task_delete() was never used without calling task_free() just after, and
task_free() was only used on error pathes to destroy a just-created task,
so merge them into task_destroy(), that will remove the task from the
wait queue, and make sure the task is either destroyed immediately if it's
not in the run queue, or destroyed when it's supposed to run.
The wakeup condition in task_wakeup() is redundant as it is already
validated by the CAS. Better move the __task_wakeup() call there, it
also has the merit of being easier to audit this way. This also reduces
the code size by around 1.8 kB :
$ size haproxy-?
text data bss dec hex filename
2153806 100208 1307676 3561690 3658da haproxy-1
2152094 100208 1307676 3559978 36522a haproxy-2
Commit 0c7a4b6 ("MINOR: tasks: Don't set the TASK_RUNNING flag when
adding in the tasklet list.") revealed a hole in the way tasks may
be freed : they could be removed while in the run queue when the
TASK_QUEUED flag was present but not the TASK_RUNNING one. But it
seems the issue was emphasized by commit cde7902 ("MEDIUM: tasks:
improve fairness between the local and global queues") though the
code it replaces was already affected given how late the TASK_RUNNING
flag was set after removal from the global queue.
At the moment the task is picked from the global run queue, if it
is the last one, the global run queue lock is dropped, and then
the TASK_RUNNING flag was added. In the mean time another thread
might have performed a task_free(), and immediately after, the
TASK_RUNNING flag was re-added to the task, which was then added
to the tasklet list. The unprotected window was extremely faint
but does definitely exist and inconsistent task lists have been
observed a few times during very intensive tests over the last few
days. From this point various options are possible, the task might
have been re-allocated while running, and assigned state 0 and/or
state QUEUED while it was still running, resulting in the tast not
being put back into the tree.
This commit simply makes sure that tests on TASK_RUNNING before removing
the task also cover TASK_QUEUED.
It must be backported to 1.9 along with the previous ones touching
that area.
Now that we have the warranty that a task won't be added in the runqueue
while the TASK_QUEUED or the TASK_RUNNING flag is set, don't bother trying
to lock the task by setting leaf_p to 0x1 while inserting it in the runqueue
or having it in the tasklet_list, as nobody else will attempt to add it.
Make sure we set TASK_QUEUED in every case before adding the task to the
run queue. task_wakeup() now checks if either TASK_QUEUED or TASK_RUNNING
is set, and if neither is set, add TASK_QUEUED and effectively add the task
to the runqueue.
No longer use __task_wakeup() anywhere except in task_wakeup(), always use
task_wakeup() instead.
With the old code, process_runnable_task() may re-add a task in the runqueue
without setting the TASK_QUEUED flag, and there were race conditions that could
lead to a task having the TASK_QUEUED flag but not in the runqueue, thus
being unschedulable.
This should be backported to 1.9.
This one hasn't been used anymore since the scheduler changes after 1.8
but it kept being exported and maintained up to date while it's always
reset when scanning the trees. Let's stop exporting it and updating it.
Previous commit 3ea351368 ("BUG/MEDIUM: h2: Remove the tasklet from the
task list if unsubscribing.") uncovered an issue which needs to be
addressed in the scheduler's API. The function task_remove_from_task_list()
was initially designed to remove a task from the running tasklet list from
within the scheduler, and had to be used in h2 to abort pending I/O events.
However this function was not designed to be idempotent, occasionally
causing a double removal from the tasklet list, with the second doing
nothing but affecting the apparent tasks count and making haproxy use
100% CPU on some tests consisting in stopping the client during some
transfers. The h2_unsubscribe() function can sometimes be called upon
stream exit after an error where the tasklet was possibly already
removed, so it.
This patch does 2 things :
- it renames task_remove_from_task_list() to
__task_remove_from_tasklet_list() to discourage users from calling
it. Also note the fix in the naming since it's a tasklet list and
not a task list. This function is still uesd from the scheduler.
- it adds a new, idempotent, task_remove_from_tasklet_list() function
which does nothing if the task is already not in the tasklet list.
This patch will need to be backported where the commit above is backported.
In task_unlink_rq, to decide if we should logk the global runqueue lock,
use the TASK_GLOBAL flag instead of relying on t->thread_mask being tid_bit,
as it could be so while still being in the global runqueue if another thread
woke that task for us.
This should be backported to 1.9.
In this function we end up with successive locked operations then a
store barrier, and in addition the compiler has to emit less efficient
code due to a longer jump. There's no need for absolutely updating the
tasks_run_queue counter before clearing the task's leaf pointer, so
let's swap the two operations and benefit from a single barrier as much
as possible. This code is on the hot path and shows about half a percent
of improvement with 8 threads.
By using LIST_DEL_INIT() instead of LIST_DEL()+LIST_INIT() we manage
to bump the peak connection rate by no less than 3% on 8 threads.
The perf top profile shows much less contention in this area which
suffered from the second reload.
Calculate if the fd or task should be locked once, before locking, and
reuse the calculation when determing when to unlock.
Fixes a race condition added in 87d54a9a for fds, and b20aa9ee for tasks,
released in 1.9-dev4. When one thread modifies thread_mask to be a single
thread for a task or fd while a second thread has locked or is waiting on a
lock for that task or fd, the second thread will not unlock it. For FDs,
this is observable when a listener is polled by multiple threads, and is
closed while those threads have events pending. For tasks, this seems
possible, where task_set_affinity is called, but I did not observe it.
This must be backported to 1.9.
There's a very small but existing uncertainty window when waking another
thread up where it is possible for task_wakeup() not to wake the other
task up because it's still running while this once is in the process of
finishing and loses its TASK_RUNNING flag. In this case the wakeup will
be missed.
The problem is that we have a single flag to store 3 states, since the
transition from running to sleeping isn't atomic. Thus we need to have
another flag to cover this part. This patch introduces TASK_QUEUED to
mention that the task is already in the run queue, running or not. This
bit will be removed while TASK_RUNNING is kept once dequeued, and will
be used when removing TASK_RUNNING to check if the task has been requeued.
It might be possible to slightly improve this but the occurrence rate
is quite low and we don't really need to complexify the scheduler to
optimize for a rare case.
The impact with the current code is very low since we have few inter-
thread wakeups. Most of them are caused by checks killing sessions.
This must be backported to 1.9.
The master is not supposed to run (at the moment) any task before the
polling loop, the created tasks should be run only in the workers but in
the master they should be disabled or removed.
No backport needed.
signal_init(), init_log(), init_stream(), and init_task() all used to
only preset some values and lists. This needs to be done very early to
provide a reliable interface to all other users. The calls used to be
explicit in haproxy.c:init(). Now they're placed in initcalls at the
STG_PREPARE stage. The functions are not exported anymore.
Right now we measure for each task the cumulated time spent waiting for
the CPU and using it. The timestamp uses a 64-bit integer to report a
nanosecond-level date. This is only enabled when "profiling.tasks" is
enabled, and consumes less than 1% extra CPU on x86_64 when enabled.
The cumulated processing time and wait time are reported in "show sess".
The task's counters are also reset when an HTTP transaction is reset
since the HTTP part pretends to restart on a fresh new stream. This
will make sure we always report correct numbers for each request in
the logs.
Currently we have per-thread arrays of trees and counts, but these
ones unfortunately share cache lines and are accessed very often. This
patch moves the task-specific stuff into a structure taking a multiple
of a cache line, and has one such per thread. Just doing this has
reduced the cache miss ratio from 19.2% to 18.7% and increased the
12-thread test performance by 3%.
It starts to become visible that we really need a process-wide per-thread
storage area that would cover more than just these parts of the tasks.
The code was arranged so that it's easy to move the pieces elsewhere if
needed.
Now we still have a main contention point with the timers in the main
wait queue, but the vast majority of the tasks are pinned to a single
thread. This patch creates a per-thread wait queue and queues a task
to the local wait queue without any locking if the task is bound to a
single thread (the current one) otherwise to the shared queue using
locking. This significantly reduces contention on the wait queue. A
test with 12 threads showed 11 ms spent in the WQ lock compared to
4.7 seconds in the same test without this change. The cache miss ratio
decreased from 19.7% to 19.2% on the 12-thread test, and its performance
increased by 1.5%.
Another indirect benefit is that the average queue size is divided
by the number of threads, which roughly removes log(nbthreads) levels
in the tree and further speeds up lookups.
In tasklet_free(), if we're currently in the runnable task list, don't
forget to decrement taks_list_size, or it'll end up being to big, and we may
not process tasks in the global runqueue.
Set the flag for the current thread in active_threads_mask when waking a
tasklet, or we will never run it if no tasks are available.
This is 1.9-specific, no backport is needed.
Modify tasklet_wakeup() so that it handles a task as well, and inserts it
directly into the tasklet list, making it effectively a tasklet.
This should make future developments easier.
As __task_wakeup() is responsible for increasing
rqueue_local[tid]/global_rqueue_size, make __task_unlink_rq responsible for
decreasing it, as process_runnable_tasks() isn't the only one that removes
tasks from runqueues.
Up until now, a tasklet couldn't be free'd while it was in the list, it is
no longer the case, so make sure we remove it from the list before freeing it.
To do so, we have to make sure we correctly initialize it, so use LIST_INIT,
instead of setting the pointers to NULL.
To make sure we don't inadvertently insert task in the global runqueue,
while only the local runqueue is used without threads, make its definition
and usage conditional on USE_THREAD.
When building without threads enabled, instead of just using the global
runqueue, just use the local runqueue associated with the only thread, as
that's what is now expected for a single thread in prcoess_runnable_tasks().
This should fix haproxy when built without threads.
This function returns true is some notifications are registered.
This function is usefull for the following patch
BUG/MEDIUM: lua/socket: Sheduling error on write: may dead-lock
It should be backported in 1.6, 1.7 and 1.8
Don't forget to increase tasks_run_queue when we're adding a task to the
tasklet list, and to decrease it when we remove a task from a runqueue,
or its value won't be accurate, and could lead to tasks not being executed
when put in the global run queue.
1.9-dev only, no backport is needed.
Introduce tasklets, lightweight tasks. They have no notion of priority,
they are just run as soon as possible, and will probably be used for I/O
later.
For the moment they're used to replace the temporary thread-local list
that was used in the scheduler. The first part of the struct is common
with tasks so that tasks can be cast to tasklets and queued in this list.
Once a task is in the tasklet list, it has its leaf_p set to 0x1 so that
it cannot accidently be confused as not in the queue.
Pure tasklets are identifiable by their nice value of -32768 (which is
normally not possible).
A lot of tasks are run on one thread only, so instead of having them all
in the global runqueue, create a per-thread runqueue which doesn't require
any locking, and add all tasks belonging to only one thread to the
corresponding runqueue.
The global runqueue is still used for non-local tasks, and is visited
by each thread when checking its own runqueue. The nice parameter is
thus used both in the global runqueue and in the local ones. The rare
tasks that are bound to multiple threads will have their nice value
used twice (once for the global queue, once for the thread-local one).
While running a task, we may try to delete and free a task that is about to
be run, because it's part of the local tasks list, or because rq_next points
to it.
So flag any task that is in the local tasks list to be deleted, instead of
run, by setting t->process to NULL, and re-make rq_next a global,
thread-local variable, that is modified if we attempt to delete that task.
Many thanks to PiBa-NL for reporting this and analysing the problem.
This should be backported to 1.8.
The thread patches adds refcount for notifications. The notifications are
used with the Lua cosocket. These refcount free the notifications when
the session is cleared. In the Lua task case, it not have sessions, so
the nofications are never cleraed.
This patch adds a garbage collector for signals. The garbage collector
just clean the notifications for which the end point is disconnected.
This patch should be backported in 1.8
During the migration to the second version of the pools, the new
functions and pool pointers were all called "pool_something2()" and
"pool2_something". Now there's no more pool v1 code and it's a real
pain to still have to deal with this. Let's clean this up now by
removing the "2" everywhere, and by renaming the pool heads
"pool_head_something".
a bitfield has been added to know if there are runnable tasks for a thread. When
a task is woken up, the bits corresponding to its thread_mask are set. When all
tasks for a thread have been evaluated without any wakeup, the thread is removed
from active ones by unsetting its tid_bit from the bitfield.
This macro should be used to declare variables or struct members depending on
the USE_THREAD compile option. It avoids the encapsulation of such declarations
between #ifdef/#endif. It is used to declare all lock variables.
Currently the task scheduler suffers from an O(n) lookup when
skipping tasks that are not for the current thread. The reason
is that eb32_lookup_ge() has no information about the current
thread so it always revisits many tasks for other threads before
finding its own tasks.
This is particularly visible with HTTP/2 since the number of
concurrent streams created at once causes long series of tasks
for the same stream in the scheduler. With only 10 connections
and 100 streams each, by running on two threads, the performance
drops from 640kreq/s to 11.2kreq/s! Lookup metrics show that for
only 200000 task lookups, 430 million skips had to be performed,
which means that on average, each lookup leads to 2150 nodes to
be visited.
This commit backports the principle of scope lookups for ebtrees
from the ebtree_v7 development tree. The idea is that each node
contains a mask indicating the union of the scopes for the nodes
below it, which is fed during insertion, and used during lookups.
Then during lookups, branches that do not contain any leaf matching
the requested scope are simply ignored. This perfectly matches a
thread mask, allowing a thread to only extract the tasks it cares
about from the run queue, and to always find them in O(log(n))
instead of O(n). Thus the scheduler uses tid_bit and
task->thread_mask as the ebtree scope here.
Doing this has recovered most of the performance, as can be seen on
the test below with two threads, 10 connections, 100 streams each,
and 1 million requests total :
Before After Gain
test duration : 89.6s 4.73s x19
HTTP requests/s (DEBUG) : 11200 211300 x19
HTTP requests/s (PROD) : 15900 447000 x28
spin_lock time : 85.2s 0.46s /185
time per lookup : 13us 40ns /325
Even when going to 6 threads (on 3 hyperthreaded CPU cores), the
performance stays around 284000 req/s, showing that the contention
is much lower.
A test showed that there's no benefit in using this for the wait queue
though.
It was a leftover from the last cleaning session; this mask applies
to threads and calling it process_mask is a bit confusing. It's the
same in fd, task and applets.
2 global locks have been added to protect, respectively, the run queue and the
wait queue. And a process mask has been added on each task. Like for FDs, this
mask is used to know which threads are allowed to process a task.
For many tasks, all threads are granted. And this must be your first intension
when you create a new task, else you have a good reason to make a task sticky on
some threads. This is then the responsibility to the process callback to lock
what have to be locked in the task context.
Nevertheless, all tasks linked to a session must be sticky on the thread
creating the session. It is important that I/O handlers processing session FDs
and these tasks run on the same thread to avoid conflicts.
These notification management function and structs are generic and
it will be better to move in common parts.
The notification management functions and structs have names
containing some "lua" references because it was written for
the Lua. This patch removes also these references.
task_init() is called exclusively by task_new() which is the only way
to create a task. Most callers set t->expire to TICK_ETERNITY, some set
it to another value and a few like Lua don't set it at all as they don't
need a timeout, causing random values to be used in case the task gets
queued.
Let's always set t->expire to TICK_ETERNITY in task_init() so that all
tasks are now initialized in a clean state.
This patch can be backported as it will definitely make the code more
robust (at least the Lua code, possibly other places).