File buf.h is one common cause of pain in the dependencies. Many files in
the code need it to get the struct buffer definition, and a few also need
the inlined functions to manipulate a buffer, but the file used to depend
on a long chain only for BUG_ON() (addressed by last commit).
Now buf.h is split into buf-t.h which only contains the type definitions,
and buf.h for all inlined functions. Callers who don't care can continue
to use buf.h but files in types/ must only use buf-t.h. sys/types.h had
to be added to buf.h to get ssize_t as used by b_move(). It's worth noting
that ssize_t is only supposed to be a size_t supporting -1, so b_move()
ought to be rethought regarding this.
The files were moved to haproxy/ and all their users were updated
accordingly. A dependency issue was addressed on fcgi whose C file didn't
include buf.h.
Fortunately that file wasn't made dependent upon haproxy since it was
integrated, better isolate it before it's too late. Its dependency on
api.h was the result of the change from config.h, which in turn wasn't
correct. It was changed back to stddef.h for size_t and sys/types.h for
ssize_t. The recently added reference to MAX() was changed as it was
placed only to avoid a zero length in the non-free-standing version and
was causing a build warning in the hpack encoder.
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
This does like chunk_strcpy() except that the maximum string length may
be limited by the caller. A trailing zero is always appended. This is
particularly handy to extract portions of strings to put into the trash
for use with libc functions requiring a nul-terminated string.
We previously relied on chunk_cat(dst, b_fromist(src)) for this but it
is not reliable as the allocated buffer is inside the expression and
may be on a temporary stack. While it's possible to allocate stack space
for a struct and return a pointer to it, it's not possible to initialize
it form a temporary variable to prevent arguments from being evaluated
multiple times. Since this is only used to append an ist after a chunk,
let's instead have a chunk_istcat() function to perform exactly this
from a native ist.
The only call place (URI computation in the cache) was updated.
When raw data are copied or appended in a chunk, the result must not exceed the
chunk size but it can reach it. Unlike functions to copy or append a string,
there is no terminating null byte.
This patch must be backported as far as 1.8. Note in 1.8, the functions
chunk_cpy() and chunk_cat() don't exist.
Instead of exporting a number of pools and having to manually delete
them in deinit() or to have dedicated destructors to remove them, let's
simply kill all pools on deinit().
For this a new function pool_destroy_all() was introduced. As its name
implies, it destroys and frees all pools (provided they don't have any
user anymore of course).
This allowed to remove 4 implicit destructors, 2 explicit ones, and 11
individual calls to pool_destroy(). In addition it properly removes
the mux_pt_ctx pool which was not cleared on exit (no backport needed
here since it's 1.9 only). The sig_handler pool doesn't need to be
exported anymore and became static now.
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
During the migration to the second version of the pools, the new
functions and pool pointers were all called "pool_something2()" and
"pool2_something". Now there's no more pool v1 code and it's a real
pain to still have to deal with this. Let's clean this up now by
removing the "2" everywhere, and by renaming the pool heads
"pool_head_something".
There was a flaw in the way the threads was created. the main one was just used
to create all the others and just wait to exit. Now, it is used to run a poll
loop. So we only create nbthread-1 threads.
This also fixes a bug about the compression filter when there is only 1 thread
(nbthread == 1 or no threads support). The bug was in the way thread-local
resources was initialized. per-thread init/deinit callbacks were never called
for the main process. So, with nthread set to 1, some buffers remained
uninitialized.
Now, we use init_trash_buffers and deinit_trash_buffers to, respectively,
initialize and deinitialize trash buffers (trash, trash_buf1 and trash_buf2).
These functions have been introduced to be used by threads, to deal with
thread-local trash buffers.
These two functions respectively copy a memory area onto the chunk, and
append the contents of a memory area over a chunk. They are convenient
to prepare binary output data to be sent and will be used for HTTP/2.
The trash buffers are becoming increasingly complex to deal with due to
the code's modularity allowing some functions to be chained and causing
the same chunk buffers to be used multiple times along the chain, possibly
corrupting each other. In fact the trash were designed from scratch for
explicitly not surviving a function call but string manipulation makes
this impossible most of the time while not fullfilling the need for
reliable temporary chunks.
Here we introduce the ability to allocate a temporary trash chunk which
is reserved, so that it will not conflict with the trash chunks other
functions use, and will even support reentrant calls (eg: build_logline).
For this, we create a new pool which is exactly the size of a usual chunk
buffer plus the size of the chunk struct so that these chunks when allocated
are exactly the same size as the ones returned by get_trash_buffer(). These
chunks may fail so the caller must check them, and the caller is also
responsible for freeing them.
The code focuses on minimal changes and ease of reliable backporting
because it will be needed in stable versions in order to support next
patch.
Avoiding harmful memcpy call if the allocation failed.
Resetting the size which avoids further harmful freeing
invalid pointer. Closer to the comment behavior description.
The recent addition of "show env" on the CLI has revealed an interesting
design bug. Chunks are supposed to support a negative length to indicate
that they carry no data. chunk_printf() sets this size to -1 if the string
is too large for the buffer. At a few places in the http engine we may end
up with trash.len = -1. But bi_putchk(), chunk_appendf() and a few other
chunks consumers don't consider this case as possible and will use such a
chunk, possibly restoring an invalid string or trying to copy -1 bytes.
This fix takes care of clarifying the situation in a backportable way
where such sizes are used, so that a negative length indicating an error
remains present until the chunk is reinitialized or overwritten. But a
cleaner design adjustment needs to be done so that there's a clear contract
on how to use these chunks. At first glance it doesn't seem *that* useful
to support negative sizes, so probably this is what should change.
This fix must be backported to 1.6 and 1.5.
chunk_initstr() prepares a read-only chunk from a string of
fixed length. Thus it must be prepared to accept a read-only
string on the input, otherwise the caller has to force-cast
some const char* and that's not a good idea.
These two new functions will make it easier to manipulate small strings
from within functions, because at many places, multiple short strings
are needed which do not deserve a malloc() nor a free(), and alloca()
is often discouraged. Since we already have trash chunks, it's convenient
to be able to allocate substrings from a chunk and use them later since
our functions already perform all the length checks. chunk_newstr() adds
a trailing zero at the end of a chunk and returns the pointer to the next
character, which can be used as an independant string. chunk_strcat()
does what it says.
Since thus function bears the name of a well-known string function, it
must at least promise compatible semantics. Here it means always adding
the trailing zero so that anyone willing to use chunk->str as a regular
string can do it. Of course the zero is not counted in the chunk's length.
chunk_dup() was affected by two bugs at once related to dst->size :
- first, it didn't check dst->size to know if it could free(dst->str),
so using it on a statically allocated chunk would cause a free(constant)
and crash the process ;
- second, it didn't properly set dst->size, possibly causing smaller
strings not to be properly reported in a chunk that was previously
used for something else.
Fortunately, neither of these situations ever happened since the function
is rarely used.
In the process of doing this, we even allocate one more byte for a
trailing zero if the input chunk was not full, so that the copied
string can safely be reused by standard string functions.
The bug was introduced in 1.3.4 nine years ago with this commit :
0f77253 ("[MINOR] store HTTP error messages into a chunk array")
It's better to backport this fix in case a future fix relies on it.
At the moment, we need trash chunks almost everywhere and the only
correctly implemented one is in the sample code. Let's move this to
the chunks so that all other places can use this allocator.
Additionally, the get_trash_chunk() function now really returns two
different chunks. Previously it used to always overwrite the same
chunk and point it to a different buffer, which was a bit tricky
because it's not obvious that two consecutive results do alias each
other.
This function's naming was misleading as it is used to append data
at the end of a string, causing some surprizes when used for the
first time!
Add a chunk_printf() function which does what its name suggests.
This is a first step in avoiding to constantly reinitialize chunks.
It replaces the old chunk_reset() which was not properly named as it
used to drop everything and was only used by chunk_destroy(). It has
been renamed chunk_drop().
It's sometimes needed to be able to compare a zero-terminated string with a
chunk, so we now have two functions to do that, one strcmp() equivalent and
one strcasecmp() equivalent.