This patch adds the global 'ssl-engine' keyword. First arg is an engine
identifier followed by a list of default_algorithms the engine will
operate.
If the openssl version is too old, an error is reported when the option
is used.
crt-list is extend to support ssl configuration. You can now have
such line in crt-list <file>:
mycert.pem [npn h2,http/1.1]
Support include "npn", "alpn", "verify", "ca_file", "crl_file",
"ecdhe", "ciphers" configuration and ssl options.
"crt-base" is also supported to fetch certificates.
tlskeys_finalize_config() was the only reason for haproxy.c to still
require ifdef and includes for ssl_sock. This one fits perfectly well
in the late initializers so it was changed to be registered with
hap_register_post_check().
Instead of hard-coding all SSL preparation in cfgparse.c, we now register
this new function as the transport layer's prepare_bind_conf() and call it
only when definied. This removes some non-obvious SSL-specific code from
cfgparse.c as well as a #ifdef.
Most of the SSL functions used to have a proxy argument which was mostly
used to be able to emit clean errors using Alert(). First, many of them
were converted to memprintf() and don't require this pointer anymore.
Second, the rare which still need it also have either a bind_conf argument
or a server argument, both of which carry a pointer to the relevant proxy.
So let's now get rid of it, it needlessly complicates the API and certain
functions already have many arguments.
The serial number for a generated certificate was computed using the requested
servername, without any variable/random part. It is not a problem from the
moment it is not regenerated.
But if the cache is disabled or when the certificate is evicted from the cache,
we may need to regenerate it. It is important to not reuse the same serial
number for the new certificate. Else clients (especially browsers) trigger a
warning because 2 certificates issued by the same CA have the same serial
number.
So now, the serial is a static variable initialized with now_ms (internal date
in milliseconds) and incremented at each new certificate generation.
(Ref MPS-2031)
This is done by adding EVP_PKEY_EC type in supported types for the CA private
key when we get the message digest used to sign a generated X509 certificate.
So now, we support DSA, RSA and EC private keys.
And to be sure, when the type of the private key is not directly supported, we
get its default message digest using the function
'EVP_PKEY_get_default_digest_nid'.
We also use the key of the default certificate instead of generated it. So we
are sure to use the same key type instead of always using a RSA key.
First, the LRU cache must be initialized after the configuration parsing to
correctly set its size.
Next, the function 'ssl_sock_set_generated_cert' returns -1 when an error occurs
(0 if success). In that case, the caller is responsible to free the memory
allocated for the certificate.
Finally, when a SSL certificate is generated by HAProxy but cannot be inserted
in the cache, it must be freed when the SSL connection is closed. This happens
when 'tune.ssl.ssl-ctx-cache-size' is set to 0.
ssl_sock_set_servername() is used to set the SNI hostname on an
outgoing connection. This function comes from code originally
provided by Christopher Faulet of Qualys.
Following functions are now available in the SSL public API:
* ssl_sock_create_cert
* ssl_sock_get_generated_cert
* ssl_sock_set_generated_cert
* ssl_sock_generated_cert_serial
These functions could be used to create a certificate by hand, set it in the
cache used to store generated certificates and retrieve it. Here is an example
(pseudo code):
X509 *cacert = ...;
EVP_PKEY *capkey = ...;
char *servername = ...;
unsigned int serial;
serial = ssl_sock_generated_cert_serial(servername, strlen(servername));
if (!ssl_sock_get_generated_cert(serial, cacert)) {
SSL_CTX *ctx = ssl_sock_create_cert(servername, serial, cacert, capkey);
ssl_sock_set_generated_cert(ctx, serial, cacert);
}
With this patch, it is possible to configure HAProxy to forge the SSL
certificate sent to a client using the SNI servername. We do it in the SNI
callback.
To enable this feature, you must pass following BIND options:
* ca-sign-file <FILE> : This is the PEM file containing the CA certitifacte and
the CA private key to create and sign server's certificates.
* (optionally) ca-sign-pass <PASS>: This is the CA private key passphrase, if
any.
* generate-certificates: Enable the dynamic generation of certificates for a
listener.
Because generating certificates is expensive, there is a LRU cache to store
them. Its size can be customized by setting the global parameter
'tune.ssl.ssl-ctx-cache-size'.
This patch adds the ssl-dh-param-file global setting. It sets the
default DH parameters that will be used during the SSL/TLS handshake when
ephemeral Diffie-Hellman (DHE) key exchange is used, for all "bind" lines
which do not explicitely define theirs.
Until now, HAproxy needed to be restarted to change the TLS ticket
keys. With this patch, the TLS keys can be updated on a per-file
basis using the admin socket. Two new socket commands have been
introduced: "show tls-keys" and "set ssl tls-keys".
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
Since commit 656c5fa7e8 ("BUILD: ssl: disable OCSP when using
boringssl) the OCSP code is bypassed when OPENSSL_IS_BORINGSSL
is defined. The correct thing to do here is to use OPENSSL_NO_OCSP
instead, which is defined for this exact purpose in
openssl/opensslfeatures.h.
This makes haproxy forward compatible if boringssl ever introduces
full OCSP support with the additional benefit that it links fine
against a OCSP-disabled openssl.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
There are two sample commands to get information about the presence of a
client certificate.
ssl_fc_has_crt is true if there is a certificate present in the current
connection
ssl_c_used is true if there is a certificate present in the session.
If a session has stopped and resumed, then ssl_c_used could be true, while
ssl_fc_has_crt is false.
In the client byte of the TLS TLV of Proxy Protocol V2, there is only one
bit to indicate whether a certificate is present on the connection. The
attached patch adds a second bit to indicate the presence for the session.
This maintains backward compatibility.
[wt: this should be backported to 1.5 to help maintain compatibility
between versions]
Google's boringssl doesn't currently support OCSP, so
disable it if detected.
OCSP support may be reintroduced as per:
https://code.google.com/p/chromium/issues/detail?id=398677
In that case we can simply revert this commit.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
'ssl_sock_get_common_name' applied to a connection was also renamed
'ssl_sock_get_remote_common_name'. Currently, this function is only used
with protocol PROXYv2 to retrieve the client certificate's common name.
A further usage could be to retrieve the server certificate's common name
on an outgoing connection.
The support is all based on static responses. This doesn't add any
request / response logic to HAProxy, but allows a way to update
information through the socket interface.
Currently certificates specified using "crt" or "crt-list" on "bind" lines
are loaded as PEM files.
For each PEM file, haproxy checks for the presence of file at the same path
suffixed by ".ocsp". If such file is found, support for the TLS Certificate
Status Request extension (also known as "OCSP stapling") is automatically
enabled. The content of this file is optional. If not empty, it must contain
a valid OCSP Response in DER format. In order to be valid an OCSP Response
must comply with the following rules: it has to indicate a good status,
it has to be a single response for the certificate of the PEM file, and it
has to be valid at the moment of addition. If these rules are not respected
the OCSP Response is ignored and a warning is emitted. In order to identify
which certificate an OCSP Response applies to, the issuer's certificate is
necessary. If the issuer's certificate is not found in the PEM file, it will
be loaded from a file at the same path as the PEM file suffixed by ".issuer"
if it exists otherwise it will fail with an error.
It is possible to update an OCSP Response from the unix socket using:
set ssl ocsp-response <response>
This command is used to update an OCSP Response for a certificate (see "crt"
on "bind" lines). Same controls are performed as during the initial loading of
the response. The <response> must be passed as a base64 encoded string of the
DER encoded response from the OCSP server.
Example:
openssl ocsp -issuer issuer.pem -cert server.pem \
-host ocsp.issuer.com:80 -respout resp.der
echo "set ssl ocsp-response $(base64 -w 10000 resp.der)" | \
socat stdio /var/run/haproxy.stat
This feature is automatically enabled on openssl 0.9.8h and above.
This work was performed jointly by Dirkjan Bussink of GitHub and
Emeric Brun of HAProxy Technologies.
This commit modifies the PROXY protocol V2 specification to support headers
longer than 255 bytes allowing for optional extensions. It implements the
PROXY protocol V2 which is a binary representation of V1. This will make
parsing more efficient for clients who will know in advance exactly how
many bytes to read. Also, it defines and implements some optional PROXY
protocol V2 extensions to send information about downstream SSL/TLS
connections. Support for PROXY protocol V1 remains unchanged.
In addition to previous outputs, we also emit the cumulated number of
connections, the cumulated number of requests, the maximum allowed
SSL connection concurrency, the current number of SSL connections and
the cumulated number of SSL connections. This will help troubleshoot
systems which experience memory shortage due to SSL.
These two new log-format tags report the SSL protocol version (%sslv) and the
SSL ciphers (%sslc) used for the connection with the client. For instance, to
append these information just after the client's IP/port address information
on an HTTP log line, use the following configuration :
log-format %Ci:%Cp\ %sslv:%sslc\ [%t]\ %ft\ %b/%s\ %Tq/%Tw/%Tc/%Tr/%Tt\ %st\ %B\ %cc\ \ %cs\ %tsc\ %ac/%fc/%bc/%sc/%rc\ %sq/%bq\ %hr\ %hs\ %{+Q}r
It will report a line such as the following one :
Oct 12 20:47:30 haproxy[9643]: 127.0.0.1:43602 TLSv1:AES-SHA [12/Oct/2012:20:47:30.303] stick2~ stick2/s1 7/0/12/0/19 200 145 - - ---- 0/0/0/0/0 0/0 "GET /?t=0 HTTP/1.0"
While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
Registering new SSL bind keywords was not particularly handy as it required
many #ifdef in cfgparse.c. Now the code has moved to ssl_sock.c which calls
a register function for all the keywords.
Error reporting was also improved by this move, because the called functions
build an error message using memprintf(), which can span multiple lines if
needed, and each of these errors will be displayed indented in the context of
the bind line being processed. This is important when dealing with certificate
directories which can report multiple errors.
Some settings need to be merged per-bind config line and are not necessarily
SSL-specific. It becomes quite inconvenient to have this ssl_conf SSL-specific,
so let's replace it with something more generic.
A side effect of this change is that the "ssl" keyword on "bind" lines is now
just a boolean and that "crt" is needed to designate certificate files or
directories.
Note that much refcounting was needed to have the free() work correctly due to
the number of cert aliases which can make a context be shared by multiple names.
CVE-2009-3555 suggests that client-initiated renegociation should be
prevented in the middle of data. The workaround here consists in having
the SSL layer notify our callback about a handshake occurring, which in
turn causes the connection to be marked in the error state if it was
already considered established (which means if a previous handshake was
completed). The result is that the connection with the client is immediately
aborted and any pending data are dropped.
This data layer supports socket-to-buffer and buffer-to-socket operations.
No sock-to-pipe nor pipe-to-sock functions are provided, since splicing does
not provide any benefit with data transformation. At best it could save a
memcpy() and avoid keeping a buffer allocated but that does not seem very
useful.
An init function and a close function are provided because the SSL context
needs to be allocated/freed.
A data-layer shutw() function is also provided because upon successful
shutdown, we want to store the SSL context in the cache in order to reuse
it for future connections and avoid a new key generation.
The handshake function is directly called from the connection handler.
At this point it is not certain whether this will remain this way or
if a new ->handshake callback will be added to the data layer so that
the connection handler doesn't care about SSL.
The sock-to-buf and buf-to-sock functions are all capable of enabling
the SSL handshake at any time. This also implies polling in the opposite
direction to what was expected. The upper layers must take that into
account (it is OK right now with the stream interface).