The HTTP dumps are now configurable in the code : "show errors" now
calls a protocol-specific function to emit the decoded output. For
now only HTTP is implemented.
The idea will be to make the error snapshot feature accessible to other
protocols than just HTTP. This patch only introduces an "http_snapshot"
structure and renames a few fields to make things more explicit. The
HTTP part was installed inside a union so that we can easily add more
protocols in the future.
The snapshots have the ability to restart a partial dump and they use
the stream ID as the restart point. Since it's purely HTTP, let's use
the event ID instead.
This function returns the proxy associated to a connection. For front
connections it returns the frontend, and for back connections it
returns the backend. This will be used to retrieve some configuration
parameters from within a mux.
Sometimes a connection is prepared before the target is set, sometimes
after. There's no real rule since the few functions involved operate on
different and independent fields. Soon we'll benefit from knowing the
target at the connection layer, in order to figure the associated proxy
and retrieve the various parameters (timeouts etc). This patch slightly
reorders a few calls to conn_prepare() so that we can make sure that the
target is always known to the mux.
The new function sess_log() only needs a session to emit a log. It will
ignore the parts that depend on the stream. It is usable to emit a log
to report early errors in muxes. These ones will typically mention
"<BADREQ>" for the request and 0 for the HTTP status code.
The current build_logline() can only be used with valid streams, which
means it is not suitable for use from muxes. We start by moving it into
another more generic function which takes the session as an argument,
to avoid complexifying all the internal API for jsut a few use cases.
This new function is not supposed to be called directly from outside so
we'll be able to instrument it to support several calling conventions.
For now the behaviour and conditions remain unchanged.
This function was split in two at commit f7d0447 ("MINOR: buffers:
split b_putblk() into __b_putblk()") but it's wrong, the first half's
length is not adjusted to the requested size so it copies more than
desired.
This is purely 1.9-specific, no backport is needed.
The handshake processing time used to be stored per stream, which was
valid when there was exactly one stream per session. With H2 and
multiplexing it's not the case anymore and the reported handshake times
are wrong in the logs as it's computed between the TCP accept() and the
stream creation. Let's first move the handshake where it belongs, which
is the session.
However, this is not enough because we don't want to report an excessive
idle time either for H2 (since many requests use the connection).
So the solution used here is to have the stream retrieve sess->tv_accept
and the handshake duration when the stream is created, and let the mux
immediately reset them. This way, the handshake time becomes zero for the
second and subsequent requests in H2 (which was already the case in H1),
and the idle time exactly counts how long the connection remained unused
while it could be used, so in H1 it runs from the end of the previous
response and in H2 it runs from the end of the previous request since the
channel is already available.
This patch will need to be backported to 1.8.
We've been missing it several times and now we'll need it to increment
a request counter. Let's do it once for all.
This patch will need to be backported to 1.8 with the associated fix.
Server state file has no indication that a server is currently managed
by a DNS SRV resolution.
And thus, both feature (DNS SRV resolution and server state), when used
together, does not provide the expected behavior: a smooth experience...
This patch introduce the "SRV record name" in the server state file and
loads and applies it if found and wherever required.
This patch applies to haproxy-dev branch only. For backport, a specific patch
is provided for 1.8.
This patch improves the previous fix by implementing the socket draining
code directly in conn_sock_drain() so that it always applies regardless
of the protocol's family. Thus it gets rid of tcp_drain().
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
During a test it happened that a connection was deleted before the
stream it's attached to, resulting in a crash related to the fix
18a85fe ("BUG/MEDIUM: streams: Don't forget to remove the si from
the wait list.") during the LIST_DEL(). Make sure to always delete
the list's head in this case so that other elements can safely
detach later.
This is purely 1.9, no backport is needed.
Set the flag for the current thread in active_threads_mask when waking a
tasklet, or we will never run it if no tasks are available.
This is 1.9-specific, no backport is needed.
When we choose to insert a fd in either the global or the local fd update list,
and the thread_mask against all_threads_mask before checking if it's tid_bit,
that way, if we run with nbthreads==1, we will always use the local list,
which is cheaper than the global one.
Instead of just using the conn_stream wait_list, give the stream_interface
its own. When the conn_stream will have its own buffers, the stream_interface
may have to wait on it.
Instead of using si_cs_send() as a task handler, define a new function,
si_cs_io_cb(), and give si_cs_send() its original prototype. Right now
si_cs_io_cb() just handles send, but later it'll handle recv() too.
Modify tasklet_wakeup() so that it handles a task as well, and inserts it
directly into the tasklet list, making it effectively a tasklet.
This should make future developments easier.
This adds the set-priority-class and set-priority-offset actions to
http-request and tcp-request content. At this point they are not used
yet, which is the purpose of the next commit, but all the logic to
set and clear the values is there.
We'll need trees to manage the queues by priorities. This change replaces
the list with a tree based on a single key. It's effectively a list but
allows us to get rid of the list management right now.
We store the queue index in the stream and check it on dequeueing to
figure how many entries were processed in between. This way we'll be
able to count the elements that may later be added before ours.
The current name is misleading as it implies a queue size, but the value
instead indicates a position in the queue.
The value is only the queue size at the exact moment the element is enqueued.
Soon we will gain the ability to insert anywhere into the queue, upon which
clarity of the name is more important.
Commit 7ce0c89 ("MEDIUM: mux: Use the mux protocol specified on
bind/server lines") assumed a bit too strongly that we could only have
servers on the connect side :-) It segfaults under this config :
defaults
contimeout 5s
clitimeout 5s
srvtimeout 5s
mode http
listen test1
bind :8001
dispatch 127.0.0.1:8002
frontend test2
mode http
bind :8002
redirect location /
No backport needed.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
Because there can be several default multiplexers (without name), they are now
reported with the name "<default>". And a message warns they cannot be
referenced with the "proto" keyword on a bind line or a server line.
The update lock was removed by the commit 91c2826e1 ("CLEANUP: server: remove
the update list and the update lock"). But the lock label was not which makes
the compilation fail in debug mode.
pour vos modifications. Les lignes # commençant par '#' seront ignorées, et un
message vide abandonne la validation. # # Sur la branche temp # Votre branche
est en avance sur 'origin/master' de 87 commits. # (utilisez "git push" pour
publier vos commits locaux) # # Modifications qui seront validées : # modifié :
include/common/hathreads.h #
Now we try to synchronously push updates as they come using the new rdv
point, so that the call to the server update function from the main poll
loop is not needed anymore.
It further reduces the apparent latency in the health checks as the response
time almost always appears as 0 ms, resulting in a slightly higher check rate
of ~1960 conn/s. Despite this, the CPU consumption has slightly dropped again
to ~32% for the same test.
The only trick is that the checks code is built with a bit of recursivity
because srv_update_status() calls server_recalc_eweight(), and the latter
needs to signal srv_update_status() in case of updates. Thus we added an
extra argument to this function to indicate whether or not it must
propagate updates (no if it comes from srv_update_status).
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
Now, a multiplexer can specify if it can be install on incoming connections
(ALPN_SIDE_FE), on outgoing connections (ALPN_SIDE_BE) or both
(ALPN_SIDE_BOTH). These flags are compatible with proxies' ones.
This function is generic and is able to automatically transfer data from a
buffer to the conn_stream's tx buffer. It does this automatically if the mux
doesn't define another snd_buf() function.
It cannot yet be used as-is with the conn_stream's txbuf without risking to
lose data on close since conn_streams need to be orphaned for this.
To be symmetrical with the recv() part, we no handle retryable and partial
transmission using a intermediary buffer in the conn_stream. For now it's only
set to BUF_NULL and never allocated nor used.
It cannot yet be used as-is without risking to lose data on close since
conn_streams need to be orphaned for this.
This is a partial revert of the commit deccd1116 ("MEDIUM: mux: make
mux->snd_buf() take the byte count in argument"). It is a requirement to do
zero-copy transfers. This will be mandatory when the TX buffer of the
conn_stream will be used.
So, now, data are consumed by mux->snd_buf() and not only sent. So it needs to
update the buffer state. On its side, the caller must be aware the buffer can be
replaced y an empty or unallocated one.
As a side effet of this change, the function co_set_data() is now only responsible
to update the channel set, by update ->output field.
When b_slow_realign is called with the <output> parameter equal to 0, the
buffer's head, after the realign, must be set to 0. It was errornously set to
the buffer's size, because there was no test on the value of <output>.
The current synchronization point enforces certain restrictions which
are hard to workaround in certain areas of the code. The fact that the
critical code can only be called from the sync point itself is a problem
for some callback-driven parts. The "show fd" command for example is
fragile regarding this.
Also it is expensive in terms of CPU usage because it wakes every other
thread just to be sure all of them join to the rendez-vous point. It's a
problem because the sleeping threads would not need to be woken up just
to know they're doing nothing.
Here we implement a different approach. We keep track of harmless threads,
which are defined as those either doing nothing, or doing harmless things.
The rendez-vous is used "for others" as a way for a thread to isolate itself.
A thread then requests to be alone using thread_isolate() when approaching
the dangerous area, and then waits until all other threads are either doing
the same or are doing something harmless (typically polling). The function
only returns once the thread is guaranteed to be alone, and the critical
section is terminated using thread_release().