(from ebtree 6.0.5)
Both of them are very short and rely on another non-inlined lookup function,
so it's pointless to have them as pure functions, it wastes space.
(cherry picked from commit 1e68d6fef815f759304d4cc0e65f957689e19a7a)
(update to ebtree 6.0.4)
Recent fix fd301cc1370cd4977fe175dfa4544c7dc0e7ce6b was not OK because it
was returning one excess byte, causing some duplicates not to be detected.
The reason is that we added 8 bits to count the trailing zero but they
were implied by the pre-incrementation of the pointer.
Fixing this was still not enough, as the problem appeared when
string_equal_bits() was applied on two identical strings, and it returned
a number of bits covering the trailing zero. Subsequent calls were applied
to the first byte after this trailing zero. It was often zero when doing
insertion from raw files, explaining why the issue was not discovered
earlier. But when the data is from a reused area, duplicate strings are not
correctly detected when inserting into the tree.
Several solutions were tested, and the only efficient one consists in making
string_equal_bits() notify the caller that the end of the string was reached.
It now returns zero and the callers just have to ensure that when they get a
zero, they stop using that bit until a dup tree or a leaf is encountered.
This fix brought the unexpected bonus of simplifying the insertion code a bit
and making it slightly faster to process duplicates.
The impact for haproxy was that if many similar string patterns were loaded
from a file, there was a potential risk that their insertion or matching could
have been slower. The bigger impact was with the URL sorting feature of halog,
which is not yet merged and is how this bug was discovered.
(cherry picked from commit 518d59ec9ba43705f930f9ece3749c450fd005df)
This version adds support for prefix-based matching of memory blocks,
as well as some code-size and performance improvements on the generic
code. It provides a prefix insertion and longest match which are
compatible with the rest of the common features (walk, duplicates,
delete, ...). This is typically used for network address matching. The
longest-match code is a bit slower than the original memory block
handling code, so they have not been merged together into generic
code. Still it's possible to perform about 10 million networks lookups
per second in a set of 50000, so this should be enough for most usages.
This version also fixes some bugs in parts that were not used, so there
is no need to backport them.
Sometimes it's useful to lookup a string without terminating it with a
zero. We can do that relying on ebmb_lookup() since the string in the
tree contains a zero.
We needed to upgrade ebtree to v5.0 to support string indexing,
and it was getting very painful to have it split across 2 dirs
and to have to patch it. Now we just have to copy the .c and .h
files to the right place.