Whenever it's possible to avoid a copy, b_xfer() will simply swap the
buffer's heads without touching the data. This has brought the performance
back from 140 kH/s to 202 kH/s on the test case.
The latter function is more suited to operations that don't require any
check because the check has already been performed. It will be used by
other b_* functions.
This function is used a lot in block copies and is needlessly
complicated since it still uses pointer arithmetic. Let's fall
back to regular offsets and simplify it. This removed around
23 bytes from b_putblk() and it removed any conditional jump.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
This one is more generic and designed to work on a random block. It
may later get a b_rep_ist() variant since many strings are already
available as (ptr,len).
The two variants now do exactly the same (appending at the tail of the
buffer) so let's not keep the distinction between these classes of
functions and have generic ones for this. It's also worth noting that
b{i,o}_putchk() wasn't used at all and was removed.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
Since we use "_data" for the amount of data at many places, as opposed to
"_space" for the amount of space, let's rename the "data" field to "area"
so that we can reuse "data" later for the amount of data in the buffer
(currently called "len" despite not being contigous).
b_set_data() is used :
- in proto_http and hlua to trim input data (b_set_data(co_data()))
- in SPOE to append data to a buffer while building a message
In no case will this truncate a buffer so we can safely remove the
test for len < b->output.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>
Now that there are no more users requiring to modify the buffer anymore,
switch these ones to const char and const buffer. This will make it more
obvious next time send functions are tempted to modify the buffer's output
count. Minor adaptations were necessary at a few call places which were
using char due to the function's previous prototype.
Till now the callers had to know which one to call for specific use cases.
Let's fuse them now since a single one will remain after the API migration.
Given that bi_del() may only be used where o==0, just combine the two tests
by first removing output data then only input.
This will be important so that we can parse a buffer without touching it.
Now we indicate where from the buffer's head we plan to start to copy, and
for how many bytes. This will be used by send functions to loop at the end
of the buffer without having to update the buffer's output byte count.
This new functoin limits itself to the amount of data available in the
buffer and doesn't care about the direction anymore. It's only called
from co_getblk() which already checks that no more than the available
output bytes is requested.
These ones were merged into a single b_contig_space() that covers both
(the bo_ case was a simplified version of the other one). The function
doesn't use ->i nor ->o anymore.
This function was sometimes used from a channel and sometimes from a buffer.
In both cases it requires knowledge of the size of the output data (to skip
them). Here the split ensures the channel can deal with this point, and that
other places not having output data can continue to work.
Where relevant, the channel version is used instead. The buffer version
was ported to be more generic and now takes a swap buffer and the output
byte count to know where to set the alignment point. The H2 mux still
uses buffer_slow_realign() with buf->o but it will change later.
Many places deal with buffer realignment after data removal. The method
is always the same : if the buffer is empty, set its pointer to the origin.
Let's have a function for this so that we have less code to change with the
new API.
Add a new function that lets you set the amount of input in a buffer.
For now it extends/truncates b->i except if the total length is
below b->o in which case it clears i and adjusts o.
Instead of doing b->i -= directly, introduce b_sub(), that does the job, to
make it easier to switch to the future API.
Also add b_add(), that increases b->i, instead of using it directly, and
bo_add(), that does increase b->o.
Here's the list of newly introduced functions :
- b_data(), returning the total amount of data in the buffer (currently i+o)
- b_orig(), returning the origin of the storage area, that is, the place of
position 0.
- b_wrap(), pointer to wrapping point (currently data+size)
- b_size(), returning the size of the buffer
- b_room(), returning the amount of bytes left available
- b_full(), returning true if the buffer is full, otherwise false
- b_stop(), pointer to end of data mark (currently p+i), used to compute
distances or a stop pointer for a loop.
- b_peek(), this one will help make the transition to the new buffer model.
It returns a pointer to a position in the buffer known from an offest
relative to the beginning of the data in the buffer. Thus, we can replace
the following occurrences :
bo_ptr(b) => b_peek(b, 0);
bo_end(b) => b_peek(b, b->o);
bi_ptr(b) => b_peek(b, b->o);
bi_end(b) => b_peek(b, b->i + b->o);
b_ptr(b, ofs) => b_peek(b, b->o + ofs);
- b_head(), pointer to the beginning of data (currently bo_ptr())
- b_tail(), pointer to first free place (currently bi_ptr())
- b_next() / b_next_ofs(), pointer to the next byte, taking wrapping
into account.
- b_dist(), returning the distance between two pointers belonging to a buffer
- b_reset(), which resets the buffer
- b_space_wraps(), indicating if the free space wraps around the buffer
- b_almost_full(), indicating if 3/4 or more of the buffer are used
Some of these are provided with the unchecked variants using the "__"
prefix, or with the "_ofs" suffix indicating they return a relative
position to the buffer's origin instead of a pointer.
Cc: Olivier Houchard <ohouchard@haproxy.com>
Passing unsigned ints everywhere is painful, and will cause some headache
later when we'll want to integrate better with struct ist which already
uses size_t. Let's switch buffers to use size_t instead.
The buffer code currently depends on pools and other stuff and is not
really autonomous anymore. The rewrite of the new API is an opportunity
to clean this up. This patch creates a new file (buf.h) which does not
depend on other elements and which will only contain what is needed to
perform the most basic buffer operations. The new API will be introduced
in this file and the conversion will be finished once buffer.h is empty.
The definition of struct buffer was moved to this new file, using more
explicity stdint types for the sizes and offsets.
Most new functions will be implemented in two variants :
__b_something() : unchecked variant, no wrapping is expected
b_something() : wrapping-checked variant
This way callers will be able to select which one to use depending on
the use cases.