As soon as we connect to the server, we want to limit the number of
recvfrom() on the response path because most of the time a single
call will retrieve enough information.
At the moment this is only done in the HTTP response parser, after
some reads have already failed, which is too late. We need to do
that at the earliest possible instant. It was already done for the
request side by frontend_accept() for the first request, and by
http_reset_txn() for the next requests.
Thanks to this change, there are no more failed recvfrom() calls in
keep-alive mode.
Since commit 6b66f3e ([MAJOR] implement autonomous inter-socket forwarding)
introduced in 1.3.16-rc1, we've been relying on a stupid mechanism to wake
up the task after a write, which was an exact copy-paste of the reader side.
The principle was that if we empty a buffer and there's no forwarding
scheduled or if the *producer* is not in a connected state, then we wake
the task up.
That does not make any sense. It happens to wake up too late sometimes (eg,
when the request analyser waits for some room in the buffer to start to
work), and leads to unneeded wakeups in client-side keep-alive, because
the task is woken up when the response is sent, while the analysers are
simply waiting for a new request.
In order to fix this, we introduce a new channel flag : CF_WAKE_WRITE. It
is designed so that an analyser can explicitly request being notified when
some data were written. It is used only when the HTTP request or response
analysers need to wait for more room in the buffers. It is automatically
cleared upon wake up.
The flag is also automatically set by the functions which try to write into
a buffer from an applet when they fail (bi_putblk() etc...).
That allows us to remove the stupid condition above and avoid some wakeups.
In http-server-close and in http-keep-alive modes, this reduces from 4 to 3
the average number of wakeups per request, and increases the overall
performance by about 1.5%.
In HTTP keep-alive mode, if we receive a 401, we still have a chance
of being able to send the visitor again to the same server over the
same connection. This is required by some broken protocols such as
NTLM, and anyway whenever there is an opportunity for sending the
challenge to the proper place, it's better to do it (at least it
helps with debugging).
The memset() was put here to corrupt memory for a debugging test,
it's not needed anymore and was unfortunately committed. It does
not harm anyway, it probably just slightly affects performance.
Since recent commit f79c817 (MAJOR: connection: add two new flags to
indicate readiness of control/transport) and the surrounding commits,
the session initialization has been slightly delayed and the control
layer of the connection is not yet initialized when processing the
rules.
We need to move that minimal initialization a bit above.
The bug was introduced with latest changes, no backport is needed.
It's becoming increasingly difficult to ignore unwanted function returns in
debug code with gcc. Now even when you try to work around it, it suggests a
way to write your code differently. For example :
src/frontend.c:187:65: warning: if statement has empty body [-Wempty-body]
if (write(1, trash.str, trash.len) < 0) /* shut gcc warning */;
^
src/frontend.c:187:65: note: put the semicolon on a separate line to silence this warning
1 warning generated.
This is totally unacceptable, this code already had to be written this way
to shut it up in earlier versions. And now it comments the form ? What's the
purpose of the C language if you can't write anymore the code that does what
you want ?
Emeric proposed to just keep a global variable to drain such useless results
so that gcc stops complaining all the time it believes people who write code
are monkeys. The solution is acceptable because the useless assignment is done
only in debug code so it will not impact performance. This patch implements
this, until gcc becomes even "smarter" to detect that we tried to cheat.
SSL and keep-alive will need to be able to fail on allocation errors,
and the stream interface did not allow to report such a cause. The flag
will then be "RC" as already documented.
Some applet users don't need to initialize their applet, they just want
to route the traffic there just as if it were a server. Since applets
are now connected to from session.c, let's simply ensure that when
connecting, the applet in si->end matches the target, and allocate
one there if it's not already done. In case of error, we force the
status code to resource and connection so that it's clear that it
happens because of a memory shortage.
The outgoing connection is now allocated dynamically upon the first attempt
to touch the connection's source or destination address. If this allocation
fails, we fail on SN_ERR_RESOURCE.
As we didn't use si->conn anymore, it was removed. The endpoints are released
upon session_free(), on the error path, and upon a new transaction. That way
we are able to carry the existing server's address across retries.
The stream interfaces are not initialized anymore before session_complete(),
so we could even think about allocating them dynamically as well, though
that would not provide much savings.
The session initialization now makes use of conn_new()/conn_free(). This
slightly simplifies the code and makes it more logical. The connection
initialization code is now shorter by about 120 bytes because it's done
at once, allowing the compiler to remove all redundant initializations.
The si_attach_applet() function now takes care of first detaching the
existing endpoint, and it is called from stream_int_register_handler(),
so we can safely remove the calls to si_release_endpoint() in the
application code around this call.
A call to si_detach() was made upon stream_int_unregister_handler() to
ensure we always free the allocated connection if one was allocated in
parallel to setting an applet (eg: detect HTTP proxy while proceeding
with stats maybe).
si_prepare_conn() is not appropriate in our case as it both initializes and
attaches the connection to the stream interface. Due to the asymmetry between
accept() and connect(), it causes some fields such as the control and transport
layers to be reinitialized.
Now that we can separately initialize these fields using conn_prepare(), let's
break this function to only attach the connection to the stream interface.
Also, by analogy, si_prepare_none() was renamed si_detach(), and
si_prepare_applet() was renamed si_attach_applet().
We don't want to assign the control nor transport layers anymore
at the same time as the data layer, because it prevents one from
keeping existing settings when reattaching a connection to an
existing stream interface.
Let's have conn_attach() replace conn_assign() for this purpose.
Thus, conn_prepare() + conn_attach() do exactly the same as the
previous conn_assign().
Now that we can assign conn->xprt regardless of the initialization state,
we can reintroduce conn_prepare() to set only the protocol, the transport
layer and initialize the transport layer's state.
The first function is used to (re)initialize a stream interface and
the second to force it into a known state. These are intended for
cleaning up the stream interface initialization code in session.c
and peers.c and avoiding future issues with missing initializations.
Currently the control and transport layers of a connection are supposed
to be initialized when their respective pointers are not NULL. This will
not work anymore when we plan to reuse connections, because there is an
asymmetry between the accept() side and the connect() side :
- on accept() side, the fd is set first, then the ctrl layer then the
transport layer ; upon error, they must be undone in the reverse order,
then the FD must be closed. The FD must not be deleted if the control
layer was not yet initialized ;
- on the connect() side, the fd is set last and there is no reliable way
to know if it has been initialized or not. In practice it's initialized
to -1 first but this is hackish and supposes that local FDs only will
be used forever. Also, there are even less solutions for keeping trace
of the transport layer's state.
Also it is possible to support delayed close() when something (eg: logs)
tracks some information requiring the transport and/or control layers,
making it even more difficult to clean them.
So the proposed solution is to add two flags to the connection :
- CO_FL_CTRL_READY is set when the control layer is initialized (fd_insert)
and cleared after it's released (fd_delete).
- CO_FL_XPRT_READY is set when the control layer is initialized (xprt->init)
and cleared after it's released (xprt->close).
The functions have been adapted to rely on this and not on the pointers
anymore. conn_xprt_close() was unused and dangerous : it did not close
the control layer (eg: the socket itself) but still marks the transport
layer as closed, preventing any future call to conn_full_close() from
finishing the job.
The problem comes from conn_full_close() in fact. It needs to close the
xprt and ctrl layers independantly. After that we're still having an issue :
we don't know based on ->ctrl alone whether the fd was registered or not.
For this we use the two new flags CO_FL_XPRT_READY and CO_FL_CTRL_READY. We
now rely on this and not on conn->xprt nor conn->ctrl anymore to decide what
remains to be done on the connection.
In order not to miss some flag assignments, we introduce conn_ctrl_init()
to initialize the control layer, register the fd using fd_insert() and set
the flag, and conn_ctrl_close() which unregisters the fd and removes the
flag, but only if the transport layer was closed.
Similarly, at the transport layer, conn_xprt_init() calls ->init and sets
the flag, while conn_xprt_close() checks the flag, calls ->close and clears
the flag, regardless xprt_ctx or xprt_st. This also ensures that the ->init
and the ->close functions are called only once each and in the correct order.
Note that conn_xprt_close() does nothing if the transport layer is still
tracked.
conn_full_close() now simply calls conn_xprt_close() then conn_full_close()
in turn, which do nothing if CO_FL_XPRT_TRACKED is set.
In order to handle the error path, we also provide conn_force_close() which
ignores CO_FL_XPRT_TRACKED and closes the transport and the control layers
in turns. All relevant instances of fd_delete() have been replaced with
conn_force_close(). Now we always know what state the connection is in and
we can expect to split its initialization.
Everywhere conn_prepare() is used, the call to conn_init() has already
been done. We can now safely replace all instances of conn_prepare()
with conn_assign() which does not reset the transport layer, and remove
conn_prepare().
In order to reduce the dependency over stream-interfaces, we now
attach the incoming connection to the embryonic session's target
instead of the stream-interface's connection. This means we won't
need to initialize stream interfaces anymore after we implement
dynamic connection allocation. The session's target is reset to
NULL after the session has been converted to a complete session.
The connection will only remain there as a pre-allocated entity whose
goal is to be placed in ->end when establishing an outgoing connection.
All connection initialization can be made on this connection, but all
information retrieved should be applied to the end point only.
This change is huge because there were many users of si->conn. Now the
only users are those who initialize the new connection. The difficulty
appears in a few places such as backend.c, proto_http.c, peers.c where
si->conn is used to hold the connection's target address before assigning
the connection to the stream interface. This is why we have to keep
si->conn for now. A future improvement might consist in dynamically
allocating the connection when it is needed.
This function makes no sense anymore and will cause trouble to convert
the remains of connection/applet to end points. Let's replace it now
with its contents.
The long-term goal is to have a context for applets as an alternative
to the connection and not as a complement. At the moment, the context
is still stored into the stream interface, and we only put a pointer
to the applet's context in si->end, initialize the context with object
type OBJ_TYPE_APPCTX, and this allows us not to allocate an entry when
deciding to switch to an applet.
A special care is taken to never dereference si->conn anymore when
dealing with an applet. That's why it's important that si->end is
always set to the proper type :
si->end == NULL => not connected to anything
*si->end == OBJ_TYPE_APPCTX => connected to an applet
*si->end == OBJ_TYPE_CONN => real connection (server, proxy, ...)
The session management code used to check the applet from the connection's
target. Now it uses the stream interface's end point and does not touch the
connection at all. Similarly, we stop checking the connection's addresses
and file descriptors when reporting the applet's status in the stats dump.
Since last commit, we now have a pointer to the applet in the
applet context. So we don't need the si->release function pointer
anymore, it can be extracted from applet->applet.release. At many
places, the ->release function was still tested for real connections
while it is only limited to applets, so most of them were simply
removed. For the remaining valid uses, a new inline function
si_applet_release() was added to simplify the check and the call.
si_prepare_embedded() was used both to attach an applet and to detach
anything from a stream interface. Split it into si_prepare_none() to
detach and si_prepare_applet() to attach an applet.
si->conn->target is now assigned from within these two functions instead
of their respective callers.
Now that applets work like real connections, there is no reason for
them to evade the response analysers. The stats applet emits valid
HTTP responses, it can flow through the HTTP response analyser just
fine. This now allows http-response/rsprep/rspadd rules to be applied
on top of stats. Cookie insertion does nothing since applets are not
servers and thus do not have a cookie. We can imagine compression to be
applied later if the stats output is emitted in chunks and in HTTP/1.1.
A minor visible effect of this change is that there is no more "-1" in
the timers presented in the logs when viewing the stats, all timers are
real.
Instead of having applets bypass the whole connection process, we now
follow the common path through sess_prepare_conn_req(). It is this
function which detects an applet an sets the output state so SI_ST_EST
instead of initiating a connection to a server. It is made possible
because we now have s->target pointing to the applet.
We used to rely on the stream interface's target to detect an applet
from within the session while trying to process the connection request,
but this is incorrect, as this target is the one currently connected
and not the next one to process. This will make a difference when we
later support keep-alive. The only "official" value indicating where
we want to connect is the session's target, which can be :
- &applet : connect to this applet
- NULL : connect using the normal LB algos
- anything else : direct connection to some entity
Since we're interested in detecting the specific case of applets, it's
OK to make use of s->target then.
Also, applets are being isolated from connections, and as such there
will not be any ->connect method available when an applet is running,
so we can get rid of this test as well.
The commit 37e340c (BUG/MEDIUM: stick: completely remove the unused flag
from the store entries) was incomplete. We also need to ensure that only
the first store-response for a table is applied and that it may coexist
with a possible store-request that was already done on this table.
This patch with the previous one should be backported to 1.4.
The store[] array in the session holds a flag which probably aimed to
differenciate store entries learned from the request from those learned
from the response, and allowing responses to overwrite only the request
ones (eg: have a server set a response cookie which overwrites the request
one).
But this flag is set when a response data is stored, and is never cleared.
So in practice, haproxy always runs with this flag set, meaning that
responses prevent themselves from overriding the request data.
It is desirable anyway to keep the ability not to override data, because
the override is performed only based on the table and not on the key, so
that would mean that it would be impossible to retrieve two different
keys to store into a same table. For example, if a client sets a cookie
and a server another one, both need to be updated in the table in the
proper order. This is especially true when multiple keys may be tracked
on each side into the same table (eg: list of IP addresses in a header).
So the correct fix which also maintains the current behaviour consists in
simply removing this flag and never try to optimize for the overwrite case.
This fix also has the benefit of significantly reducing the session size,
by 64 bytes due to alignment issues caused by this flag!
The bug has been there forever (since 1.4-dev7), so a backport to 1.4
would be appropriate.
Commit 986a9d2d12 moved the source address from the stream interface
to the session, but it did not set the flag on the connection to
report that the source address is known. Thus when logs are enabled,
we had a call to getpeername() which is redundant with the result
from accept(). This patch simply sets the flag.
In session_accept(), if we face a memory allocation error, we try to
emit an HTTP 500 error message in HTTP mode. The problem is that we
must not use http_error_message() for this since it dereferences the
session which can be NULL in this case.
We don't need the session to build the error message anyway since
this function only uses it to retrieve the backend and frontend to
get the most suited error message. Let's pick it ourselves, we're
at the beginning of the session, only the frontend is relevant.
This bug is 1.5-specific.
sc_* sample fetches now take an optional parameter which allows to look
the key in an alternate table. This is convenient to pass multiple
information for the same key at once (eg: have multiple gpc0 for the
same key, or support being fed complementary information from the CLI).
Example :
listen front
bind :8000
tcp-request content track-sc0 src table local-ip
http-response set-header src-id %[sc0_get_gpc0]+%[sc0_get_gpc0(global-ip)]
server dummy 127.0.0.1:8001
backend local-ip
stick-table size 1k type ip store gpc0
backend global-ip
stick-table size 1k type ip store gpc0
One very annoying issue when trying to extend the sticky counters beyond
the current 3 counters is that it requires a massive copy-paste of fetch
functions (we don't have to copy-paste code anymore), just so that the
fetch names exist.
So let's have an alternate form like "sc_*(num)" to allow passing the
counter number as an argument without having to redefine new fetch names.
The MAX_SESS_STKCTR macro defines the number of usable sticky counters,
which defaults to 3.
In preparation of more flexibility in the stick counters, make their
number configurable. It still defaults to 3 which is the minimum
accepted value. Changing the value alone is not sufficient to get
more counters, some bitfields still need to be updated and the TCP
actions need to be updated as well, but this update tries to be
easier, which is nice for experimentation purposes.
smp_fetch_sc0_trackers, smp_fetch_sc1_trackers and smp_fetch_sc2_trackers
were merged into a single function which relies on the fetch name to decide
what to return.
This is also a bug fix for this feature which has never worked till its bogus
introduction by commit "2406db4 MEDIUM: counters: add sc1_trackers/sc2_trackers"
(1.5-dev10).
Instead of returning the value in the sample, it was returned as the fetch
result!
There is no need to backport this fix anyway since it's 1.5-specific and
nobody uses the feature.
smp_fetch_sc0_bytes_out_rate, smp_fetch_sc1_bytes_out_rate, smp_fetch_sc2_bytes_out_rate,
smp_fetch_src_bytes_out_rate and smp_fetch_bytes_out_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_kbytes_out, smp_fetch_sc1_kbytes_out, smp_fetch_sc2_kbytes_out,
smp_fetch_src_kbytes_out and smp_fetch_kbytes_out were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_bytes_in_rate, smp_fetch_sc1_bytes_in_rate, smp_fetch_sc2_bytes_in_rate,
smp_fetch_src_bytes_in_rate and smp_fetch_bytes_in_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_kbytes_in, smp_fetch_sc1_kbytes_in, smp_fetch_sc2_kbytes_in,
smp_fetch_src_kbytes_in and smp_fetch_kbytes_in were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_http_err_rate, smp_fetch_sc1_http_err_rate, smp_fetch_sc2_http_err_rate,
smp_fetch_src_http_err_rate and smp_fetch_http_err_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_http_err_cnt, smp_fetch_sc1_http_err_cnt, smp_fetch_sc2_http_err_cnt,
smp_fetch_src_http_err_cnt and smp_fetch_http_err_cnt were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_http_req_rate, smp_fetch_sc1_http_req_rate, smp_fetch_sc2_http_req_rate,
smp_fetch_src_http_req_rate and smp_fetch_http_req_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_http_req_cnt, smp_fetch_sc1_http_req_cnt, smp_fetch_sc2_http_req_cnt,
smp_fetch_src_http_req_cnt and smp_fetch_http_req_cnt were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_sess_rate, smp_fetch_sc1_sess_rate, smp_fetch_sc2_sess_rate,
smp_fetch_src_sess_rate and smp_fetch_sess_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_sess_cnt, smp_fetch_sc1_sess_cnt, smp_fetch_sc2_sess_cnt,
smp_fetch_src_sess_cnt and smp_fetch_sess_cnt were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_conn_cur, smp_fetch_sc1_conn_cur, smp_fetch_sc2_conn_cur,
smp_fetch_src_conn_cur and smp_fetch_conn_cur were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_conn_rate, smp_fetch_sc1_conn_rate, smp_fetch_sc2_conn_rate,
smp_fetch_src_conn_rate and smp_fetch_conn_rate were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_conn_cnt, smp_fetch_sc1_conn_cnt, smp_fetch_sc2_conn_cnt,
smp_fetch_src_conn_cnt and smp_fetch_conn_cnt were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_clr_gpc0, smp_fetch_sc1_clr_gpc0, smp_fetch_sc2_clr_gpc0,
smp_fetch_src_clr_gpc0 and smp_fetch_clr_gpc0 were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_inc_gpc0, smp_fetch_sc1_inc_gpc0, smp_fetch_sc2_inc_gpc0,
smp_fetch_src_inc_gpc0 and smp_fetch_inc_gpc0 were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_gpc0, smp_fetch_sc1_gpc0, smp_fetch_sc2_gpc0,
smp_fetch_src_gpc0 and smp_fetch_gpc0 were merged into a single
function which relies on the fetch name to decide what to return.
smp_fetch_sc0_get_gpc0, smp_fetch_sc1_get_gpc0, smp_fetch_sc2_get_gpc0,
smp_fetch_src_get_gpc0 and smp_fetch_get_gpc0 were merged into a single
function which relies on the fetch name to decide what to return.
This function aims at simplifying the prefetching of the table and entry
when using any of the session counters fetches. The principle is that the
src_* variant produces a stkctr that is used instead of the one from the
session. That way we can call the same function from all session counter
fetch functions and always have a single function to support sc[0-9]_/src_.
We're having a lot of duplicate code just because of minor variants between
fetch functions that could be dealt with if the functions had the pointer to
the original keyword, so let's pass it as the last argument. An earlier
version used to pass a pointer to the sample_fetch element, but this is not
the best solution for two reasons :
- fetch functions will solely rely on the keyword string
- some other smp_fetch_* users do not have the pointer to the original
keyword and were forced to pass NULL.
So finally we're passing a pointer to the keyword as a const char *, which
perfectly fits the original purpose.
Lukas Benes reported that http-send-name-header causes a segfault if no
server is available because we're dereferencing the session's target which
is NULL. The tiniest reproducer looks like this :
listen foo
bind :1234
mode http
http-send-name-header srv
This obvious fix must be backported to 1.4 which is affected as well.
Commit e25c917a introduced a third tracking counter bug forgot
to check it when storing values at the end of the session. The
impact is that if neither the first nor the second one are
changed, none of them are saved.
Benoit Dolez reported a failure to start haproxy 1.5-dev19. The
process would immediately report an internal error with missing
fetches from some crap instead of ACL names.
The cause is that some versions of gcc seem to trim static structs
containing a variable array when moving them to BSS, and only keep
the fixed size, which is just a list head for all ACL and sample
fetch keywords. This was confirmed at least with gcc 3.4.6. And we
can't move these structs to const because they contain a list element
which is needed to link all of them together during the parsing.
The bug indeed appeared with 1.5-dev19 because it's the first one
to have some empty ACL keyword lists.
One solution is to impose -fno-zero-initialized-in-bss to everyone
but this is not really nice. Another solution consists in ensuring
the struct is never empty so that it does not move there. The easy
solution consists in having a non-null list head since it's not yet
initialized.
A new "ILH" list head type was thus created for this purpose : create
an Initialized List Head so that gcc cannot move the struct to BSS.
This fixes the issue for this version of gcc and does not create any
burden for the declarations.
When abortonclose is used and an error is detected on the client side,
better force an RST to the server. That way we propagate to the server
the same vision we got from the client, and we ensure that we won't keep
TIME_WAITs.
It was a bit inconsistent to have gpc start at 0 and sc start at 1,
so make sc start at zero like gpc. No previous release was issued
with sc3 anyway, so no existing setup should be affected.
Some users want to disable logging for certain non-important requests such as
stats requests or health-checks coming from another equipment. Other users want
to log with a higher importance (eg: notice) some special traffic (POST requests,
authenticated requests, requests coming from suspicious IPs) or some abnormally
large responses.
This patch responds to all these needs at once by adding a "set-log-level" action
to http-request/http-response. The 8 syslog levels are supported, as well as "silent"
to disable logging.
Since commit cfd97c6f was merged into 1.5-dev14 (BUG/MEDIUM: checks:
prevent TIME_WAITs from appearing also on timeouts), some valid health
checks sometimes used to show some TCP resets. For example, this HTTP
health check sent to a local server :
19:55:15.742818 IP 127.0.0.1.16568 > 127.0.0.1.8000: S 3355859679:3355859679(0) win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
19:55:15.742841 IP 127.0.0.1.8000 > 127.0.0.1.16568: S 1060952566:1060952566(0) ack 3355859680 win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
19:55:15.742863 IP 127.0.0.1.16568 > 127.0.0.1.8000: . ack 1 win 257
19:55:15.745402 IP 127.0.0.1.16568 > 127.0.0.1.8000: P 1:23(22) ack 1 win 257
19:55:15.745488 IP 127.0.0.1.8000 > 127.0.0.1.16568: FP 1:146(145) ack 23 win 257
19:55:15.747109 IP 127.0.0.1.16568 > 127.0.0.1.8000: R 23:23(0) ack 147 win 257
After some discussion with Chris Huang-Leaver, it appeared clear that
what we want is to only send the RST when we have no other choice, which
means when the server has not closed. So we still keep SYN/SYN-ACK/RST
for pure TCP checks, but don't want to see an RST emitted as above when
the server has already sent the FIN.
The solution against this consists in implementing a "drain" function at
the protocol layer, which, when defined, causes as much as possible of
the input socket buffer to be flushed to make recv() return zero so that
we know that the server's FIN was received and ACKed. On Linux, we can make
use of MSG_TRUNC on TCP sockets, which has the benefit of draining everything
at once without even copying data. On other platforms, we read up to one
buffer of data before the close. If recv() manages to get the final zero,
we don't disable lingering. Same for hard errors. Otherwise we do.
In practice, on HTTP health checks we generally find that the close was
pending and is returned upon first recv() call. The network trace becomes
cleaner :
19:55:23.650621 IP 127.0.0.1.16561 > 127.0.0.1.8000: S 3982804816:3982804816(0) win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
19:55:23.650644 IP 127.0.0.1.8000 > 127.0.0.1.16561: S 4082139313:4082139313(0) ack 3982804817 win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
19:55:23.650666 IP 127.0.0.1.16561 > 127.0.0.1.8000: . ack 1 win 257
19:55:23.651615 IP 127.0.0.1.16561 > 127.0.0.1.8000: P 1:23(22) ack 1 win 257
19:55:23.651696 IP 127.0.0.1.8000 > 127.0.0.1.16561: FP 1:146(145) ack 23 win 257
19:55:23.652628 IP 127.0.0.1.16561 > 127.0.0.1.8000: F 23:23(0) ack 147 win 257
19:55:23.652655 IP 127.0.0.1.8000 > 127.0.0.1.16561: . ack 24 win 257
This change should be backported to 1.4 which is where Chris encountered
this issue. The code is different, so probably the tcp_drain() function
will have to be put in the checks only.
We're often missin a third counter to track base, src and base+src at
the same time. Here we introduce track_sc3 to have this third counter.
It would be wise not to add much more counters because that slightly
increases the session size and processing time though the real issue
is more the declaration of the keywords in the code and in the doc.
By properly affecting the flags and values, it becomes easier to add
more tracked counters, for example for experimentation. It also slightly
reduces the code and the number of tests. No counters were added with
this patch.
Till now we used to call the function until the connection established, which
means that the header rewriting was performed for nothing upon each even (eg:
uploaded contents) until the server responded or timed out.
Now we only call the function when we assign the server.
Now that ACLs solely rely on sample fetch functions, make them use the
same arg mask. All inconsistencies have been fixed separately prior to
this patch, so this patch almost only adds a new pointer indirection
and removes all references to ARG*() in the definitions.
The parsing is still performed by the ACL code though.
ACL fetch functions used to directly reference a fetch function. Now
that all ACL fetches have their sample fetches equivalent, we can make
ACLs reference a sample fetch keyword instead.
In order to simplify the code, a sample keyword name may be NULL if it
is the same as the ACL's, which is the most common case.
A minor change appeared, http_auth always expects one argument though
the ACL allowed it to be missing and reported as such afterwards, so
fix the ACL to match this. This is not really a bug.
option abortonclose may cause a valid connection to be aborted just
after the request has been sent. This is because we check for it
during the session establishment sequence before checking for write
activity. So if the abort and the connect complete at the same time,
the abort is still considered. Let's check for an explicity partial
write before aborting.
This fix should be backported to 1.4 too.
We now have http_apply_redirect_rule() which does all the redirect-specific
job instead of having this inside http_process_req_common().
Also one of the benefit gained from uniformizing this code is that both
keep-alive and close response do emit the PR-- flags. The fix for the
flags could probably be backported to 1.4 though it's very minor.
The previous function http_perform_redirect() was becoming confusing
so it was renamed http_perform_server_redirect() since it only applies
to server-based redirection.
It happens that all of them call parse_logformat_line() which sets
proxy->to_log with a number of flags affecting the line format for
all three users. For example, having a unique-id specified disables
the default log-format since fe->to_log is tested when the session
is established.
Similarly, having "option logasap" will cause "+" to be inserted in
unique-id or headers referencing some of the fields depending on
LW_BYTES.
This patch first removes most of the dependency on fe->to_log whenever
possible. The first possible cleanup is to stop checking fe->to_log
for being null, considering that it always contains at least LW_INIT
when any such usage is made of the log-format!
Also, some checks are wrong. s->logs.logwait cannot be nulled by
"logwait &= ~LW_*" since LW_INIT is always there. This results in
getting the wrong log at the end of a request or session when a
unique-id or add-header is set, because logwait is still not null
but the log-format is not checked.
Further cleanups are required. Most LW_* flags should be removed or at
least replaced with what they really mean (eg: depend on client-side
connection, depend on server-side connection, etc...) and this should
only affect logging, not other mechanisms.
This patch fixes the default log-format and tries to limit interferences
between the log formats, but does not pretend to do more for the moment,
since it's the most visible breakage.
The stick counters were in two distinct sets of struct members,
causing some code to be duplicated. Now we use an array, which
enables some processing to be performed in loops. This allowed
the code to be shrunk by 700 bytes.
Returns the current amount of concurrent connections tracking the same
tracked counters. This number is automatically incremented when tracking
begins and decremented when tracking stops. It differs from sc1_conn_cur in
that it does not rely on any stored information but on the table's reference
count (the "use" value which is returned by "show table" on the CLI). This
may sometimes be more suited for layer7 tracking.
Until now it was only possible to use track-sc1/sc2 with "src" which
is the IPv4 source address. Now we can use track-sc1/sc2 with any fetch
as well as any transformation type. It works just like the "stick"
directive.
Samples are automatically converted to the correct types for the table.
Only "tcp-request content" rules may use L7 information, and such information
must already be present when the tracking is set up. For example it becomes
possible to track the IP address passed in the X-Forwarded-For header.
HTTP request processing now also considers tracking from backend rules
because we want to be able to update the counters even when the request
was already parsed and tracked.
Some more controls need to be performed (eg: samples do not distinguish
between L4 and L6).
Commit 2b199c9a attempted to fix all places where the transport layer
is improperly closed, but it missed one place in session_free(). If
SSL ciphers are logged, the close() is delayed post-log and performed
in session_free(). However, conn_xprt_close() only closes the transport
layer but not the file descriptor, resulting in a slow FD leak which is
hardly noticeable until the process cannot accept any new connection.
A workaround consisted in disabling %sslv/%sslc in log-format.
So use conn_full_close() instead of conn_xprt_close() to fix this there
too.
A similar pending issue existed in the close during outgoing connection
failure, though on this side, the transport layer is never tracked at the
moment.
When the PROXY protocol header is expected and fails, leading to an
abort of the incoming connection, we now emit a log message. If option
dontlognull is set and it was just a port probe, then nothing is logged.
Since the introduction of SSL, it became quite annoying not to get any useful
info in logs about handshake failures. Let's improve reporting for embryonic
sessions by checking a per-connection error code and reporting it into the logs
if an error happens before the session is completely instanciated.
The "dontlognull" option is supported in that if a connection does not talk
before being aborted, nothing will be emitted.
At the moment, only timeouts are considered for SSL and the PROXY protocol,
but next patches will handle more errors.
To ensure that we only count when a response was compressed, we also
check for the SN_COMP_READY flag which indicates that the compression
was effectively initialized. Comp_algo alone is meaningless.
Depending on the content-types and accept-encoding fields, some responses
might or might not be compressed. Let's have a counter of the number of
compressed responses and report it in the stats to help improve compression
usage.
Some cosmetic issues were fixed in the CSV output too (missing commas at the
end).
Several places got the connection close sequence wrong because it
was not obvious. In practice we always need the same sequence when
aborting, so let's have a common function for this.
There was a possible memory leak in the zlib code when the first response of
a keep-alive session was compressed, because the next request would reset the
compression algo, preventing a later call to session_free() from releasing it.
The reason is that it is necessary to release the assigned resources in
http_end_txn_clean_session().
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
Hijackers were functions designed to inject data into channels in the
distant past. They became unused around 1.3.16, and since there has
not been any user of this mechanism to date, it's uncertain whether
the mechanism still works (and it's not really useful anymore). So
better remove it as well as the pointer it uses in the channel struct.
si_fd() is not used a lot, and breaks builds on OpenBSD 5.2 which
defines this name for its own purpose. It's easy enough to remove
this one-liner function, so let's do it.
There is a small waste of CPU cycles when no handshake is required on an
accepted connection, because we had to perform one call to conn_fd_handler()
to mark the connection CONNECTED and to call process_session() again to say
that nothing happened.
By marking the connection CONNECTED when there is no pending handshake, we
avoid this extra call to process_session().
Having a global expiration timer for a task means that the tasks are regularly
woken up (at least after each expiration timer). It's totally useless and counter
productive to process the whole session upon each such wakeup, and it's fairly
easy to detect such wakeups, so let's just update the task's timer and return
to sleep when this happens.
For 100k concurrent connections with 10s of timeouts, this can save 10k wakeups
per second, which is not bad.
With extra-large buffers, it is possible that a lot of data are sent upon
connection establishment before the session is notified. The issue is how
to handle a send() error after some data were actually sent.
At the moment, only a connection error is reported, causing a new connection
attempt and send() to restart after the last data. We absolutely don't want
to retry the connect() if at least one byte was sent, because those data are
lost.
The solution consists in reporting exactly what happens, which is :
- a successful connection attempt
- a read/write error on the channel
That way we go on with sess_establish(), the response analysers are called
and report the appropriate connection state for the error (typically a server
abort while waiting for a response). This mechanism also guarantees that we
won't retry since it's a success. The logs also report the correct connect
time.
Note that 1.4 is not directly affected because it only attempts one send(),
so it cannot detect a send() failure here and distinguish it form a failed
connection attempt. So no backport is needed. Also, this is just a safe belt
we're taking, since this issue should not happen anymore since previous commit.
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.