ancount is the number of answers available in a DNS response.
Before this patch, HAProxy used to store the ancount found in the buffer
(sent by the DNS server).
Unfortunately, this is now inaccurate and does not correspond to the
number of records effectively stored in our local version of the
response. In Example, the CNAMEs are not stored.
This patch updates ancount field in to make it match what is effectively
stored in our version.
Introduction of a DNS response LRU cache in HAProxy.
When a positive response is received from a DNS server, HAProxy stores
it in the struct resolution and then also populates a LRU cache with the
response.
For now, the key in the cache is a XXHASH64 of the hostname in the
domain name format concatened to the query type in string format.
Prior this patch, the DNS responses were stored in a pre-allocated
memory area (allocated at HAProxy's startup).
The problem is that this memory is erased for each new DNS responses
received and processed.
This patch removes the global memory allocation (which was not thread
safe by the way) and introduces a storage of the dns response in the
struct
resolution.
The memory in the struct resolution is also reserved at start up and is
thread safe, since each resolution structure will have its own memory
area.
For now, we simply store the response and use it atomically per
response per server.
In the process of breaking links between dns_* functions and other
structures (mainly server and a bit of resolution), the function
dns_get_ip_from_response needs to be reworked: it now can call
"callback" functions based on resolution's owner type to allow modifying
the way the response is processed.
For now, main purpose of the callback function is to check that an IP
address is not already affected to an element of the same type.
For now, only server type has a callback.
This patch introduces a some re-organisation around the DNS code in
HAProxy.
1. make the dns_* functions less dependent on 'struct server' and 'struct resolution'.
With this in mind, the following changes were performed:
- 'struct dns_options' has been removed from 'struct resolution' (well,
we might need it back at some point later, we'll see)
==> we'll use the 'struct dns_options' from the owner of the resolution
- dns_get_ip_from_response(): takes a 'struct dns_options' instead of
'struct resolution'
==> so the caller can pass its own dns options to get the most
appropriate IP from the response
- dns_process_resolve(): struct dns_option is deduced from new
resolution->requester_type parameter
2. add hostname_dn and hostname_dn_len into struct server
In order to avoid recomputing a server's hostname into its domain name
format (and use a trash buffer to store the result), it is safer to
compute it once at configuration parsing and to store it into the struct
server.
In the mean time, the struct resolution linked to the server doesn't
need anymore to store the hostname in domain name format. A simple
pointer to the server one will make the trick.
The function srv_alloc_dns_resolution() properly manages everything for
us: memory allocation, pointer updates, etc...
3. move resolvers pointer into struct server
This patch makes the pointer to struct dns_resolvers from struct
dns_resolution obsolete.
Purpose is to make the resolution as "neutral" as possible and since the
requester is already linked to the resolvers, then we don't need this
information anymore in the resolution itself.
A couple of new functions to allocate and free memory for a DNS
resolution structure. Main purpose is to to make the code related to DNS
more consistent.
They allocate or free memory for the structure itself. Later, if needed,
they should also allocate / free the buffers, etc, used by this structure.
They don't set/unset any parameters, this is the role of the caller.
This patch also implement calls to these function eveywhere it is
required.
Some DNS related network sockets were closed without unregistering their file
descriptors from their underlying kqueue event sets. This patch replaces calls to
close() by fd_delete() calls to that to delete such events attached to DNS
network sockets from the kqueue before closing the sockets.
The bug was introduced by commit 26c6eb8 ("BUG/MAJOR: dns: restart sockets
after fork()") which was backported in 1.7 so this fix has to be backported
there as well.
Thanks to Jim Pingle who reported it and indicated the faulty commit, and
to Lukas Tribus for the trace showing the bad file descriptor.
AF_INET address family was always used to create sockets to connect
to name servers. This prevented any connection over IPv6 from working.
This fix must be backported to 1.7 and 1.6.
A "weakness" exist in the first implementation of the parsing of the DNS
responses: HAProxy always choses the first IP available matching family
preference, or as a failover, the first IP.
It should be good enough, since most DNS servers do round robin on the
records they send back to clients.
That said, some servers does not do proper round robin, or we may be
unlucky too and deliver the same IP to all the servers sharing the same
hostname.
Let's take the simple configuration below:
backend bk
srv s1 www:80 check resolvers R
srv s2 www:80 check resolvers R
The DNS server configured with 2 IPs for 'www'.
If you're unlucky, then HAProxy may apply the same IP to both servers.
Current patch improves this situation by weighting the decision
algorithm to ensure we'll prefer use first an IP found in the response
which is not already affected to any server.
The new algorithm does not guarantee that the chosen IP is healthy,
neither a fair distribution of IPs amongst the servers in the farm,
etc...
It only guarantees that if the DNS server returns many records for a
hostname and that this hostname is being resolved by multiple servers in
the same backend, then we'll use as many records as possible.
If a server fails, HAProxy won't pick up an other record from the
response.
The function dns_init_resolvers() is used to initialize socket used to
send DNS queries.
This patch gives the function the ability to close a socket before
re-opening it.
[wt: this needs to be backported to 1.7 for next fix]
The recent CLI reorganization managed to break these two commands
by having their parser return 1 (indicating an end of processing)
instead of 0 to indicate new calls to the io handler were needed.
Namely the faulty commits are :
69e9644 ("REORG: cli: move show stat resolvers to dns.c")
32af203 ("REORG: cli: move ssl CLI functions to ssl_sock.c")
The fix is trivial and there is no other loss of functionality. Thanks
to Dragan Dosen for reporting the issue and the faulty commits. The
backport is needed in 1.7.
dns_init_resolvers() tries to emit the current resolver's name in the
error message in case of out-of-memory condition. But it must not do
it when initializing the trash before even having such a resolver
otherwise the user is certain to get a dirty crash instead of the
error message. No backport is needed.
The analyse of CNAME resolution and request's domain name was performed
twice:
- when validating the response buffer
- when loading the right IP address from the response
Now DNS response are properly loaded into a DNS response structure, we
do the domain name validation when loading/validating the response in
the DNS strcucture and later processing of this task is now useless.
backport: no
New DNS response parser function which turn the DNS response from a
network buffer into a DNS structure, much easier for later analysis
by upper layer.
Memory is pre-allocated at start-up in a chunk dedicated to DNS
response store.
New error code to report a wrong number of queries in a DNS response.
In dns_send_query(), ret was set to 0 but always reassigned before the
usage so this initialisation was useless.
The send_error variable was created, assigned to 0 but never used. So
this variable is just useless by itself. Removing it.
Alexander Lebedev reported that the response bit is set on SPARC when
DNS queries are sent. This has been tracked to the endianess issue, so
this patch makes the code portable.
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
Alexander Lebedev reported that the DNS parser crashes in 1.6 with a bus
error on Sparc when it receives a response. This is obviously caused by
some alignment issues. The issue can also be reproduced on ARMv5 when
setting /proc/cpu/alignment to 4 (which helps debugging).
Two places cause this crash in turn, the first one is when the IP address
from the packet is compared to the current one, and the second place is
when the address is assigned because an unaligned address is passed to
update_server_addr().
This patch modifies these places to properly use memcpy() and memcmp()
to manipulate the unaligned data.
Nenad Merdanovic found another set of places specific to 1.7 in functions
in_net_ipv4() and in_net_ipv6(), which are used to compare networks. 1.6
has the functions but does not use them. There we perform a temporary copy
to a local variable to fix the problem. The type of the function's argument
is wrong since it's not necessarily aligned, so we change it for a const
void * instead.
This fix must be backported to 1.6. Note that in 1.6 the code is slightly
different, there's no rec[] array, the pointer is used directly from the
buffer.
On some architectures, unaligned access is not authorized. On most
architectures, it is just slower. Therefore, we have to use memcpy()
when an unaligned access is needed, specifically when writing the qinfo.
Also remove the unaligned access when reading answer count when reading
the answer. It's likely that this instruction was optimized away by the
compiler since it is unneeded. Add a comment to explain why we use 7 as
an offset instead of 6. Not an unaligned offset since "resp" is
"unsigned char", then promoted to int.
060e57301d introduced a bug, related to a
dns option structure change and an improper rebase.
Thanks Lukas Tribus for reporting it.
backport: 1.7 and above
After Cedric Jeanneret reported an issue with HAProxy and DNS resolution
when multiple servers are in use, I saw that the implementation of DNS
query type update on resolution timeout was not implemented, even if it
is documented.
backport: 1.6 and above
A bug leading HAProxy to stop DNS resolution when multiple servers are
configured and one is in timeout, the request is not resent.
Current code fix this issue.
backport status: 1.6 and above
Instead of repeating the type of the LHS argument (sizeof(struct ...))
in calls to malloc/calloc, we directly use the pointer
name (sizeof(*...)). The following Coccinelle patch was used:
@@
type T;
T *x;
@@
x = malloc(
- sizeof(T)
+ sizeof(*x)
)
@@
type T;
T *x;
@@
x = calloc(1,
- sizeof(T)
+ sizeof(*x)
)
When the LHS is not just a variable name, no change is made. Moreover,
the following patch was used to ensure that "1" is consistently used as
a first argument of calloc, not the last one:
@@
@@
calloc(
+ 1,
...
- ,1
)
In C89, "void *" is automatically promoted to any pointer type. Casting
the result of malloc/calloc to the type of the LHS variable is therefore
unneeded.
Most of this patch was built using this Coccinelle patch:
@@
type T;
@@
- (T *)
(\(lua_touserdata\|malloc\|calloc\|SSL_get_app_data\|hlua_checkudata\|lua_newuserdata\)(...))
@@
type T;
T *x;
void *data;
@@
x =
- (T *)
data
@@
type T;
T *x;
T *data;
@@
x =
- (T *)
data
Unfortunately, either Coccinelle or I is too limited to detect situation
where a complex RHS expression is of type "void *" and therefore casting
is not needed. Those cases were manually examined and corrected.
This options prioritize th choice of an ip address matching a network. This is
useful with clouds to prefer a local ip. In some cases, a cloud high
avalailibility service can be announced with many ip addresses on many
differents datacenters. The latency between datacenter is not negligible, so
this patch permitsto prefers a local datacenter. If none address matchs the
configured network, another address is selected.
DNS selection preferences are actually declared inline in the
struct server. There are copied from the server struct to the
dns_resolution struct for each resolution.
Next patchs adds new preferences options, and it is not a good
way to copy all the configuration information before each dns
resolution.
This patch extract the configuration preference from the struct
server and declares a new dedicated struct. Only a pointer to this
new striuict will be copied before each dns resolution.
This function should return a 16-bit type as that is the type for
dns header id.
Also because it is doing an uint16 unpack big-endian operation.
Backport: can be backported to 1.6
Signed-off-by: Thiago Farina <tfarina@chromium.org>
Signed-off-by: Baptiste Assmann <bedis9@gmail.com>
A bug lied in the parsing of DNS CNAME response, leading HAProxy to
think the CNAME was improperly resolved in the response.
This should be backported into 1.6 branch
Basically, it's ill-defined and shouldn't really be used going forward.
We can't guarantee that resolvers will do the 'legwork' for us and
actually resolve CNAMES when we request the ANY query-type. Case in point
(obfuscated, clearly):
PRODUCTION! ahayworth@secret-hostname.com:~$
dig @10.11.12.53 ANY api.somestartup.io
; <<>> DiG 9.8.4-rpz2+rl005.12-P1 <<>> @10.11.12.53 ANY api.somestartup.io
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62454
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 0
;; QUESTION SECTION:
;api.somestartup.io. IN ANY
;; ANSWER SECTION:
api.somestartup.io. 20 IN CNAME api-somestartup-production.ap-southeast-2.elb.amazonaws.com.
;; AUTHORITY SECTION:
somestartup.io. 166687 IN NS ns-1254.awsdns-28.org.
somestartup.io. 166687 IN NS ns-1884.awsdns-43.co.uk.
somestartup.io. 166687 IN NS ns-440.awsdns-55.com.
somestartup.io. 166687 IN NS ns-577.awsdns-08.net.
;; Query time: 1 msec
;; SERVER: 10.11.12.53#53(10.11.12.53)
;; WHEN: Mon Oct 19 22:02:29 2015
;; MSG SIZE rcvd: 242
HAProxy can't handle that response correctly.
Rather than try to build in support for resolving CNAMEs presented
without an A record in an answer section (which may be a valid
improvement further on), this change just skips ANY record types
altogether. A and AAAA are much more well-defined and predictable.
Notably, this commit preserves the implicit "Prefer IPV6 behavior."
Furthermore, ANY query type by default is a bad idea: (from Robin on
HAProxy's ML):
Using ANY queries for this kind of stuff is considered by most people
to be a bad practice since besides all the things you named it can
lead to incomplete responses. Basically a resolver is allowed to just
return whatever it has in cache when it receives an ANY query instead
of actually doing an ANY query at the authoritative nameserver. Thus
if it only received queries for an A record before you do an ANY query
you will not get an AAAA record even if it is actually available since
the resolver doesn't have it in its cache. Even worse if before it
only got MX queries, you won't get either A or AAAA
The function which parses a DNS response buffer did not move properly a
pointer when reading a packet where records does not use DNS "message
compression" techniques.
Thanks to 0yvind Johnsen for the help provided during the troubleshooting
session.
PiBANL reported that HAProxy's DNS resolver can't "connect" its socker
on FreeBSD.
Remi Gacogne reported that we should use the function 'get_addr_len' to
get the addr structure size instead of sizeof.
There are two types of retries when performing a DNS resolution:
1. retry because of a timeout
2. retry of the full sequence of requests (query types failover)
Before this patch, the 'resolution->try' counter was incremented
after each send of a DNS request, which does not cover the 2 cases
above.
This patch fix this behavior.
Some DNS response may be valid from a protocol point of view but may not
contain any IP addresses.
This patch gives a new flag to the function dns_get_ip_from_response to
report such case.
It's up to the upper layer to decide what to do with this information.
Some DNS responses may be valid from a protocol point of view, but may
not contain any information considered as interested by the requester..
Purpose of the flag DNS_RESP_NO_EXPECTED_RECORD introduced by this patch is
to allow reporting such situation.
When this happens, a new DNS query is sent with a new query type.
For now, the function only expect A and AAAA query types which is enough
to cover current cases.
In a next future, it will be up to the caller to tell the function which
query types are expected.
First dns client implementation simply ignored most of DNS response
flags.
This patch changes the way the flags are parsed, using bit masks and
also take care of truncated responses.
Such response are reported to the above layer which can handle it
properly.
This patch introduces a new internal response state about the analysis
of a DNS response received by a server.
It is dedicated to report to above layer that the response is
'truncated'.
In some cases, parsing of the DNS response is broken and the response is
considered as invalid, despite being valid.
The current patch fixes this issue. It's a temporary solution until I
rework the response parsing to store the response buffer into a real DNS
packet structure.
Jan A. Bruder reported that some very specific hostnames on server
lines were causing haproxy to crash on startup. Given that hist
backtrace showed some heap corruption, it was obvious there was an
overflow somewhere. The bug in fact is a typo in dns_str_to_dn_label()
which mistakenly copies one extra byte from the host name into the
output value, thus effectively corrupting the structure.
The bug triggers while parsing the next server of similar length
after the corruption, which generally triggers at config time but
could theorically crash at any moment during runtime depending on
what malloc sizes are needed next. This is why it's tagged major.
No backport is needed, this bug was introduced in 1.6-dev2.
Implementation of a DNS client in HAProxy to perform name resolution to
IP addresses.
It relies on the freshly created UDP client to perform the DNS
resolution. For now, all UDP socket calls are performed in the
DNS layer, but this might change later when the protocols are
extended to be more suited to datagram mode.
A new section called 'resolvers' is introduced thanks to this patch. It
is used to describe DNS servers IP address and also many parameters.