This function modifies the string to add a zero after the end, and returns
the start pointer. The purpose is to use it on strings extracted by parsers
from larger strings cut with delimiters that are not important and can be
destroyed. It allows any such string to be used with regular string
functions. It's also convenient to use with printf() to show data extracted
from writable areas.
It's not possible to use strlen() in const arrays even with const
strings, but we can use sizeof-1 via a macro. Let's provide this in
the IST() macro, as it saves the developer from having to count the
characters.
For HPACK we'll need to perform a lot of string manipulation between the
dynamic headers table and the output stream, and we need an efficient way
to deal with that, considering that the zero character is not an end of
string marker here. It turns out that gcc supports returning structs from
functions and is able to place up to two words directly in registers when
-freg-struct is used, which is the case by default on x86 and armv8. On
other architectures the caller reserves some stack space where the callee
can write, which is equivalent to passing a pointer to the return value.
So let's implement a few functions to deal with this as the resulting code
will be optimized on certain architectures where retrieving the length of
a string will simply consist in reading one of the two returned registers.
Extreme care was taken to ensure that the compiler gets maximum opportunities
to optimize out every bit of unused code. This is also the reason why no
call to regular string functions (such as strlen(), memcmp(), memcpy() etc)
were used. The code involving them is often larger than when they are open
coded. Given that strings are usually very small, especially when manipulating
headers, the time spent calling a function optimized for large vectors often
ends up being higher than the few cycles needed to count a few bytes.
An issue was met with __builtin_strlen() which can automatically convert
a constant string to its constant length. It doesn't accept NULLs and there
is no way to hide them using expressions as the check is made before the
optimizer is called. On gcc 4 and above, using an intermediary variable
is enough to hide it. On older versions, calls to ist() with an explicit
NULL argument will issue a warning. There is normally no reason to do this
but taking care of it the best possible still seems important.