If an ALPN (or a NPN) was chosen for a server, defer choosing the mux until
after the SSL handshake is done, and the ALPN/NPN has been negociated, so
that we know which mux to pick.
In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines,
each time the process waits for an I/O using the poller, the processor
goes back to sleep or is offered to another VM for a long time, and it
causes excessively high latencies.
A solution to this provided by this patch is to enable busy polling using
a global option. When busy polling is enabled, the pollers never sleep and
loop over themselves waiting for an I/O event to happen or for a timeout
to occur. On multi-processor machines it can significantly overheat the
processor but it usually results in much lower latencies.
A typical test consisting in injecting traffic over a single connection at
a time over the loopback shows a bump from 4640 to 8540 connections per
second on forwarded connections, indicating a latency reduction of 98
microseconds for each connection, and a bump from 12500 to 21250 for
locally terminated connections (redirects), indicating a reduction of
33 microseconds.
It is only usable with epoll and kqueue because select() and poll()'s
API is not convenient for such usages, and the level of performance they
are used in doesn't benefit from this anyway.
The option, which obviously remains disabled by default, can be turned
on using "busy-polling" in the global section, and turned off later
using "no busy-polling". Its status is reported in "show info" to help
troubleshooting suspicious CPU spikes.
Right now we measure for each task the cumulated time spent waiting for
the CPU and using it. The timestamp uses a 64-bit integer to report a
nanosecond-level date. This is only enabled when "profiling.tasks" is
enabled, and consumes less than 1% extra CPU on x86_64 when enabled.
The cumulated processing time and wait time are reported in "show sess".
The task's counters are also reset when an HTTP transaction is reset
since the HTTP part pretends to restart on a fresh new stream. This
will make sure we always report correct numbers for each request in
the logs.
This is a new global setting which enables or disables CPU profiling
per task. For now it only sets/resets the variable based on the global
option "profiling.tasks" and supports showing it as well as setting it
from the CLI using "show profiling" and "set profiling". The option will
be used by a future commit. It was done in a way which should ease future
addition of profiling options.
Since we know the time it takes to process everything between two poll()
calls, we can use this as the max latency measurement any task will
experience and average it.
This code does this, and reports in "show activity" the average of this
loop time over the last 1024 poll() loops, for each thread. It will vary
quickly at high loads and slowly under low to moderate loads, depending
on the rate at which poll() is called. The latency a task experiences
is expected to be half of this on average.
At the moment the situation with activity measurement is quite tricky
because the struct activity is defined in global.h and declared in
haproxy.c, with operations made in time.h and relying on freq_ctr
which are defined in freq_ctr.h which itself includes time.h. It's
barely possible to touch any of these files without breaking all the
circular dependency.
Let's move all this stuff to activity.{c,h} and be done with it. The
measurement of active and stolen time is now done in a dedicated
function called just after tv_before_poll() instead of mixing the two,
which used to be a lazy (but convenient) decision.
No code was changed, stuff was just moved around.
Just found that proto/cli.h doesn't build if types/cli.h is not also
included by the caller, as it uses cli_kw_list is used in arguments.
But it's also true for a few other ones like mworker_proc, stream,
and channel, so let's fix this.
The new function signal_unregister() removes every handlers assigned to
a signal. Once the handler list of the signal is empty, the signal is
ignored with SIG_IGN.
In the output of 'show fd', the worker CLI's socketpair was still
handled by an "unknown" function. That can be really confusing during
debug. Fixed it by showing "mworker_accept_wrapper" instead.
The mworker waitpid mode (which is used when a reload failed to apply
the new configuration) was still using a specific initialisation path.
That's a problem since we use a polling loop in the master now, the
master proxy is not initialized and the master CLI is not activated.
This patch removes the initialisation code of the wait mode and
introduce the MODE_MWORKER_WAIT in order to use the same init path as
the MODE_MWORKER with some exceptions. It allows to use the master proxy
and the master CLI during the waitpid mode.
This was the largest function of the whole file, taking a rough second
to build alone. Let's move it to a distinct file along with a few
dependencies. Doing so saved about 2 seconds on the total build time.
The config parser is the largest file to build and its build dominates
the total project's build time. Let's start to split it into multiple
smaller pieces by extracting the "global" section parser into a new
file called "cfgparse-global.c". This removes 1/4th of the file's build
time.
It does the same than smp_prefetch_http but for HTX messages. It can be called
from an HTTP proxy or a TCP proxy. For HTTP proxies, the parsing is handled by
the mux, so it does nothing but wait. For TCP proxies, it tries to parse an HTTP
message and to convert it in a temporary HTX message. Sample fetches will use
this temporary variable to do their job.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
This file will host all functions to manipulate HTTP messages using the HTX
representation. Functions in this file will be able to be called from anywhere
and are mainly related to the HTTP semantics.
The internal representation of an HTTP message, called HTX, is a structured
representation, unlike the old one which is a raw representation of
messages. Idea is to have a version-agnostic representation of the HTTP
messages, which can be easily used by to handle HTTP/1, HTTP/2 and hopefully
QUIC messages, and communication from one of them to another.
In this patch, we add types to define the internal representation itself and the
main functions to manipulate them.
Now, the connection mode is detected in the mux and not in HTX analyzers
anymore. Keep-alive connections are now managed by the mux. A new stream is
created for each transaction. This removes the most important part of the
synchronization between channels and the HTTP transaction cleanup. These changes
only affect the HTX part (proto_htx.c). Legacy HTTP analyzers remain untouched
for now.
On the client-side, the mux is responsible to create new streams when a new
request starts. It is also responsible to parse and update the "Connection:"
header of the response. On the server-side, the mux is responsible to parse and
update the "Connection:" header of the request. Muxes on each side are
independent. For now, there is no connection pool on the server-side, so it
always close the server connection.
For now, these analyzers are just copies of the legacy HTTP analyzers. But,
during the HTTP refactoring, it will be the main place where it will be
visible. And in legacy analyzers, the macro IS_HTX_STRM is used to know if the
HTX version should be called or not.
Note: the following commits were applied to proto_http.c after this patch
was developed and need to be studied to see if an adaptation to htx
is required :
fd9b68c BUG/MINOR: only mark connections private if NTLM is detected
To prepare the refactoring of the code handling HTTP messages, these macros will
help to use HTX functions instead of legacy ones when the new HTX internal
representation is in use. To do so, for a given stream, we will check if its
frontend has the option PR_O2_USE_HTX. It is useless to test backend options
because it is not possible to mix the HTX representation and the legacy one
(i.e, having an HTX frontend and a legacy backend or vice versa).
The flag CS_FL_READ_PARTIAL can be set by the mux on the conn_stream to notify
the stream interface that some data were received. Is is used in si_cs_recv to
re-arm read timeout on the channel.
These 2 functions are pretty naive. They only split a start-line into its 3
substrings or a header line into its name and value. Spaces before and after
each part are skipped. No CRLF at the end are expected.
By setting the flag CO_RFL_KEEP_RSV when calling mux->rcv_buf, the
stream-interface notifies the mux it must keep some space to preserve the
buffer's reserve. This flag is only useful for multiplexers handling structured
data, because in such case, the stream-interface cannot know the real amount of
free space in the channel's buffer.
By setting the flag CO_RFL_BUF_FLUSH when calling mux->rcv_buf, the
stream-interface notifies the mux it should flush its buffers without reading
more data. This flag is set when the SI want to use the kernel TCP splicing to
forward data. Of course, the mux can respect it or not, depending on its
state. It's just an information.
Do not destroy the connection when we're about to destroy a stream. This
prevents us from doing keepalive on server connections when the client is
using HTTP/2, as a new stream is created for each request.
Instead, the session is now responsible for destroying connections.
When reusing connections, the attach() mux method is now used to create a new
conn_stream.
Introduce a new field in session, "srv_conn", and a linked list of sessions
in the connection. It will be used later when we'll switch connections
from being managed by the stream, to being managed by the session.
Add a new method for mux, avail_streams, that returns the number of streams
still available for a mux.
For the mux_pt, it'll return 1 if the connection is in idle, or 0. For
the H2 mux, it'll return the max number of streams allowed, minus the number
of streams currently in use.
Remaining calls to si_cant_put() were all for lack of room and were
turned to si_rx_room_blk(). A few places where SI_FL_RXBLK_ROOM was
cleared by hand were converted to si_rx_room_rdy().
The now unused si_cant_put() function was removed.