/* * Elastic Binary Trees - macros and structures for Multi-Byte data nodes. * Version 5.0 * (C) 2002-2009 - Willy Tarreau * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _EBMBTREE_H #define _EBMBTREE_H #include #include "ebtree.h" /* Return the structure of type whose member points to */ #define ebmb_entry(ptr, type, member) container_of(ptr, type, member) #define EBMB_ROOT EB_ROOT #define EBMB_TREE_HEAD EB_TREE_HEAD /* This structure carries a node, a leaf, and a key. It must start with the * eb_node so that it can be cast into an eb_node. We could also have put some * sort of transparent union here to reduce the indirection level, but the fact * is, the end user is not meant to manipulate internals, so this is pointless. * The 'node.bit' value here works differently from scalar types, as it contains * the number of identical bits between the two branches. */ struct ebmb_node { struct eb_node node; /* the tree node, must be at the beginning */ unsigned char key[0]; /* the key, its size depends on the application */ }; /* * Exported functions and macros. * Many of them are always inlined because they are extremely small, and * are generally called at most once or twice in a program. */ /* Return leftmost node in the tree, or NULL if none */ static forceinline struct ebmb_node *ebmb_first(struct eb_root *root) { return ebmb_entry(eb_first(root), struct ebmb_node, node); } /* Return rightmost node in the tree, or NULL if none */ static forceinline struct ebmb_node *ebmb_last(struct eb_root *root) { return ebmb_entry(eb_last(root), struct ebmb_node, node); } /* Return next node in the tree, or NULL if none */ static forceinline struct ebmb_node *ebmb_next(struct ebmb_node *ebmb) { return ebmb_entry(eb_next(&ebmb->node), struct ebmb_node, node); } /* Return previous node in the tree, or NULL if none */ static forceinline struct ebmb_node *ebmb_prev(struct ebmb_node *ebmb) { return ebmb_entry(eb_prev(&ebmb->node), struct ebmb_node, node); } /* Return next node in the tree, skipping duplicates, or NULL if none */ static forceinline struct ebmb_node *ebmb_next_unique(struct ebmb_node *ebmb) { return ebmb_entry(eb_next_unique(&ebmb->node), struct ebmb_node, node); } /* Return previous node in the tree, skipping duplicates, or NULL if none */ static forceinline struct ebmb_node *ebmb_prev_unique(struct ebmb_node *ebmb) { return ebmb_entry(eb_prev_unique(&ebmb->node), struct ebmb_node, node); } /* Delete node from the tree if it was linked in. Mark the node unused. Note * that this function relies on a non-inlined generic function: eb_delete. */ static forceinline void ebmb_delete(struct ebmb_node *ebmb) { eb_delete(&ebmb->node); } /* The following functions are not inlined by default. They are declared * in ebmbtree.c, which simply relies on their inline version. */ REGPRM3 struct ebmb_node *ebmb_lookup(struct eb_root *root, const void *x, unsigned int len); REGPRM3 struct ebmb_node *ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len); /* The following functions are less likely to be used directly, because their * code is larger. The non-inlined version is preferred. */ /* Delete node from the tree if it was linked in. Mark the node unused. */ static forceinline void __ebmb_delete(struct ebmb_node *ebmb) { __eb_delete(&ebmb->node); } /* Find the first occurence of a key of bytes in the tree . * If none can be found, return NULL. */ static forceinline struct ebmb_node *__ebmb_lookup(struct eb_root *root, const void *x, unsigned int len) { struct ebmb_node *node; eb_troot_t *troot; unsigned int bit; troot = root->b[EB_LEFT]; if (unlikely(troot == NULL)) return NULL; bit = 0; while (1) { if ((eb_gettag(troot) == EB_LEAF)) { node = container_of(eb_untag(troot, EB_LEAF), struct ebmb_node, node.branches); if (memcmp(node->key, x, len) == 0) return node; else return NULL; } node = container_of(eb_untag(troot, EB_NODE), struct ebmb_node, node.branches); if (node->node.bit < 0) { /* We have a dup tree now. Either it's for the same * value, and we walk down left, or it's a different * one and we don't have our key. */ if (memcmp(node->key, x, len) != 0) return NULL; troot = node->node.branches.b[EB_LEFT]; while (eb_gettag(troot) != EB_LEAF) troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT]; node = container_of(eb_untag(troot, EB_LEAF), struct ebmb_node, node.branches); return node; } /* OK, normal data node, let's walk down */ bit = equal_bits(x, node->key, bit, node->node.bit); if (bit < node->node.bit) return NULL; /* no more common bits */ troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >> (~node->node.bit & 7)) & 1]; } } /* Insert ebmb_node into subtree starting at node root . * Only new->key needs be set with the key. The ebmb_node is returned. * If root->b[EB_RGHT]==1, the tree may only contain unique keys. The * len is specified in bytes. */ static forceinline struct ebmb_node * __ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len) { struct ebmb_node *old; unsigned int side; eb_troot_t *troot; eb_troot_t *root_right = root; int diff; int bit; side = EB_LEFT; troot = root->b[EB_LEFT]; root_right = root->b[EB_RGHT]; if (unlikely(troot == NULL)) { /* Tree is empty, insert the leaf part below the left branch */ root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF); new->node.leaf_p = eb_dotag(root, EB_LEFT); new->node.node_p = NULL; /* node part unused */ return new; } len <<= 3; /* The tree descent is fairly easy : * - first, check if we have reached a leaf node * - second, check if we have gone too far * - third, reiterate * Everywhere, we use for the node node we are inserting, * for the node we attach it to, and for the node we are * displacing below . will always point to the future node * (tagged with its type). carries the side the node is * attached to below its parent, which is also where previous node * was attached. */ bit = 0; while (1) { if (unlikely(eb_gettag(troot) == EB_LEAF)) { eb_troot_t *new_left, *new_rght; eb_troot_t *new_leaf, *old_leaf; old = container_of(eb_untag(troot, EB_LEAF), struct ebmb_node, node.branches); new_left = eb_dotag(&new->node.branches, EB_LEFT); new_rght = eb_dotag(&new->node.branches, EB_RGHT); new_leaf = eb_dotag(&new->node.branches, EB_LEAF); old_leaf = eb_dotag(&old->node.branches, EB_LEAF); new->node.node_p = old->node.leaf_p; /* Right here, we have 3 possibilities : * - the tree does not contain the key, and we have * new->key < old->key. We insert new above old, on * the left ; * * - the tree does not contain the key, and we have * new->key > old->key. We insert new above old, on * the right ; * * - the tree does contain the key, which implies it * is alone. We add the new key next to it as a * first duplicate. * * The last two cases can easily be partially merged. */ bit = equal_bits(new->key, old->key, bit, len); diff = cmp_bits(new->key, old->key, bit); if (diff < 0) { new->node.leaf_p = new_left; old->node.leaf_p = new_rght; new->node.branches.b[EB_LEFT] = new_leaf; new->node.branches.b[EB_RGHT] = old_leaf; } else { /* we may refuse to duplicate this key if the tree is * tagged as containing only unique keys. */ if (diff == 0 && eb_gettag(root_right)) return old; /* new->key >= old->key, new goes the right */ old->node.leaf_p = new_left; new->node.leaf_p = new_rght; new->node.branches.b[EB_LEFT] = old_leaf; new->node.branches.b[EB_RGHT] = new_leaf; if (diff == 0) { new->node.bit = -1; root->b[side] = eb_dotag(&new->node.branches, EB_NODE); return new; } } break; } /* OK we're walking down this link */ old = container_of(eb_untag(troot, EB_NODE), struct ebmb_node, node.branches); /* Stop going down when we don't have common bits anymore. We * also stop in front of a duplicates tree because it means we * have to insert above. Note: we can compare more bits than * the current node's because as long as they are identical, we * know we descend along the correct side. */ if (old->node.bit < 0) { /* we're above a duplicate tree, we must compare till the end */ bit = equal_bits(new->key, old->key, bit, len); goto dup_tree; } else if (bit < old->node.bit) { bit = equal_bits(new->key, old->key, bit, old->node.bit); } if (bit < old->node.bit) { /* we don't have all bits in common */ /* The tree did not contain the key, so we insert before the node * , and set ->bit to designate the lowest bit position in * which applies to ->branches.b[]. */ eb_troot_t *new_left, *new_rght; eb_troot_t *new_leaf, *old_node; dup_tree: new_left = eb_dotag(&new->node.branches, EB_LEFT); new_rght = eb_dotag(&new->node.branches, EB_RGHT); new_leaf = eb_dotag(&new->node.branches, EB_LEAF); old_node = eb_dotag(&old->node.branches, EB_NODE); new->node.node_p = old->node.node_p; diff = cmp_bits(new->key, old->key, bit); if (diff < 0) { new->node.leaf_p = new_left; old->node.node_p = new_rght; new->node.branches.b[EB_LEFT] = new_leaf; new->node.branches.b[EB_RGHT] = old_node; } else if (diff > 0) { old->node.node_p = new_left; new->node.leaf_p = new_rght; new->node.branches.b[EB_LEFT] = old_node; new->node.branches.b[EB_RGHT] = new_leaf; } else { struct eb_node *ret; ret = eb_insert_dup(&old->node, &new->node); return container_of(ret, struct ebmb_node, node); } break; } /* walk down */ root = &old->node.branches; side = (new->key[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1; troot = root->b[side]; } /* Ok, now we are inserting between and . 's * parent is already set to , and the 's branch is still in * . Update the root's leaf till we have it. Note that we can also * find the side by checking the side of new->node.node_p. */ /* We need the common higher bits between new->key and old->key. * This number of bits is already in . */ new->node.bit = bit; root->b[side] = eb_dotag(&new->node.branches, EB_NODE); return new; } #endif /* _EBMBTREE_H */