Do not destroy the connection when we're about to destroy a stream. This
prevents us from doing keepalive on server connections when the client is
using HTTP/2, as a new stream is created for each request.
Instead, the session is now responsible for destroying connections.
When reusing connections, the attach() mux method is now used to create a new
conn_stream.
Introduce a new field in session, "srv_conn", and a linked list of sessions
in the connection. It will be used later when we'll switch connections
from being managed by the stream, to being managed by the session.
This method is used to retrieve the first known good conn_stream from
the mux. It will be used to find the other end of a connection when
dealing with the proxy protocol for example.
This option makes a proxy use only HTX-compatible muxes instead of the
HTTP-compatible ones for HTTP modes. It must be set on both ends, this
is checked at parsing time.
Avoid using conn_xprt_want_send/recv, and totally nuke cs_want_send/recv,
from the upper layers. The polling is now directly handled by the connection
layer, it is activated on subscribe(), and unactivated once we got the event
and we woke the related task.
Make sure we don't have any subscription when the connection is going in
idle mode, otherwise there's a race condition when the connection is
reused, if there are still old subscriptions, new ones won't be done.
No backport is needed.
When subscribing, we don't need to provide a list element, only the h2 mux
needs it. So instead, Add a list element to struct h2s, and use it when a
list is needed.
This forces us to use the unsubscribe method, since we can't just unsubscribe
by using LIST_DEL anymore.
This patch is larger than it should be because it includes some renaming.
As we don't know how subscriptions are handled, we can't just assume we can
use LIST_DEL() to unsubscribe, so introduce a new method to mux and connections
to do so.
Till now it was very difficult for a mux to know what proxy it was
working for. Let's pass the proxy when the mux is instanciated at
init() time. It's not yet used but the H1 mux will definitely need
it, just like the H2 mux when dealing with backend connections.
For struct connection, struct conn_stream, and for the h2 mux, add 2 new
lists, one that handles waiters for recv, and one that handles waiters for
recv and send. That way we can ask to subscribe for either recv or send.
This function returns the proxy associated to a connection. For front
connections it returns the frontend, and for back connections it
returns the backend. This will be used to retrieve some configuration
parameters from within a mux.
Sometimes a connection is prepared before the target is set, sometimes
after. There's no real rule since the few functions involved operate on
different and independent fields. Soon we'll benefit from knowing the
target at the connection layer, in order to figure the associated proxy
and retrieve the various parameters (timeouts etc). This patch slightly
reorders a few calls to conn_prepare() so that we can make sure that the
target is always known to the mux.
During a test it happened that a connection was deleted before the
stream it's attached to, resulting in a crash related to the fix
18a85fe ("BUG/MEDIUM: streams: Don't forget to remove the si from
the wait list.") during the LIST_DEL(). Make sure to always delete
the list's head in this case so that other elements can safely
detach later.
This is purely 1.9, no backport is needed.
Commit 7ce0c89 ("MEDIUM: mux: Use the mux protocol specified on
bind/server lines") assumed a bit too strongly that we could only have
servers on the connect side :-) It segfaults under this config :
defaults
contimeout 5s
clitimeout 5s
srvtimeout 5s
mode http
listen test1
bind :8001
dispatch 127.0.0.1:8002
frontend test2
mode http
bind :8002
redirect location /
No backport needed.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
Because there can be several default multiplexers (without name), they are now
reported with the name "<default>". And a message warns they cannot be
referenced with the "proto" keyword on a bind line or a server line.
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
This function is generic and is able to automatically transfer data from a
buffer to the conn_stream's tx buffer. It does this automatically if the mux
doesn't define another snd_buf() function.
It cannot yet be used as-is with the conn_stream's txbuf without risking to
lose data on close since conn_streams need to be orphaned for this.
To be symmetrical with the recv() part, we no handle retryable and partial
transmission using a intermediary buffer in the conn_stream. For now it's only
set to BUF_NULL and never allocated nor used.
It cannot yet be used as-is without risking to lose data on close since
conn_streams need to be orphaned for this.
This function is generic and is able to automatically transfer data
from a conn_stream's rx buffer to the destination buffer. It does this
automatically if the mux doesn't define another rcv_buf() function.
In order to reorganize the connection layers, recv() operations will
need to be retryable and to support partial transfers. This requires
an intermediary buffer to hold the data coming from the mux. After a
few attempts, it turns out that this buffer is best placed inside the
conn_stream itself. For now it's only set to buf_empty and it will be
up to the caller to allocate it if required.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
In some cases, we call cs_destroy() very early, so early the connection
doesn't yet have a mux, so we can't call mux->detach(). In this case,
just destroy the associated connection.
This should be backported to 1.8.
fd_insert() is currently called just after setting the owner and iocb,
but proceeding like this prevents the operation from being atomic and
requires a lock to protect the maxfd computation in another thread from
meeting an incompletely initialized FD and computing a wrong maxfd.
Fortunately for now all fdtab[].owner are set before calling fd_insert(),
and the first lock in fd_insert() enforces a memory barrier so the code
is safe.
This patch moves the initialization of the owner and iocb to fd_insert()
so that the function will be able to properly arrange its operations and
remain safe even when modified to become lockless. There's no other change
beyond the internal API.
Since commit f9ce57e ("MEDIUM: connection: make conn_sock_shutw() aware
of lingering"), we refrain from performing the shutw() on the socket if
there is no lingering risk. But there is a problem with this in tunnel
and in TCP modes where a client is explicitly allowed to send a shutw
to the server, eventhough it it risky.
Not doing it creates this situation reported by Ricardo Fraile and
diagnosed by Christopher : a typical HTTP client (eg: curl) connecting
via the config below to an HTTP server would receive its response,
immediately close while the server remains in keep-alive mode. The
shutr() received by haproxy from the client is "propagated" to the
server side but not acted upon because fdtab[fd].linger_risk is set,
so we expect that the next close will immediately complete this
operation.
listen proxy-tcp
bind 127.0.0.1:8888
mode tcp
timeout connect 5s
timeout server 10s
timeout client 10s
server server1 127.0.0.1:8000
But since the whole stream will not end until the server closes in
turn, the server doesn't close and haproxy expires on server timeout.
This problem has already struck by waking up an older bug and was
partially fixed with commit 8059351 ("BUG/MEDIUM: http: don't disable
lingering on requests with tunnelled responses") though it was not
enough.
The problem is that linger_risk is not suited here. In fact we need to
know whether or not it is desired to close normally or silently, and
whether or not a shutr() has already been received on this connection.
This is the approach this patch takes, and it solves the problem for
the various difficult modes (tcp, http-server-close, pretend-keepalive).
This fix needs to be backported to 1.8. Many thanks to Ricardo for
providing very detailed traces and configurations.
During the migration to the second version of the pools, the new
functions and pool pointers were all called "pool_something2()" and
"pool2_something". Now there's no more pool v1 code and it's a real
pain to still have to deal with this. Let's clean this up now by
removing the "2" everywhere, and by renaming the pool heads
"pool_head_something".
It can happen that we want to read early data, write some, and then continue
reading them.
To do so, we can't reuse tmp_early_data to store the amount of data sent,
so introduce a new member.
If we read early data, then ssl_sock_to_buf() is now the only responsible
for getting back to the handshake, to make sure we don't miss any early data.
This callback will be used to release upper layers when a mux is in
use. Given that the mux can be asynchronously deleted, we need a way
to release the extra information such as the session.
This callback will be called directly by the mux upon releasing
everything and before the connection itself is released, so that
the callee can find its information inside the connection if needed.
The way it currently works is not perfect, and most likely this should
instead become a mux release callback, but for now we have no easy way
to add mux-specific stuff, and since there's one mux per connection,
it works fine this way.
For H2, only the mux's timeout or other conditions might cause a
release of the mux and the connection, no stream should be allowed
to kill such a shared connection. So a stream will only detach using
cs_destroy() which will call mux->detach() then free the cs.
For now it's only handled by mux_pt. The goal is that the data layer
never has to care about the connection, which will have to be released
depending on the mux's mood.
This basically calls cs_shutw() followed by cs_shutr(). Both of them
are called in the most conservative mode so that any previous call is
still respected. The CS flags are cleared so that it can be reused
(this is important for connection retries when conn and CS are reused
without being reallocated).
All the references to connections in the data path from streams and
stream_interfaces were changed to use conn_streams. Most functions named
"something_conn" were renamed to "something_cs" for this. Sometimes the
connection still is what matters (eg during a connection establishment)
and were not always renamed. The change is significant and minimal at the
same time, and was quite thoroughly tested now. As of this patch, all
accesses to the connection from upper layers go through the pass-through
mux.
Most of the functions dealing with conn_streams are here. They act at
the data layer and interact with the mux. For now they are not used yet
but everything builds.
This patch introduces a new struct conn_stream. It's the stream-side of
a multiplexed connection. A pool is created and destroyed on exit. For
now the conn_streams are not used at all.
When an incoming connection is made on an HTTP mode frontend, the
session now looks up the mux to use based on the ALPN token and the
proxy mode. This will allow easier mux registration, and we don't
need to hard-code the mux_pt_ops anymore.
Selecting a mux based on ALPN and the proxy mode will quickly become a
pain. This commit provides new functions to register/lookup a mux based
on the ALPN string and the proxy mode to make this easier. Given that
we're not supposed to support a wide range of muxes, the lookup should
not have any measurable performance impact.
For HTTP/2 and QUIC, we'll need to deal with multiplexed streams inside
a connection. After quite a long brainstorming, it appears that the
connection interface to the existing streams is appropriate just like
the connection interface to the lower layers. In fact we need to have
the mux layer in the middle of the connection, between the transport
and the data layer.
A mux can exist on two directions/sides. On the inbound direction, it
instanciates new streams from incoming connections, while on the outbound
direction it muxes streams into outgoing connections. The difference is
visible on the mux->init() call : in one case, an upper context is already
known (outgoing connection), and in the other case, the upper context is
not yet known (incoming connection) and will have to be allocated by the
mux. The session doesn't have to create the new streams anymore, as this
is performed by the mux itself.
This patch introduces this and creates a pass-through mux called
"mux_pt" which is used for all new connections and which only
calls the data layer's recv,send,wake() calls. One incoming stream
is immediately created when init() is called on the inbound direction.
There should not be any visible impact.
Note that the connection's mux is purposely not set until the session
is completed so that we don't accidently run with the wrong mux. This
must not cause any issue as the xprt_done_cb function is always called
prior to using mux's recv/send functions.
When compiled with Openssl >= 1.1.1, before attempting to do the handshake,
try to read any early data. If any early data is present, then we'll create
the session, read the data, and handle the request before we're doing the
handshake.
For this, we add a new connection flag, CO_FL_EARLY_SSL_HS, which is not
part of the CO_FL_HANDSHAKE set, allowing to proceed with a session even
before an SSL handshake is completed.
As early data do have security implication, we let the origin server know
the request comes from early data by adding the "Early-Data" header, as
specified in this draft from the HTTP working group :
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-replay