The computations in buffer_forward() were only valid if buffer_forward()
was used on a buffer which had no more data scheduled for forwarding.
This is always the case right now so this bug is not yet triggered but
it will soon be. Now we correctly discount the bytes to be forwarded
from the data already present in the buffer.
This function works like a traditional putchar() except that it
can return 0 if the output buffer is full.
Now a basic character-based echo function would look like this, from
a stream interface :
while (1) {
c = buffer_si_peekchar(req);
if (c < 0)
break;
if (!buffer_si_putchar(res, c)) {
si->flags |= SI_FL_WAIT_ROOM;
break;
}
buffer_skip(req, 1);
req->flags |= BF_WRITE_PARTIAL;
res->flags |= BF_READ_PARTIAL;
}
The buffer_si_peekline() function is sort of a fgets() to be used from a
stream interface. It returns a complete line whenever possible, and does
not update the buffer's pointer, so that the reader is free to consume
what it wants to.
buffer_si_peekchar() only returns one character, and also needs a call
to buffer_skip() once the character is definitely consumed.
This functions act like their buffer_write*() counter-parts,
except that they're specifically designed to be used from a
stream interface handler, as they carefully check size limits
and automatically advance the read pointer depending on the
to_forward attribute.
buffer_feed_chunk() is an inline calling buffer_feed() as both
are the sames. For this reason, buffer_write_chunk() has also
been turned into an inline which calls buffer_write().
buffer_contig_space(), buffer_contig_data() and buffer_skip()
provide easy methods to extract/insert data from/into a buffer.
buffer_write() and buffer_write_chunk() currently do not check
max_len nor to_forward, so they will quickly become embarrassing
to use or will need an equivalent. The reason is that they are
used to build error messages which currently are not subject to
analysis.
This flag was incorrectly used as meaning "close immediately",
while it needs to say "close ASAP". ASAP here means when unsent
data pending in the buffer are sent. This helps cleaning up some
dirty tricks where the buffer output was checking the BF_SHUTR
flag combined with EMPTY and other such things. Now we have a
clearly defined semantics :
- producer sets SHUTR and *may* set SHUTW_NOW if WRITE_ENA is
set, otherwise leave it to the session processor to set it.
- consumer only checks SHUTW_NOW to decide whether or not to
call shutw().
This also induced very minor changes at some locations which were
not protected against buffer changes while the SHUTW_NOW flag was
set. Now we prevent send_max from changing when the flag is set.
Several tests have been run without any unexpected behaviour detected.
Some more cleanups are needed, as it clearly appears that some tests
could be removed with stricter semantics.
send() supports the MSG_MORE flag on Linux, which does the same
as TCP_CORK except that we don't have to remove TCP_NODELAY before
and we don't need any syscall to set/remove it. This can save up
to 4 syscalls around a send() (two for setting it, two for removing
it), and it's much cleaner since it is not persistent. So make use
of it instead.
We used to call stream_sock_data_finish() directly at the end of
a session update, but if we want to support non-socket interfaces,
we need to have this function configurable. Now we access it via
->update().
The new tune.bufsize and tune.maxrewrite global directives allow one to
change the buffer size and the maxrewrite size. Right now, setting bufsize
too low will block stats sockets which will not be able to write at all.
An error checking must be added to buffer_write_chunk() so that if it
cannot write its message to an empty buffer, it causes the caller to abort.
The first step towards dynamic buffer size consists in removing
all static definitions of the buffer size. Instead, we store a
buffer's size in itself. Right now they're all preinitialized
to BUFSIZE, but we will change that.
sess_establish() used to resort to protocol-specific guesses
in order to set rep->analysers. This is no longer needed as it
gets set from the frontend and the backend as a copy of what
was defined in the configuration.
Analyser bitmaps are now stored in the frontend and backend, and
combined at configuration time. That way, set_session_backend()
does not need to perform any protocol-specific combinations.
Since the listener is the one indicating what analyser and session
handlers to call, it makes sense that it also sets the task's nice
value. This also helps getting rid of the last trace of the stats
in the proto_uxst file.
The remains of the stats socket code has nothing to do in proto_uxst
anymore and must move to dumpstats. The code is much cleaner and more
structured. It was also an opportunity to rename AN_REQ_UNIX_STATS
as AN_REQ_STATS_SOCK as the stats socket is no longer unix-specific
either.
The last item refering to stats in proto_uxst is the setting of the
task's nice value which should in fact come from the listener.
process_session() is now ready to handle unix stats sockets. This
first step works and old code has not been removed. A cleanup is
required. The stats handler is not unix socket-centric anymore and
should move to dumpstats.c.
Creating a frontend for the global stats socket will help merge
unix sockets management with the other socket management. Since
frontends are huge structs, we only allocate it if required.
The connection establishment was completely handled by backend.c which
normally just handles LB algos. Since it's purely TCP, it must move to
proto_tcp.c. Also, instead of calling it directly, we now call it via
the stream interface, which will later help us unify session handling.
This Linux-specific option was never really used in production and
has since been superseded by new splicing options brought by recent
Linux kernels.
It caused several particular cases in the code because the kernel
would take care of the session without haproxy being able to do
anything on it, which became hard to handle in the new architecture.
Let's simply get rid of it now that there is a replacement available.
The new "node-name" stats setting enables reporting of a node ID on
the stats page. It is possible to return the system's host name as
well as a specific name.
The new statement "persist rdp-cookie" enables RDP cookie
persistence. The RDP cookie is then extracted from the RDP
protocol, and compared against available servers. If a server
matches the RDP cookie, then it gets the connection.
This patch adds support for hashing RDP cookies in order to
use them as a load-balancing key. The new "rdp-cookie(name)"
load-balancing metric has to be used for this. It is still
mandatory to wait for an RDP cookie in the frontend, otherwise
it will randomly work.
The RDP protocol is quite simple and documented, which permits
an easy detection and extraction of cookies. It can be useful
to match the MSTS cookie which can contain the username specified
by the client.
This patch propagates the ACL conditions' "requires" bitfield
to the proxies. This makes it possible to know exactly what a
proxy might have to support for any request, which helps knowing
whether we have to allocate some space for certain types of
structures or not (eg: the hdr_idx struct).
The concept might be extended to a lot more types of information,
such as detecting whether we need to allocate some space for some
request ACLs which need a result in the response, etc...
The HTTP processing has been splitted into 7 steps, one of which
is not anymore HTTP-specific (content-switching). That way, it
becomes possible to use "use_backend" rules in TCP mode. A new
"use_server" directive should follow soon.
Some stream analysers might become generic enough to be called
for several bits. So we cannot have the analyser bit hard coded
into the analyser itself. Let's make the caller inform the callee.
We want to split several steps in HTTP processing so that
we can call individual analysers depending on what processing
we want to perform. The first step consists in splitting the
part that waits for a request from the rest.
The splice code did not consider compatibility between both ends
of the connection. Now we set different capabilities on each
stream interface, depending on what the protocol can splice to/from.
Right now, only TCP is supported. Thanks to this, we're now able to
automatically detect when splice() is not implemented and automatically
disable it on one end instead of reporting errors to the upper layer.
When the nolinger option is used, we must not close too fast because
some data might be left unsent. Instead we must proceed with a normal
shutdown first, then a close. Also, we want to avoid merging FIN with
the last segment if nolinger is set, because if that one gets lost,
there is no chance for it to be retransmitted.
We now support up to 10 distinct configuration files. They are
all loaded in the order defined by -f <file1> -f <file2> ...
This can be useful in order to store global, private, public,
etc... configurations in distinct files.
This is a first step towards support of multiple configuration files.
Now readcfgfile() only reads a file in memory and performs very minimal
parsing. The checks are performed afterwards.
Sometimes it can be useful to limit the advertised TCP MSS on
incoming connections, for instance when requests come through
a VPN or when the system is running with jumbo frames enabled.
Passing the "mss <value>" arguments to a "bind" line will set
the value. This works under Linux >= 2.6.28, and maybe a few
earlier ones, though due to an old kernel bug most of earlier
versions will probably ignore it. It is also possible that some
other OSes will support this.
This new option enables combining of request buffer data with
the initial ACK of an outgoing TCP connection. Doing so saves
one packet per connection which is quite noticeable on workloads
mostly consisting in small objects. The option is not enabled by
default.
Setting TCP_CORK on a socket before sending the last segment enables
automatic merging of this segment with the FIN from the shutdown()
call. Playing with TCP_CORK is not easy though as we have to track
the status of the TCP_NODELAY flag since both are mutually exclusive.
Doing so saves one more packet per session and offers about 5% more
performance.
There is no reason not to do it, so there is no associated option.
This option disables TCP quick ack upon accept. It is also
automatically enabled in HTTP mode, unless the option is
explicitly disabled with "no option tcp-smart-accept".
This saves one packet per connection which can bring reasonable
amounts of bandwidth for servers processing small requests.
Sometimes we would want to implement implicit default options,
but for this we need to be able to disable them, which requires
to keep track of "no option" settings. With this change, an option
explicitly disabled in a defaults section will still be seen as
explicitly disabled. There should be no regression as nothing makes
use of this yet.
Some users are already hitting the 64k source port limit when
connecting to servers. The system usually maintains a list of
unused source ports, regardless of the source IP they're bound
to. So in order to go beyond the 64k concurrent connections, we
have to manage the source ip:port lists ourselves.
The solution consists in assigning a source port range to each
server and use a free port in that range when connecting to that
server, either for a proxied connection or for a health check.
The port must then be put back into the server's range when the
connection is closed.
This mechanism is used only when a port range is specified on
a server. It makes it possible to reach 64k connections per
server, possibly all from the same IP address. Right now it
should be more than enough even for huge deployments.
Some users want to keep the max sessions/s seen on servers, frontends
and backends for capacity planning. It's easy to grab it while the
session count is updated, so let's keep it.
Some people are using haproxy in a shared environment where the
system logger by default sends alert and emerg messages to all
consoles, which happens when all servers go down on a backend for
instance. These people can not always change the system configuration
and would like to limit the outgoing messages level in order not to
disturb the local users.
The addition of an optional 4th field on the "log" line permits
exactly this. The minimal log level ensures that all outgoing logs
will have at least this level. So the logs are not filtered out,
just set to this level.
There is a patch made by me that allow for balancing on any http header
field.
[WT:
made minor changes:
- turned 'balance header name' into 'balance hdr(name)' to match more
closely the ACL syntax for easier future convergence
- renamed the proxy structure fields header_* => hh_*
- made it possible to use the domain name reduction to any header, not
only "host" since it makes sense to do it with other ones.
Otherwise patch looks good.
/WT]
Some big traffic sites have trouble dealing with logs and tend to
disable them. Here are two new options to help cope with massive
logs.
- dontlog-normal only disables logging for 100% successful
connections, other ones will still be logged
- log-separate-errors will cause non-100% successful connections
to be logged at level "err" instead of level "info" so that a
properly configured syslog daemon can send them to a different
file for longer conservation.
These functions will be used to deliver asynchronous signals in order
to make the signal handling functions more robust. The goal is to keep
the same interface to signal handlers.
I have attached a patch which will add on every http request a new
header 'X-Original-To'. If you have HAProxy running in transparent mode
with a big number of SQUID servers behind it, it is very nice to have
the original destination ip as a common header to make decisions based
on it.
The whole thing is configurable with a new option 'originalto'. I have
updated the sourcecode as well as the documentation. The 'haproxy-en.txt'
and 'haproxy-fr.txt' files are untouched, due to lack of my french
language knowledge. ;)
Also the patch adds this header for IPv4 only. I haven't any IPv6 test
environment running here and don't know if getsockopt() with SO_ORIGINAL_DST
will work on IPv6. If someone knows it and wants to test it I can modify
the diff. Feel free to ask me questions or things which should be changed. :)
--Maik