In channel_htx_forward() and channel_htx_forward_forever(), if the HTX message
is empty, the underlying buffer may be really empty too. And we have no warranty
the caller will call htx_to_buf() later. And in practice, it is almost never
done. So the channel's buffer must not be altered. Otherwise, the buffer may be
considered as full (data == size) for an empty HTX message and no outgoing data.
This patch must be backported to 1.9.
Make usage of the APIs implemented for dictionaries (dict.c) and their LRU caches (struct dcache)
so that to send/receive server names used for the server by name stickiness. These
names are sent over the network as follows:
- in every case we send the encode length of the data (STD_T_DICT), then
- if the server names is not present in the cache used upon transmission (struct dcache_tx)
we cache it and we the ID of this TX cache entry followed the encode length of the
server name, and finally the sever name itseft (non NULL terminated string).
- if the server name is present, we repead these operations but we only send the TX cache
entry ID.
Upon receipt, the couple of (cache IDs, server name) are stored the LRU cache used
only upon receipt (struct dcache_rx). As the peers protocol is symetrical, the fact
that the server name is present in the received data (resp. or not) denotes if
the entry is absent (resp. or not).
This simple patch only adds definitions to create a new stick-table
data type ID and a new standard type to store information in relation
wich dictionary entries (STD_T_DICT).
We want to send some stick-table data fields stored as strings in dictionaries
without consuming too much memory and CPU. To do so we implement with this patch
a cache for send/received dictionaries entries. These dictionary of strings entries are
stored in others real dictionary entries with an identifier as key (unsigned int)
and a pointer to the dictionary of strings entries as values.
This patch adds minimalistic definitions to implement dictionary new data structure
which is an ebtree of ebpt_node structs with strings as keys. Note that this has nothing
to see with real dictionary data structure (maps of keys in association with values).
As reported in GH issue #99, when hard-stop-after triggers and threads
are in use, the chance that any thread releases the resources in use by
the other ones is non-null. Thus no thread should be allowed to deinit()
nor exit by itself.
Here we take a different approach. We simply use a 3rd possible value
for the "killed" variable so that all threads know they must break out
of the run-poll-loop and immediately stop.
This patch was tested by commenting the stream_shutdown() calls in
hard_stop() to increase the chances to see a stream use released
resources. With this fix applied, it never crashes anymore.
This fix should be backported to 1.9 and 1.8.
Have "socks4" and "check-via-socks4" server keyword added.
Implement handshake with SOCKS4 proxy server for tcp stream connection.
See issue #82.
I have the "SOCKS: A protocol for TCP proxy across firewalls" doc found
at "https://www.openssh.com/txt/socks4.protocol". Please reference to it.
[wt: for now connecting to the SOCKS4 proxy over unix sockets is not
supported, and mixing IPv4/IPv6 is discouraged; indeed, the control
layer is unique for a connection and will be used both for connecting
and for target address manipulation. As such it may for example report
incorrect destination addresses in logs if the proxy is reached over
IPv6]
Remove the active_tasks_mask variable, we can deduce if we've work to do
by other means, and it is costly to maintain. Instead, introduce a new
function, thread_has_tasks(), that returns non-zero if there's tasks
scheduled for the thread, zero otherwise.
Add session flags, and add a new flag, SESS_FL_PREFER_LAST, to be set when
we use NTLM authentication, and we should reuse the last connection. This
should fix using NTLM with HTX. This totally replaces TX_PREFER_LAST.
This should be backported to 1.9.
In lock profiles it's visible that there is a huge contention on the
buffer lock. The reason is that when offer_buffers() is called, it
systematically takes the lock before verifying if there is any
waiter. However doing so doesn't protect against races since a
waiter can happen just after we release the lock as well. Similarly
in h2 we take the lock every time an h2c is going to be released,
even without checking that the h2c belongs to a wait list. These
two have now been addressed by verifying non-emptiness of the list
prior to taking the lock.
Haproxy is designed to be able to continue to run even under very low
memory conditions. However this can sometimes have a serious impact on
performance that it hard to diagnose. Let's report counters of failed
pool and buffer allocations per thread in show activity.
We have been abusing the do_poll()'s timeout for a while, making it zero
whenever there is some known activity. The problem this poses is that it
complicates activity diagnostic by incrementing the poll_exp field for
each known activity. It also requires extra computations that could be
avoided.
This change passes a "wake" argument to say that the poller must not
sleep. This simplifies the operations and allows one to differenciate
expirations from activity.
In order to later allow htx_add_data() to transmit partial blocks and
avoid defragmenting the buffer, we'll need to return the number of bytes
consumed. This first modification makes the function do this and its
callers take this into account. At the moment the function still works
atomically so it returns either the block size or zero. However all
call places have been adapted to consider any value between zero and
the block size.
The functions channel_htx_fwd_payload() and channel_htx_fwd_all() should now be
used to forward, respectively, a part of the HTX payload or all of it. These
functions forward data and update the first block position.
We don't store the start-line position anymore in the HTX message. Instead we
store the first block position to analyze. For now, it is almost the same. But
once all changes will be made on this part, this position will have to be used
by HTX analyzers, and only in the analysis context, to know where the analyse
should start.
When new blocks are added in an HTX message, if the first block position is not
defined, it is set. When the block pointed by it is removed, it is set to the
block following it. -1 remains the value to unset the position. the first block
position is unset when the HTX message is empty. It may also be unset on a
non-empty message, meaning every blocks were already analyzed.
From HTX analyzers point of view, this position is always set during headers
analysis. When they are waiting for a request or a response, if it is unset, it
means the analysis should wait. But once the analysis is started, and as long as
headers are not forwarded, it points to the message start-line.
As mentionned, outside the HTX analysis, no code must rely on the first block
position. So multiplexers and applets must always use the head position to start
a loop on an HTX message.
The function channel_htx_fwd_headers() should now be used by HTX analyzers to
forward all headers of an HTX message, from the start-line to the corresponding
EOH. It takes care to update the star-line position.
The field hdrs_bytes has been added in the structure htx_sl. It should be used
to set how many bytes are help by all headers, from the start-line to the
corresponding EOH block. it must be set to -1 if it is unknown.
This functions should be used to get the maximum size for a block, not exceeding
the max amount of bytes passed in argument. Thus max may be set to -1 to have no
limit.
When channel_recv_max() is called for an HTX stream, we fall back on the HTX
version. This function is called from si_cs_recv(). This will let us pass the
max amount of bytes to read to HTX multiplexers.
Now, we only return the start-line. If not found, NULL is returned. No lookup is
performed and the HTX message is no more updated. It is now the caller
responsibility to update the position of the start-line to the right value. So
when it is not found, i.e sl_pos is set to -1, it means the last start-line has
been already processed and the next one has not been inserted yet.
It is mandatory to rely on this kind of warranty to store 1xx informational
responses and final reponse in the same HTX message.
It is the first block relatively to the start-line. So it is the start-line if
its position is set (sl_pos != -1), otherwise it is the head. The functions
htx_get_first() and htx_get_first_blk() can be used to get it. This change is
mandatory to consider 1xx informational messages as part of a response.
The head of an HTX message is heavily used whereas the wrap position is only
used when a block is added or removed. So it is more logical to store the head
position in the HTX message instead of the wrap one. The wrap position can be
easily deduced. To get it, the new function htx_get_wrap() may be used.
On armv7 haproxy doesn't work because of the fixes on the double-word
CAS. There are two issues. The first one is that the last argument in
case of dwcas is a pointer to the set of value and not a value ; the
second is that it's not enough to cast the data as (void*) since it will
be a single word. Let's fix this by using the pointers as an array of
long. This was tested on i386, armv7, x86_64 and aarch64 and it is now
fine. An alternate approach using a struct was attempted as well but it
used to produce less optimal code.
This fix must be backported to 1.9. This fixes github issue #105.
Cc: Olivier Houchard <ohouchard@haproxy.com>
The unused fd_del and fd_skip were being abused during debugging sessions
as general purpose event counters. With their removal, let's officially
have dedicated counters for such use cases. These counters are called
"ctr0".."ctr2" and are listed at the end when DEBUG_DEV is set.
The purpose is to manipulate rings made of series of buffers so that
it is possible to continue to work on a next buffer once one is full.
This will be used by muxes to deal with contention between multiple
streams and a single output buffer. No data is expected to span over
multiple buffers, all of them will be used like a regular buffer. This
will significantly limit the amount of changes and the code complexity
while still supporting larger output buffering.
The ring is made of a head and a tail indexes both of which point to a
buffer descriptor. At least one descriptor is always valid, so it could
be seen as a form of pagination always presenting one buffer. The root
of the ring is itself stored into a buffer descriptor so that the user
only has to declare a buffer array and to call br_init() on it in order
to use it.
It has not been used for many years, is unlikely to be reused and
conflicts with the similarly named macro in flt_trace, causing warnings
at build time when including debug.h in low-level files. Let's simply
remove it.
It's amazing that the value was still incremented under the date lock,
let's first use an atomic increment for the counter and move it out of
the date lock to reduce contention. These are just counters, we don't
need to take locks if we're not rotating, atomic ops are enough. This
patch does this, and leaves the lock for when the period is over. It's
important to note that some values might be added just before or just
after a rotation but this is not a problem since we don't care if a
value is counted in the previous or next period when it's exactly on
the edge. Great care was taken to ensure that the current counter is
always atomically updated.
Other minor cleanups were performed, such as avoiding to reload the
value from memory after a CAS, or using &~1 instead of two shifts to
remove the lowest bit.
Many times we've been missing per-process traffic statistics. While it
didn't make sense in multi-process mode, with threads it does. Thus we
now have a counter of bytes emitted by raw_sock, and a freq counter for
these as well. However, freq_ctr are limited to 32 bits, and given that
loads of 300 Gbps have already been reached over a loopback using
splicing, we need to downscale this a bit. Here we're storing 1/32 of
the byte rate, which gives a theorical limit of 128 GB/s or ~1 Tbps,
which is more than enough. Let's have fun re-reading this sentence in
2029 :-) The values can be read in "show info" output on the CLI.
SI_TKILL is for Linux. We're again in the non-portable area. Both OSes
use macros to define these values so we can #ifdef them. Let's make
SI_TKILL defined based on SI_LWP when only the latter is defined.
These commands don't follow the same flow as the rest of the commands,
each of them iterates over all header lines before switching to the
next directive. In addition they make no distinction between start
line and headers and can lead to unparsable rewrites which are very
difficult to deal with internally.
Most of them are still occasionally found in configurations, mainly
because of the usual "we've always done this way". By marking them
deprecated and emitting a warning and recommendation on first use of
each of them, we will raise users' awareness of users regarding the
cleaner, faster and more reliable alternatives.
Some use cases of "reqrep" still appear from time to time for URL
rewriting that is not so convenient with other rules. But at least
users facing this requirement will explain their use case so that we
can best serve them. Some discussion started on this subject in a
thread linked to from github issue #100.
The goal is to remove them in 2.1 since they require to reparse the
result before indexing it and we don't want this hack to live long.
The following directives were marked deprecated :
-reqadd
-reqallow
-reqdel
-reqdeny
-reqiallow
-reqidel
-reqideny
-reqipass
-reqirep
-reqitarpit
-reqpass
-reqrep
-reqtarpit
-rspadd
-rspdel
-rspdeny
-rspidel
-rspideny
-rspirep
-rsprep
Mustafa Yildirim reported in Discourse that ports >32767 advertised
in SRV records are wrong. Given the high value they definitely
correspond to a sign extension of a negative number. The cause was
indeed that the port is declared as a signed int in the dns_answer_item
structure, and Lukas confirmed in github issue #103 that turning it to
unsigned addresses the issue.
It is worth noting that there are other such fields in this structure
that don't look right (ttl, priority, class, type) and that someone
should audit this part to be certain they are properly typed.
This fix must be backported to 1.9 and likely to 1.8 as well.
We still have quite a number of build macros which are mapped 1:1 to a
USE_something setting in the makefile but which have a different name.
This patch cleans this up by renaming them to use the USE_something
one, allowing to clean up the makefile and make it more obvious when
reading the code what build option needs to be added.
The following renames were done :
ENABLE_POLL -> USE_POLL
ENABLE_EPOLL -> USE_EPOLL
ENABLE_KQUEUE -> USE_KQUEUE
ENABLE_EVPORTS -> USE_EVPORTS
TPROXY -> USE_TPROXY
NETFILTER -> USE_NETFILTER
NEED_CRYPT_H -> USE_CRYPT_H
CONFIG_HAP_CRYPT -> USE_LIBCRYPT
CONFIG_HAP_NS -> DUSE_NS
CONFIG_HAP_LINUX_SPLICE -> USE_LINUX_SPLICE
CONFIG_HAP_LINUX_TPROXY -> USE_LINUX_TPROXY
CONFIG_HAP_LINUX_VSYSCALL -> USE_LINUX_VSYSCALL
It seems it's not defined on FreeBSD while it's mentioned on Linux that
clock_gettime() can be detected using this. Given that we also have the
test for _POSIX_TIMERS>0 that should cover it well enough. If it breaks
on other systems, we'll see.
Report was here :
https://github.com/haproxy/haproxy/runs/133866993
We currently have the ability to register functions to be called early
on thread creation and at thread deinitialization. It turns out this is
not sufficient because certain such functions may use resources that are
being allocated by the other ones, thus creating a race condition depending
only on the linking order. For example the mworker needs to register a
file descriptor while the pollers will reallocate the fd_updt[] array.
Similarly logs and trashes may be used by some init functions while it's
unclear whether they have been deduplicated.
The same issue happens on deinit, if the fd_updt[] or trash is released
before some functions finish to use them, we'll get into trouble.
This patch creates a couple of early and late callbacks for per-thread
allocation/freeing of resources. A few init functions were moved there,
and the fd init code was split between the two (since it used to both
allocate and initialize at once). This way the init/deinit sequence is
expected to be safe now.
This patch should be backported to 1.9 as at least the trash/log issue
seems to be present. The run_thread_poll_loop() code is a bit different
there as the mworker is not a callback, but it will have no effect and
it's enough to drop the mworker changes.
This bug was reported by Ilya Shipitsin in github issue #104.