #endif } /* parse the "ssl" server keyword */ static int srv_parse_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->use_ssl = 1; if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers) newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers); return 0; } /* parse the "ssl-reuse" server keyword */ static int srv_parse_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_REUSE; return 0; } /* parse the "tls-tickets" server keyword */ static int srv_parse_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "verify" server keyword */ static int srv_parse_verify(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing verify method", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[*cur_arg + 1], "none") == 0) newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_NONE; else if (strcmp(args[*cur_arg + 1], "required") == 0) newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_REQUIRED; else { if (err) memprintf(err, "'%s' : unknown verify method '%s', only 'none' and 'required' are supported\n", args[*cur_arg], args[*cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "verifyhost" server keyword */ static int srv_parse_verifyhost(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing hostname to verify against", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.verify_host); newsrv->ssl_ctx.verify_host = strdup(args[*cur_arg + 1]); return 0; } /* parse the "ssl-default-bind-options" keyword in global section */ static int ssl_parse_default_bind_options(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int i = 1; if (*(args[i]) == 0) { memprintf(err, "global statement '%s' expects an option as an argument.", args[0]); return -1; } while (*(args[i])) { if (!strcmp(args[i], "no-tls-tickets")) global_ssl.listen_default_ssloptions |= BC_SSL_O_NO_TLS_TICKETS; else if (!strcmp(args[i], "prefer-client-ciphers")) global_ssl.listen_default_ssloptions |= BC_SSL_O_PREF_CLIE_CIPH; else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) { if (!parse_tls_method_minmax(args, i, &global_ssl.listen_default_sslmethods, err)) i++; else { memprintf(err, "%s on global statement '%s'.", *err, args[0]); return -1; } } else if (parse_tls_method_options(args[i], &global_ssl.listen_default_sslmethods, err)) { memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]); return -1; } i++; } return 0; } /* parse the "ssl-default-server-options" keyword in global section */ static int ssl_parse_default_server_options(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int i = 1; if (*(args[i]) == 0) { memprintf(err, "global statement '%s' expects an option as an argument.", args[0]); return -1; } while (*(args[i])) { if (!strcmp(args[i], "no-tls-tickets")) global_ssl.connect_default_ssloptions |= SRV_SSL_O_NO_TLS_TICKETS; else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) { if (!parse_tls_method_minmax(args, i, &global_ssl.connect_default_sslmethods, err)) i++; else { memprintf(err, "%s on global statement '%s'.", *err, args[0]); return -1; } } else if (parse_tls_method_options(args[i], &global_ssl.connect_default_sslmethods, err)) { memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]); return -1; } i++; } return 0; } /* parse the "ca-base" / "crt-base" keywords in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ca_crt_base(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = (args[0][1] == 'a') ? &global_ssl.ca_base : &global_ssl.crt_base; if (too_many_args(1, args, err, NULL)) return -1; if (*target) { memprintf(err, "'%s' already specified.", args[0]); return -1; } if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a directory path as an argument.", args[0]); return -1; } *target = strdup(args[1]); return 0; } /* parse the "ssl-mode-async" keyword in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ssl_async(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { #if (OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) global_ssl.async = 1; global.ssl_used_async_engines = nb_engines; return 0; #else memprintf(err, "'%s': openssl library does not support async mode", args[0]); return -1; #endif } #ifndef OPENSSL_NO_ENGINE static int ssl_check_async_engine_count(void) { int err_code = 0; if (global_ssl.async && (openssl_engines_initialized > 32)) { ha_alert("ssl-mode-async only supports a maximum of 32 engines.\n"); err_code = ERR_ABORT; } return err_code; } /* parse the "ssl-engine" keyword in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ssl_engine(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char *algo; int ret = -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a valid engine name as an argument.", args[0]); return ret; } if (*(args[2]) == 0) { /* if no list of algorithms is given, it defaults to ALL */ algo = strdup("ALL"); goto add_engine; } /* otherwise the expected format is ssl-engine algo */ if (strcmp(args[2], "algo") != 0) { memprintf(err, "global statement '%s' expects to have algo keyword.", args[0]); return ret; } if (*(args[3]) == 0) { memprintf(err, "global statement '%s' expects algorithm names as an argument.", args[0]); return ret; } algo = strdup(args[3]); add_engine: if (ssl_init_single_engine(args[1], algo)==0) { openssl_engines_initialized++; ret = 0; } free(algo); return ret; } #endif /* parse the "ssl-default-bind-ciphers" / "ssl-default-server-ciphers" keywords * in global section. Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ciphers(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = (args[0][12] == 'b') ? &global_ssl.listen_default_ciphers : &global_ssl.connect_default_ciphers; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a cipher suite as an argument.", args[0]); return -1; } free(*target); *target = strdup(args[1]); return 0; } /* parse various global tune.ssl settings consisting in positive integers. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_int(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int *target; if (strcmp(args[0], "tune.ssl.cachesize") == 0) target = &global.tune.sslcachesize; else if (strcmp(args[0], "tune.ssl.maxrecord") == 0) target = (int *)&global_ssl.max_record; else if (strcmp(args[0], "tune.ssl.ssl-ctx-cache-size") == 0) target = &global_ssl.ctx_cache; else if (strcmp(args[0], "maxsslconn") == 0) target = &global.maxsslconn; else if (strcmp(args[0], "tune.ssl.capture-cipherlist-size") == 0) target = &global_ssl.capture_cipherlist; else { memprintf(err, "'%s' keyword not unhandled (please report this bug).", args[0]); return -1; } if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects an integer argument.", args[0]); return -1; } *target = atoi(args[1]); if (*target < 0) { memprintf(err, "'%s' expects a positive numeric value.", args[0]); return -1; } return 0; } static int ssl_parse_global_capture_cipherlist(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int ret; ret = ssl_parse_global_int(args, section_type, curpx, defpx, file, line, err); if (ret != 0) return ret; if (pool_head_ssl_capture) { memprintf(err, "'%s' is already configured.", args[0]); return -1; } pool_head_ssl_capture = create_pool("ssl-capture", sizeof(struct ssl_capture) + global_ssl.capture_cipherlist, MEM_F_SHARED); if (!pool_head_ssl_capture) { memprintf(err, "Out of memory error."); return -1; } return 0; } /* parse "ssl.force-private-cache". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_private_cache(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(0, args, err, NULL)) return -1; global_ssl.private_cache = 1; return 0; } /* parse "ssl.lifetime". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_lifetime(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { const char *res; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects ssl sessions in seconds as argument.", args[0]); return -1; } res = parse_time_err(args[1], &global_ssl.life_time, TIME_UNIT_S); if (res) { memprintf(err, "unexpected character '%c' in argument to <%s>.", *res, args[0]); return -1; } return 0; } #ifndef OPENSSL_NO_DH /* parse "ssl-dh-param-file". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_dh_param_file(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects a file path as an argument.", args[0]); return -1; } if (ssl_sock_load_global_dh_param_from_file(args[1])) { memprintf(err, "'%s': unable to load DH parameters from file <%s>.", args[0], args[1]); return -1; } return 0; } /* parse "ssl.default-dh-param". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_default_dh(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects an integer argument.", args[0]); return -1; } global_ssl.default_dh_param = atoi(args[1]); if (global_ssl.default_dh_param < 1024) { memprintf(err, "'%s' expects a value >= 1024.", args[0]); return -1; } return 0; } #endif /* This function is used with TLS ticket keys management. It permits to browse * each reference. The variable must contain the current node, * point to the root node. */ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static inline struct tls_keys_ref *tlskeys_list_get_next(struct tls_keys_ref *getnext, struct list *end) { struct tls_keys_ref *ref = getnext; while (1) { /* Get next list entry. */ ref = LIST_NEXT(&ref->list, struct tls_keys_ref *, list); /* If the entry is the last of the list, return NULL. */ if (&ref->list == end) return NULL; return ref; } } static inline struct tls_keys_ref *tlskeys_ref_lookup_ref(const char *reference) { int id; char *error; /* If the reference starts by a '#', this is numeric id. */ if (reference[0] == '#') { /* Try to convert the numeric id. If the conversion fails, the lookup fails. */ id = strtol(reference + 1, &error, 10); if (*error != '\0') return NULL; /* Perform the unique id lookup. */ return tlskeys_ref_lookupid(id); } /* Perform the string lookup. */ return tlskeys_ref_lookup(reference); } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int cli_io_handler_tlskeys_files(struct appctx *appctx); static inline int cli_io_handler_tlskeys_entries(struct appctx *appctx) { return cli_io_handler_tlskeys_files(appctx); } /* dumps all tls keys. Relies on cli.i0 (non-null = only list file names), cli.i1 * (next index to be dumped), and cli.p0 (next key reference). */ static int cli_io_handler_tlskeys_files(struct appctx *appctx) { struct stream_interface *si = appctx->owner; switch (appctx->st2) { case STAT_ST_INIT: /* Display the column headers. If the message cannot be sent, * quit the fucntion with returning 0. The function is called * later and restart at the state "STAT_ST_INIT". */ chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries) chunk_appendf(&trash, "# id secret\n"); else chunk_appendf(&trash, "# id (file)\n"); if (ci_putchk(si_ic(si), &trash) == -1) { si_applet_cant_put(si); return 0; } /* Now, we start the browsing of the references lists. * Note that the following call to LIST_ELEM return bad pointer. The only * available field of this pointer is . It is used with the function * tlskeys_list_get_next() for retruning the first available entry */ if (appctx->ctx.cli.p0 == NULL) { appctx->ctx.cli.p0 = LIST_ELEM(&tlskeys_reference, struct tls_keys_ref *, list); appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_LIST; /* fall through */ case STAT_ST_LIST: while (appctx->ctx.cli.p0) { struct tls_keys_ref *ref = appctx->ctx.cli.p0; chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries && appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "# "); if (appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "%d (%s)\n", ref->unique_id, ref->filename); if (appctx->io_handler == cli_io_handler_tlskeys_entries) { int head; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); head = ref->tls_ticket_enc_index; while (appctx->ctx.cli.i1 < TLS_TICKETS_NO) { struct chunk *t2 = get_trash_chunk(); chunk_reset(t2); /* should never fail here because we dump only a key in the t2 buffer */ t2->len = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO), sizeof(struct tls_sess_key), t2->str, t2->size); chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1, t2->str); if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); si_applet_cant_put(si); return 0; } appctx->ctx.cli.i1++; } HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); appctx->ctx.cli.i1 = 0; } if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ si_applet_cant_put(si); return 0; } if (appctx->ctx.cli.i0 == 0) /* don't display everything if not necessary */ break; /* get next list entry and check the end of the list */ appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_FIN; /* fall through */ default: appctx->st2 = STAT_ST_FIN; return 1; } return 0; } /* sets cli.i0 to non-zero if only file lists should be dumped */ static int cli_parse_show_tlskeys(char **args, struct appctx *appctx, void *private) { /* no parameter, shows only file list */ if (!*args[2]) { appctx->ctx.cli.i0 = 1; appctx->io_handler = cli_io_handler_tlskeys_files; return 0; } if (args[2][0] == '*') { /* list every TLS ticket keys */ appctx->ctx.cli.i0 = 1; } else { appctx->ctx.cli.p0 = tlskeys_ref_lookup_ref(args[2]); if (!appctx->ctx.cli.p0) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'show tls-keys' unable to locate referenced filename\n"; appctx->st0 = CLI_ST_PRINT; return 1; } } appctx->io_handler = cli_io_handler_tlskeys_entries; return 0; } static int cli_parse_set_tlskeys(char **args, struct appctx *appctx, void *private) { struct tls_keys_ref *ref; /* Expect two parameters: the filename and the new new TLS key in encoding */ if (!*args[3] || !*args[4]) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'set ssl tls-key' expects a filename and the new TLS key in base64 encoding.\n"; appctx->st0 = CLI_ST_PRINT; return 1; } ref = tlskeys_ref_lookup_ref(args[3]); if (!ref) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'set ssl tls-key' unable to locate referenced filename\n"; appctx->st0 = CLI_ST_PRINT; return 1; } trash.len = base64dec(args[4], strlen(args[4]), trash.str, trash.size); if (trash.len != sizeof(struct tls_sess_key)) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'set ssl tls-key' received invalid base64 encoded TLS key.\n"; appctx->st0 = CLI_ST_PRINT; return 1; } ssl_sock_update_tlskey_ref(ref, &trash); appctx->ctx.cli.severity = LOG_INFO; appctx->ctx.cli.msg = "TLS ticket key updated!"; appctx->st0 = CLI_ST_PRINT; return 1; } #endif static int cli_parse_set_ocspresponse(char **args, struct appctx *appctx, void *private) { #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) char *err = NULL; /* Expect one parameter: the new response in base64 encoding */ if (!*args[3]) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'set ssl ocsp-response' expects response in base64 encoding.\n"; appctx->st0 = CLI_ST_PRINT; return 1; } trash.len = base64dec(args[3], strlen(args[3]), trash.str, trash.size); if (trash.len < 0) { appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "'set ssl ocsp-response' received invalid base64 encoded response.\n"; appctx->st0 = CLI_ST_PRINT; return 1; } if (ssl_sock_update_ocsp_response(&trash, &err)) { if (err) { memprintf(&err, "%s.\n", err); appctx->ctx.cli.err = err; appctx->st0 = CLI_ST_PRINT_FREE; } return 1; } appctx->ctx.cli.severity = LOG_INFO; appctx->ctx.cli.msg = "OCSP Response updated!"; appctx->st0 = CLI_ST_PRINT; return 1; #else appctx->ctx.cli.severity = LOG_ERR; appctx->ctx.cli.msg = "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n"; appctx->st0 = CLI_ST_PRINT; return 1; #endif } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) { { "show", "tls-keys", NULL }, "show tls-keys [id|*]: show tls keys references or dump tls ticket keys when id specified", cli_parse_show_tlskeys, NULL }, { { "set", "ssl", "tls-key", NULL }, "set ssl tls-key [id|keyfile] : set the next TLS key for the or listener to ", cli_parse_set_tlskeys, NULL }, #endif { { "set", "ssl", "ocsp-response", NULL }, NULL, cli_parse_set_ocspresponse, NULL }, { { NULL }, NULL, NULL, NULL } }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "ssl_bc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, { "ssl_bc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, { "ssl_bc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, { "ssl_bc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, { "ssl_bc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_c_ca_err", smp_fetch_ssl_c_ca_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_ca_err_depth", smp_fetch_ssl_c_ca_err_depth, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_err", smp_fetch_ssl_c_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_i_dn", smp_fetch_ssl_x_i_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_s_dn", smp_fetch_ssl_x_s_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_used", smp_fetch_ssl_c_used, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_c_verify", smp_fetch_ssl_c_verify, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_f_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_i_dn", smp_fetch_ssl_x_i_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_s_dn", smp_fetch_ssl_x_s_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_has_crt", smp_fetch_ssl_fc_has_crt, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_early", smp_fetch_ssl_fc_has_early, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_sni", smp_fetch_ssl_fc_has_sni, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, #ifdef OPENSSL_NPN_NEGOTIATED { "ssl_fc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation { "ssl_fc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_sni", smp_fetch_ssl_fc_sni, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_bin", smp_fetch_ssl_fc_cl_bin, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_hex", smp_fetch_ssl_fc_cl_hex, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_str", smp_fetch_ssl_fc_cl_str, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_xxh", smp_fetch_ssl_fc_cl_xxh64, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { NULL, NULL, 0, 0, 0 }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { "ssl_fc_sni_end", "ssl_fc_sni", PAT_MATCH_END }, { "ssl_fc_sni_reg", "ssl_fc_sni", PAT_MATCH_REG }, { /* END */ }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct ssl_bind_kw ssl_bind_kws[] = { { "allow-0rtt", ssl_bind_parse_allow_0rtt, 0 }, /* allow 0-RTT */ { "alpn", ssl_bind_parse_alpn, 1 }, /* set ALPN supported protocols */ { "ca-file", ssl_bind_parse_ca_file, 1 }, /* set CAfile to process verify on client cert */ { "ciphers", ssl_bind_parse_ciphers, 1 }, /* set SSL cipher suite */ { "crl-file", ssl_bind_parse_crl_file, 1 }, /* set certificat revocation list file use on client cert verify */ { "curves", ssl_bind_parse_curves, 1 }, /* set SSL curve suite */ { "ecdhe", ssl_bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */ { "no-ca-names", ssl_bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */ { "npn", ssl_bind_parse_npn, 1 }, /* set NPN supported protocols */ { "ssl-min-ver", ssl_bind_parse_tls_method_minmax,1 }, /* minimum version */ { "ssl-max-ver", ssl_bind_parse_tls_method_minmax,1 }, /* maximum version */ { "verify", ssl_bind_parse_verify, 1 }, /* set SSL verify method */ { NULL, NULL, 0 }, }; static struct bind_kw_list bind_kws = { "SSL", { }, { { "allow-0rtt", bind_parse_allow_0rtt, 0 }, /* Allow 0RTT */ { "alpn", bind_parse_alpn, 1 }, /* set ALPN supported protocols */ { "ca-file", bind_parse_ca_file, 1 }, /* set CAfile to process verify on client cert */ { "ca-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ignore on verify depth > 0 */ { "ca-sign-file", bind_parse_ca_sign_file, 1 }, /* set CAFile used to generate and sign server certs */ { "ca-sign-pass", bind_parse_ca_sign_pass, 1 }, /* set CAKey passphrase */ { "ciphers", bind_parse_ciphers, 1 }, /* set SSL cipher suite */ { "crl-file", bind_parse_crl_file, 1 }, /* set certificat revocation list file use on client cert verify */ { "crt", bind_parse_crt, 1 }, /* load SSL certificates from this location */ { "crt-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ingore on verify depth == 0 */ { "crt-list", bind_parse_crt_list, 1 }, /* load a list of crt from this location */ { "curves", bind_parse_curves, 1 }, /* set SSL curve suite */ { "ecdhe", bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */ { "force-sslv3", bind_parse_tls_method_options, 0 }, /* force SSLv3 */ { "force-tlsv10", bind_parse_tls_method_options, 0 }, /* force TLSv10 */ { "force-tlsv11", bind_parse_tls_method_options, 0 }, /* force TLSv11 */ { "force-tlsv12", bind_parse_tls_method_options, 0 }, /* force TLSv12 */ { "force-tlsv13", bind_parse_tls_method_options, 0 }, /* force TLSv13 */ { "generate-certificates", bind_parse_generate_certs, 0 }, /* enable the server certificates generation */ { "no-ca-names", bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */ { "no-sslv3", bind_parse_tls_method_options, 0 }, /* disable SSLv3 */ { "no-tlsv10", bind_parse_tls_method_options, 0 }, /* disable TLSv10 */ { "no-tlsv11", bind_parse_tls_method_options, 0 }, /* disable TLSv11 */ { "no-tlsv12", bind_parse_tls_method_options, 0 }, /* disable TLSv12 */ { "no-tlsv13", bind_parse_tls_method_options, 0 }, /* disable TLSv13 */ { "no-tls-tickets", bind_parse_no_tls_tickets, 0 }, /* disable session resumption tickets */ { "ssl", bind_parse_ssl, 0 }, /* enable SSL processing */ { "ssl-min-ver", bind_parse_tls_method_minmax, 1 }, /* minimum version */ { "ssl-max-ver", bind_parse_tls_method_minmax, 1 }, /* maximum version */ { "strict-sni", bind_parse_strict_sni, 0 }, /* refuse negotiation if sni doesn't match a certificate */ { "tls-ticket-keys", bind_parse_tls_ticket_keys, 1 }, /* set file to load TLS ticket keys from */ { "verify", bind_parse_verify, 1 }, /* set SSL verify method */ { "npn", bind_parse_npn, 1 }, /* set NPN supported protocols */ { "prefer-client-ciphers", bind_parse_pcc, 0 }, /* prefer client ciphers */ { NULL, NULL, 0 }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct srv_kw_list srv_kws = { "SSL", { }, { { "allow-0rtt", srv_parse_allow_0rtt, 0, 1 }, /* Allow using early data on this server */ { "ca-file", srv_parse_ca_file, 1, 1 }, /* set CAfile to process verify server cert */ { "check-sni", srv_parse_check_sni, 1, 1 }, /* set SNI */ { "check-ssl", srv_parse_check_ssl, 0, 1 }, /* enable SSL for health checks */ { "ciphers", srv_parse_ciphers, 1, 1 }, /* select the cipher suite */ { "crl-file", srv_parse_crl_file, 1, 1 }, /* set certificate revocation list file use on server cert verify */ { "crt", srv_parse_crt, 1, 1 }, /* set client certificate */ { "force-sslv3", srv_parse_tls_method_options, 0, 1 }, /* force SSLv3 */ { "force-tlsv10", srv_parse_tls_method_options, 0, 1 }, /* force TLSv10 */ { "force-tlsv11", srv_parse_tls_method_options, 0, 1 }, /* force TLSv11 */ { "force-tlsv12", srv_parse_tls_method_options, 0, 1 }, /* force TLSv12 */ { "force-tlsv13", srv_parse_tls_method_options, 0, 1 }, /* force TLSv13 */ { "no-check-ssl", srv_parse_no_check_ssl, 0, 1 }, /* disable SSL for health checks */ { "no-send-proxy-v2-ssl", srv_parse_no_send_proxy_ssl, 0, 1 }, /* do not send PROXY protocol header v2 with SSL info */ { "no-send-proxy-v2-ssl-cn", srv_parse_no_send_proxy_cn, 0, 1 }, /* do not send PROXY protocol header v2 with CN */ { "no-ssl", srv_parse_no_ssl, 0, 1 }, /* disable SSL processing */ { "no-ssl-reuse", srv_parse_no_ssl_reuse, 0, 1 }, /* disable session reuse */ { "no-sslv3", srv_parse_tls_method_options, 0, 0 }, /* disable SSLv3 */ { "no-tlsv10", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv10 */ { "no-tlsv11", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv11 */ { "no-tlsv12", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv12 */ { "no-tlsv13", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv13 */ { "no-tls-tickets", srv_parse_no_tls_tickets, 0, 1 }, /* disable session resumption tickets */ { "send-proxy-v2-ssl", srv_parse_send_proxy_ssl, 0, 1 }, /* send PROXY protocol header v2 with SSL info */ { "send-proxy-v2-ssl-cn", srv_parse_send_proxy_cn, 0, 1 }, /* send PROXY protocol header v2 with CN */ { "sni", srv_parse_sni, 1, 1 }, /* send SNI extension */ { "ssl", srv_parse_ssl, 0, 1 }, /* enable SSL processing */ { "ssl-min-ver", srv_parse_tls_method_minmax, 1, 1 }, /* minimum version */ { "ssl-max-ver", srv_parse_tls_method_minmax, 1, 1 }, /* maximum version */ { "ssl-reuse", srv_parse_ssl_reuse, 0, 1 }, /* enable session reuse */ { "tls-tickets", srv_parse_tls_tickets, 0, 1 }, /* enable session resumption tickets */ { "verify", srv_parse_verify, 1, 1 }, /* set SSL verify method */ { "verifyhost", srv_parse_verifyhost, 1, 1 }, /* require that SSL cert verifies for hostname */ { NULL, NULL, 0, 0 }, }}; static struct cfg_kw_list cfg_kws = {ILH, { { CFG_GLOBAL, "ca-base", ssl_parse_global_ca_crt_base }, { CFG_GLOBAL, "crt-base", ssl_parse_global_ca_crt_base }, { CFG_GLOBAL, "maxsslconn", ssl_parse_global_int }, { CFG_GLOBAL, "ssl-default-bind-options", ssl_parse_default_bind_options }, { CFG_GLOBAL, "ssl-default-server-options", ssl_parse_default_server_options }, #ifndef OPENSSL_NO_DH { CFG_GLOBAL, "ssl-dh-param-file", ssl_parse_global_dh_param_file }, #endif { CFG_GLOBAL, "ssl-mode-async", ssl_parse_global_ssl_async }, #ifndef OPENSSL_NO_ENGINE { CFG_GLOBAL, "ssl-engine", ssl_parse_global_ssl_engine }, #endif { CFG_GLOBAL, "tune.ssl.cachesize", ssl_parse_global_int }, #ifndef OPENSSL_NO_DH { CFG_GLOBAL, "tune.ssl.default-dh-param", ssl_parse_global_default_dh }, #endif { CFG_GLOBAL, "tune.ssl.force-private-cache", ssl_parse_global_private_cache }, { CFG_GLOBAL, "tune.ssl.lifetime", ssl_parse_global_lifetime }, { CFG_GLOBAL, "tune.ssl.maxrecord", ssl_parse_global_int }, { CFG_GLOBAL, "tune.ssl.ssl-ctx-cache-size", ssl_parse_global_int }, { CFG_GLOBAL, "tune.ssl.capture-cipherlist-size", ssl_parse_global_capture_cipherlist }, { CFG_GLOBAL, "ssl-default-bind-ciphers", ssl_parse_global_ciphers }, { CFG_GLOBAL, "ssl-default-server-ciphers", ssl_parse_global_ciphers }, { 0, NULL, NULL }, }}; /* transport-layer operations for SSL sockets */ static struct xprt_ops ssl_sock = { .snd_buf = ssl_sock_from_buf, .rcv_buf = ssl_sock_to_buf, .rcv_pipe = NULL, .snd_pipe = NULL, .shutr = NULL, .shutw = ssl_sock_shutw, .close = ssl_sock_close, .init = ssl_sock_init, .prepare_bind_conf = ssl_sock_prepare_bind_conf, .destroy_bind_conf = ssl_sock_destroy_bind_conf, .prepare_srv = ssl_sock_prepare_srv_ctx, .destroy_srv = ssl_sock_free_srv_ctx, .get_alpn = ssl_sock_get_alpn, .name = "SSL", }; enum act_return ssl_action_wait_for_hs(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *conn; struct conn_stream *cs; conn = objt_conn(sess->origin); cs = objt_cs(s->si[0].end); if (conn && cs) { if (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS)) { cs->flags |= CS_FL_WAIT_FOR_HS; s->req.flags |= CF_READ_NULL; return ACT_RET_YIELD; } } return (ACT_RET_CONT); } static enum act_parse_ret ssl_parse_wait_for_hs(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { rule->action_ptr = ssl_action_wait_for_hs; return ACT_RET_PRS_OK; } static struct action_kw_list http_req_actions = {ILH, { { "wait-for-handshake", ssl_parse_wait_for_hs }, { /* END */ } }}; #if (OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL && !defined LIBRESSL_VERSION_NUMBER) static void ssl_sock_sctl_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (ptr) { chunk_destroy(ptr); free(ptr); } } #endif static void ssl_sock_capture_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { pool_free(pool_head_ssl_capture, ptr); } __attribute__((constructor)) static void __ssl_sock_init(void) { char *ptr; int i; STACK_OF(SSL_COMP)* cm; if (global_ssl.listen_default_ciphers) global_ssl.listen_default_ciphers = strdup(global_ssl.listen_default_ciphers); if (global_ssl.connect_default_ciphers) global_ssl.connect_default_ciphers = strdup(global_ssl.connect_default_ciphers); xprt_register(XPRT_SSL, &ssl_sock); SSL_library_init(); cm = SSL_COMP_get_compression_methods(); sk_SSL_COMP_zero(cm); #ifdef USE_THREAD ssl_locking_init(); #endif #if (OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL && !defined LIBRESSL_VERSION_NUMBER) sctl_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_sctl_free_func); #endif ssl_capture_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_capture_free_func); ssl_pkey_info_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL); sample_register_fetches(&sample_fetch_keywords); acl_register_keywords(&acl_kws); bind_register_keywords(&bind_kws); srv_register_keywords(&srv_kws); cfg_register_keywords(&cfg_kws); cli_register_kw(&cli_kws); #ifndef OPENSSL_NO_ENGINE ENGINE_load_builtin_engines(); hap_register_post_check(ssl_check_async_engine_count); #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) hap_register_post_check(tlskeys_finalize_config); #endif ptr = NULL; memprintf(&ptr, "Built with OpenSSL version : " #ifdef OPENSSL_IS_BORINGSSL "BoringSSL"); #else /* OPENSSL_IS_BORINGSSL */ OPENSSL_VERSION_TEXT "\nRunning on OpenSSL version : %s%s", SSLeay_version(SSLEAY_VERSION), ((OPENSSL_VERSION_NUMBER ^ SSLeay()) >> 8) ? " (VERSIONS DIFFER!)" : ""); #endif memprintf(&ptr, "%s\nOpenSSL library supports TLS extensions : " #if OPENSSL_VERSION_NUMBER < 0x00907000L "no (library version too old)" #elif defined(OPENSSL_NO_TLSEXT) "no (disabled via OPENSSL_NO_TLSEXT)" #else "yes" #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports SNI : " #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME "yes" #else #ifdef OPENSSL_NO_TLSEXT "no (because of OPENSSL_NO_TLSEXT)" #else "no (version might be too old, 0.9.8f min needed)" #endif #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports :", ptr); for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option) memprintf(&ptr, "%s %s", ptr, methodVersions[i].name); hap_register_build_opts(ptr, 1); global.ssl_session_max_cost = SSL_SESSION_MAX_COST; global.ssl_handshake_max_cost = SSL_HANDSHAKE_MAX_COST; #ifndef OPENSSL_NO_DH ssl_dh_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL); hap_register_post_deinit(ssl_free_dh); #endif #ifndef OPENSSL_NO_ENGINE hap_register_post_deinit(ssl_free_engines); #endif /* Load SSL string for the verbose & debug mode. */ ERR_load_SSL_strings(); http_req_keywords_register(&http_req_actions); } #ifndef OPENSSL_NO_ENGINE void ssl_free_engines(void) { struct ssl_engine_list *wl, *wlb; /* free up engine list */ list_for_each_entry_safe(wl, wlb, &openssl_engines, list) { ENGINE_finish(wl->e); ENGINE_free(wl->e); LIST_DEL(&wl->list); free(wl); } } #endif #ifndef OPENSSL_NO_DH void ssl_free_dh(void) { if (local_dh_1024) { DH_free(local_dh_1024); local_dh_1024 = NULL; } if (local_dh_2048) { DH_free(local_dh_2048); local_dh_2048 = NULL; } if (local_dh_4096) { DH_free(local_dh_4096); local_dh_4096 = NULL; } if (global_dh) { DH_free(global_dh); global_dh = NULL; } } #endif __attribute__((destructor)) static void __ssl_sock_deinit(void) { #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (ssl_ctx_lru_tree) { lru64_destroy(ssl_ctx_lru_tree); HA_RWLOCK_DESTROY(&ssl_ctx_lru_rwlock); } #endif ERR_remove_state(0); ERR_free_strings(); EVP_cleanup(); #if OPENSSL_VERSION_NUMBER >= 0x00907000L CRYPTO_cleanup_all_ex_data(); #endif } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */