This patch propagates the ACL conditions' "requires" bitfield
to the proxies. This makes it possible to know exactly what a
proxy might have to support for any request, which helps knowing
whether we have to allocate some space for certain types of
structures or not (eg: the hdr_idx struct).
The concept might be extended to a lot more types of information,
such as detecting whether we need to allocate some space for some
request ACLs which need a result in the response, etc...
The HTTP processing has been splitted into 7 steps, one of which
is not anymore HTTP-specific (content-switching). That way, it
becomes possible to use "use_backend" rules in TCP mode. A new
"use_server" directive should follow soon.
We want to split several steps in HTTP processing so that
we can call individual analysers depending on what processing
we want to perform. The first step consists in splitting the
part that waits for a request from the rest.
The splice code did not consider compatibility between both ends
of the connection. Now we set different capabilities on each
stream interface, depending on what the protocol can splice to/from.
Right now, only TCP is supported. Thanks to this, we're now able to
automatically detect when splice() is not implemented and automatically
disable it on one end instead of reporting errors to the upper layer.
When the nolinger option is used, we must not close too fast because
some data might be left unsent. Instead we must proceed with a normal
shutdown first, then a close. Also, we want to avoid merging FIN with
the last segment if nolinger is set, because if that one gets lost,
there is no chance for it to be retransmitted.
Sometimes it can be useful to limit the advertised TCP MSS on
incoming connections, for instance when requests come through
a VPN or when the system is running with jumbo frames enabled.
Passing the "mss <value>" arguments to a "bind" line will set
the value. This works under Linux >= 2.6.28, and maybe a few
earlier ones, though due to an old kernel bug most of earlier
versions will probably ignore it. It is also possible that some
other OSes will support this.
This new option enables combining of request buffer data with
the initial ACK of an outgoing TCP connection. Doing so saves
one packet per connection which is quite noticeable on workloads
mostly consisting in small objects. The option is not enabled by
default.
Setting TCP_CORK on a socket before sending the last segment enables
automatic merging of this segment with the FIN from the shutdown()
call. Playing with TCP_CORK is not easy though as we have to track
the status of the TCP_NODELAY flag since both are mutually exclusive.
Doing so saves one more packet per session and offers about 5% more
performance.
There is no reason not to do it, so there is no associated option.
This option disables TCP quick ack upon accept. It is also
automatically enabled in HTTP mode, unless the option is
explicitly disabled with "no option tcp-smart-accept".
This saves one packet per connection which can bring reasonable
amounts of bandwidth for servers processing small requests.
Sometimes we would want to implement implicit default options,
but for this we need to be able to disable them, which requires
to keep track of "no option" settings. With this change, an option
explicitly disabled in a defaults section will still be seen as
explicitly disabled. There should be no regression as nothing makes
use of this yet.
Some users are already hitting the 64k source port limit when
connecting to servers. The system usually maintains a list of
unused source ports, regardless of the source IP they're bound
to. So in order to go beyond the 64k concurrent connections, we
have to manage the source ip:port lists ourselves.
The solution consists in assigning a source port range to each
server and use a free port in that range when connecting to that
server, either for a proxied connection or for a health check.
The port must then be put back into the server's range when the
connection is closed.
This mechanism is used only when a port range is specified on
a server. It makes it possible to reach 64k connections per
server, possibly all from the same IP address. Right now it
should be more than enough even for huge deployments.
Some users want to keep the max sessions/s seen on servers, frontends
and backends for capacity planning. It's easy to grab it while the
session count is updated, so let's keep it.
Some people are using haproxy in a shared environment where the
system logger by default sends alert and emerg messages to all
consoles, which happens when all servers go down on a backend for
instance. These people can not always change the system configuration
and would like to limit the outgoing messages level in order not to
disturb the local users.
The addition of an optional 4th field on the "log" line permits
exactly this. The minimal log level ensures that all outgoing logs
will have at least this level. So the logs are not filtered out,
just set to this level.
There is a patch made by me that allow for balancing on any http header
field.
[WT:
made minor changes:
- turned 'balance header name' into 'balance hdr(name)' to match more
closely the ACL syntax for easier future convergence
- renamed the proxy structure fields header_* => hh_*
- made it possible to use the domain name reduction to any header, not
only "host" since it makes sense to do it with other ones.
Otherwise patch looks good.
/WT]
Some big traffic sites have trouble dealing with logs and tend to
disable them. Here are two new options to help cope with massive
logs.
- dontlog-normal only disables logging for 100% successful
connections, other ones will still be logged
- log-separate-errors will cause non-100% successful connections
to be logged at level "err" instead of level "info" so that a
properly configured syslog daemon can send them to a different
file for longer conservation.
These functions will be used to deliver asynchronous signals in order
to make the signal handling functions more robust. The goal is to keep
the same interface to signal handlers.
I have attached a patch which will add on every http request a new
header 'X-Original-To'. If you have HAProxy running in transparent mode
with a big number of SQUID servers behind it, it is very nice to have
the original destination ip as a common header to make decisions based
on it.
The whole thing is configurable with a new option 'originalto'. I have
updated the sourcecode as well as the documentation. The 'haproxy-en.txt'
and 'haproxy-fr.txt' files are untouched, due to lack of my french
language knowledge. ;)
Also the patch adds this header for IPv4 only. I haven't any IPv6 test
environment running here and don't know if getsockopt() with SO_ORIGINAL_DST
will work on IPv6. If someone knows it and wants to test it I can modify
the diff. Feel free to ask me questions or things which should be changed. :)
--Maik
The byte counters have long been 64-bit to avoid overflows. But with
several sites nowadays, we see session counters wrap around every 10-days
or so. So it was the moment to switch counters to 64-bit, including
error and warning counters which can theorically rise as fast as session
counters even if in practice there is very low risk.
The performance impact should not be noticeable since those counters are
only updated once per session. The stats output have been carefully checked
for proper types on both 32- and 64-bit platforms.
Sometimes it is required to let invalid requests pass because
applications sometimes take time to be fixed and other servers
do not care. Thus we provide two new options :
option accept-invalid-http-request (for the frontend)
option accept-invalid-http-response (for the backend)
When those options are set, invalid requests or responses do
not cause a 403/502 error to be generated.
When the reader does not expect to read lots of data, it can
set BF_READ_DONTWAIT on the request buffer. When it is set,
the stream_sock_read callback will not try to perform multiple
reads, it will return after only one, and clear the flag.
That way, we can immediately return when waiting for an HTTP
request without trying to read again.
On pure request/responses schemes such as monitor-uri or
redirects, this has completely eliminated the EAGAIN occurrences
and the epoll_ctl() calls, resulting in a performance increase of
about 10%. Similar effects should be observed once we support
HTTP keep-alive since we'll immediately disable reads once we
get a full request.
If we get very large data at once, it's almost certain that it's
worthless trying to read again, because we got everything we could
get.
Doing this has made all -EAGAIN disappear from splice reads. The
threshold has been put in the global tunable structures so that if
we one day want to make it accessible from user config, it will be
easy to do so.
Timers are unsigned and used as tree positions. Ticks are signed and
used as absolute date within current time frame. While the two are
normally equal (except zero), it's important not to confuse them in
the code as they are not interchangeable.
We add two inline functions to turn each one into the other.
The comments have also been moved to the proper location, as it was
not easy to understand what was a tick and what was a timer unit.
All the tasks callbacks had to requeue the task themselves, and update
a global timeout. This was not convenient at all. Now the API has been
simplified. The tasks callbacks only have to update their expire timer,
and return either a pointer to the task or NULL if the task has been
deleted. The scheduler will take care of requeuing the task at the
proper place in the wait queue.
In many situations, we wake a task on an I/O event, then queue it
exactly where it was. This is a real waste because we delete/insert
tasks into the wait queue for nothing. The only reason for this is
that there was only one tree node in the task struct.
By adding another tree node, we can have one tree for the timers
(wait queue) and one tree for the priority (run queue). That way,
we can have a task both in the run queue and wait queue at the
same time. The wait queue now really holds timers, which is what
it was designed for.
The net gain is at least 1 delete/insert cycle per session, and up
to 2-3 depending on the workload, since we save one cycle each time
the expiration date is not changed during a wake up.
The new "rate-limit sessions" statement sets a limit on the number of
new connections per second on the frontend. As it is extremely accurate
(about 0.1%), it is efficient at limiting resource abuse or DoS.
With this change, all frontends, backends, and servers maintain a session
counter and a timer to compute a session rate over the last second. This
value will be very useful because it varies instantly and can be used to
check thresholds. This value is also reported in the stats in a new "rate"
column.
The new "show errors" command sent on a unix socket will dump
all captured request and response errors for all proxies. It is
also possible to bound the log to frontends and backends whose
ID is passed as an optional parameter.
The output provides information about frontend, backend, server,
session ID, source address, error type, and error position along
with a complete dump of the request or response which has caused
the error.
If a new error scratches the one currently being reported, then
the dump is aborted with a warning message, and processing goes
on to next error.
Each proxy instance, either frontend or backend, now has some room
dedicated to storing a complete dated request or response in case
of parsing error. This will make it possible to consult errors in
order to find the exact cause, which is particularly important for
troubleshooting faulty applications.
The "bind-process" keyword lets the admin select which instances may
run on which process (in multi-process mode). It makes it easier to
more evenly distribute the load across multiple processes by avoiding
having too many listen to the same IP:ports.
Specifying "interface <name>" after the "source" statement allows
one to bind to a specific interface for proxy<->server traffic.
This makes it possible to use multiple links to reach multiple
servers, and to force traffic to pass via an interface different
from the one the system would have chosen based on the routing
table.
By appending "interface <name>" to a "bind" line, it is now possible
to specifically bind to a physical interface name. Note that this
currently only works on Linux and requires root privileges.
Setting "nosplice" in the global section will disable the use of TCP
splicing (both tcpsplice and linux 2.6 splice). The same will be
achieved using the "-dS" parameter on the command line.
The global tuning options right now only concern the polling mechanisms,
and they are not in the global struct itself. It's not very practical to
add other options so let's move them to the global struct and remove
types/polling.h which was not used for anything else.
Using pipe pools makes pipe management a lot easier. It also allows to
remove quite a bunch of #ifdefs in areas which depended on the presence
or not of support for kernel splicing.
The buffer now holds a pointer to a pipe structure which is always NULL
except if there are still data in the pipe. When it needs to use that
pipe, it dynamically allocates it from the pipe pool. When the data is
consumed, the pipe is immediately released.
That way, there is no need anymore to care about pipe closure upon
session termination, nor about pipe creation when trying to use
splice().
Another immediate advantage of this method is that it considerably
reduces the number of pipes needed to use splice(). Tests have shown
that even with 0.2 pipe per connection, almost all sessions can use
splice(), because the same pipe may be used by several consecutive
calls to splice().
A new data type has been added : pipes. Some pre-allocated empty pipes
are maintained in a pool for users such as splice which use them a lot
for very short times.
Pipes are allocated using get_pipe() and released using put_pipe().
Pipes which are released with pending data are immediately killed.
The struct pipe is small (16 to 20 bytes) and may even be further
reduced by unifying ->data and ->next.
It would be nice to have a dedicated cleanup task which would watch
for the pipes usage and destroy a few of them from time to time.
When CONFIG_HAP_LINUX_SPLICE is defined, the buffer structure will be
slightly enlarged to support information needed for kernel splicing
on Linux.
A first attempt consisted in putting this information into the stream
interface, but in the long term, it appeared really awkward. This
version puts the information into the buffer. The platform-dependant
part is conditionally added and will only enlarge the buffers when
compiled in.
One new flag has also been added to the buffers: BF_KERN_SPLICING.
It indicates that the application considers it is appropriate to
use splicing to forward remaining data.
Three new options have been added when CONFIG_HAP_LINUX_SPLICE is
set :
- splice-request
- splice-response
- splice-auto
They are used to enable splicing per frontend/backend. They are also
supported in defaults sections. The "splice-auto" option is meant to
automatically turn splice on for buffers marked as fast streamers.
This should save quite a bunch of file descriptors.
It was required to add a new "options2" field to the proxy structure
because the original "options" is full.
When global.maxpipes is not set, it is automatically adjusted to
the max of the sums of all frontend's and backend's maxconns for
those which have at least one splice option enabled.
In the buffers, the read limit used to leave some place for header
rewriting was set by a pointer to the end of the buffer. Not only
this required subtracts at every place in the code, but this will
also soon not be usable anymore when we want to support keepalive.
Let's replace this with a length limit, comparable to the buffer's
length. This has also sightly reduced the code size.
The way the buffers and stream interfaces handled ->to_forward was
really not handy for multiple reasons. Now we've moved its control
to the receive-side of the buffer, which is also responsible for
keeping send_max up to date. This makes more sense as it now becomes
possible to send some pre-formatted data followed by forwarded data.
The following explanation has also been added to buffer.h to clarify
the situation. Right now, tests show that the I/O is behaving extremely
well. Some work will have to be done to adapt existing splice code
though.
/* Note about the buffer structure
The buffer contains two length indicators, one to_forward counter and one
send_max limit. First, it must be understood that the buffer is in fact
split in two parts :
- the visible data (->data, for ->l bytes)
- the invisible data, typically in kernel buffers forwarded directly from
the source stream sock to the destination stream sock (->splice_len
bytes). Those are used only during forward.
In order not to mix data streams, the producer may only feed the invisible
data with data to forward, and only when the visible buffer is empty. The
consumer may not always be able to feed the invisible buffer due to platform
limitations (lack of kernel support).
Conversely, the consumer must always take data from the invisible data first
before ever considering visible data. There is no limit to the size of data
to consume from the invisible buffer, as platform-specific implementations
will rarely leave enough control on this. So any byte fed into the invisible
buffer is expected to reach the destination file descriptor, by any means.
However, it's the consumer's responsibility to ensure that the invisible
data has been entirely consumed before consuming visible data. This must be
reflected by ->splice_len. This is very important as this and only this can
ensure strict ordering of data between buffers.
The producer is responsible for decreasing ->to_forward and increasing
->send_max. The ->to_forward parameter indicates how many bytes may be fed
into either data buffer without waking the parent up. The ->send_max
parameter says how many bytes may be read from the visible buffer. Thus it
may never exceed ->l. This parameter is updated by any buffer_write() as
well as any data forwarded through the visible buffer.
The consumer is responsible for decreasing ->send_max when it sends data
from the visible buffer, and ->splice_len when it sends data from the
invisible buffer.
A real-world example consists in part in an HTTP response waiting in a
buffer to be forwarded. We know the header length (300) and the amount of
data to forward (content-length=9000). The buffer already contains 1000
bytes of data after the 300 bytes of headers. Thus the caller will set
->send_max to 300 indicating that it explicitly wants to send those data,
and set ->to_forward to 9000 (content-length). This value must be normalised
immediately after updating ->to_forward : since there are already 1300 bytes
in the buffer, 300 of which are already counted in ->send_max, and that size
is smaller than ->to_forward, we must update ->send_max to 1300 to flush the
whole buffer, and reduce ->to_forward to 8000. After that, the producer may
try to feed the additional data through the invisible buffer using a
platform-specific method such as splice().
*/
In preparation of splice support, let's add the splice_len member
to the buffer struct. An earlier implementation made it conditional,
which made the whole logics very complex due to a large number of
ifdefs.
Now BF_EMPTY is only set once both buf->l and buf->splice_len are
null. Splice_len is initialized to zero during buffer creation and
is currently not changed, so the whole logics remains unaffected.
When splice gets merged, splice_len will reflect the number of bytes
in flight out of the buffer but not yet sent, typically in a pipe for
the Linux case.
If an analyser sets buf->to_forward to a given value, that many
data will be forwarded between the two stream interfaces attached
to a buffer without waking the task up. The same applies once all
analysers have been released. This saves a large amount of calls
to process_session() and a number of task_dequeue/queue.
By letting the producer tell the consumer there is data to check,
and the consumer tell the producer there is some space left again,
we can cut in half the number of session wakeups.
This is also an important starting point for future splicing support.
Sometimes we don't care about a read timeout, for instance, from the
client when waiting for the server, but we still want the client to
be able to read.
Till now it was done by articially forcing the read timeout to ETERNITY.
But this will cause trouble when we want the low level stream sock to
communicate without waking the session up. So we add a BF_READ_NOEXP
flag to indicate that when the read timeout is to be set, it might
have to be set to ETERNITY.
Since BF_READ_ENA was not used, we replaced this flag.
For keep-alive, line-mode protocols and splicing, we will need to
limit the sender to process a certain amount of bytes. The limit
is automatically set to the buffer size when analysers are detached
from the buffer.
It is now possible to set or clear a cookie during a redirection. This
is useful for logout pages, or for protecting against some DoSes. Check
the documentation for the options supported by the "redirect" keyword.
(cherry-picked from commit 4af993822e880d8c932f4ad6920db4c9242b0981)
If "drop-query" is present on a "redirect" line using the "prefix" mode,
then the returned Location header will be the request URI without the
query-string. This may be used on some login/logout pages, or when it
must be decided to redirect the user to a non-secure server.
(cherry-picked from commit f2d361ccd73aa16538ce767c766362dd8f0a88fd)