Since the tcp-request connection rules don't need the stream anymore, we
can safely move the session-specific stuff earlier and prepare for a split
of session and stream initialization. Some work remains to be done.
This one is not needed anymore since we cannot track the stream counters
prior to reaching these locations. Only session counters may be tracked
and they're properly committed during session_free().
It passes a NULL wherever a stream was needed (acl_exec_cond() and
action_ptr mainly). It can still track the connection rate correctly
and block based on ACLs.
In order to support sessions tracking counters, we first ensure that there
is no overlap between streams' stkctr and sessions', and we allow an
automatic lookup into the session's counters when the stream doesn't
have a counter or when the stream doesn't exist during an access via
a sample fetch. The functions used to update the stream counters only
update them and not the session counters however.
The stick counters in the session will be used for everything not related
to contents, hence the connections / concurrent sessions / etc. They will
be usable by "tcp-request connection" rules even without a stream. For now
they're just allocated and initialized.
Doing so ensures we don't need to use the stream anymore to prepare the
log information to report a failed handshake on an embryonic session.
Thus, prepare_mini_sess_log_prefix() now takes a session in argument.
Now that we have sess->origin to carry that information along, we don't
need to put that into strm->target anymore, so we remove one dependence
on the stream in embryonic connections.
Many such function need a session, and till now they used to dereference
the stream. Once we remove the stream from the embryonic session, this
will not be possible anymore.
So as of now, sample fetch functions will be called with this :
- sess = NULL, strm = NULL : never
- sess = valid, strm = NULL : tcp-req connection
- sess = valid, strm = valid, strm->txn = NULL : tcp-req content
- sess = valid, strm = valid, strm->txn = valid : http-req / http-res
The registerable http_req_rules / http_res_rules used to require a
struct http_txn at the end. It's redundant with struct stream and
propagates very deep into some parts (ie: it was the reason for lua
requiring l7). Let's remove it now.
All of them can now retrieve the HTTP transaction *if it exists* from
the stream and be sure to get NULL there when called with an embryonic
session.
The patch is a bit large because many locations were touched (all fetch
functions had to have their prototype adjusted). The opportunity was
taken to also uniformize the call names (the stream is now always "strm"
instead of "l4") and to fix indent where it was broken. This way when
we later introduce the session here there will be less confusion.
Now this one is dynamically allocated. It means that 280 bytes of memory
are saved per TCP stream, but more importantly that it will become
possible to remove the l7 pointer from fetches and converters since
it will be deduced from the stream and will support being null.
A lot of care was taken because it's easy to forget a test somewhere,
and the previous code used to always trust s->txn for being valid, but
all places seem to have been visited.
All HTTP fetch functions check the txn first so we shouldn't have any
issue there even when called from TCP. When branching from a TCP frontend
to an HTTP backend, the txn is properly allocated at the same time as the
hdr_idx.
This one will not necessarily be allocated for each stream, and we want
to use the fact that it equals null to know it's not present so that we
can always deduce its presence from the stream pointer.
This commit only creates the new pool.
The header captures are now general purpose captures since tcp rules
can use them to capture various contents. That removes a dependency
on http_txn that appeared in some sample fetch functions and in the
order by which captures and http_txn were allocated.
Interestingly the reset of the header captures were done at too many
places as http_init_txn() used to do it while it was done previously
in every call place.
The stream may never be null given that all these functions are called
from sample_process(). Let's remove this now confusing test which
sometimes happens after a dereference was already done.
When s->si[0].end was dereferenced as a connection or anything in
order to retrieve information about the originating session, we'll
now use sess->origin instead so that when we have to chain multiple
streams in HTTP/2, we'll keep accessing the same origin.
Just like for the listener, the frontend is session-wide so let's move
it to the session. There are a lot of places which were changed but the
changes are minimal in fact.
There is now a pointer to the session in the stream, which is NULL
for now. The session pool is created as well. Some parts will move
from the stream to the session now.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
These ones were found in the actions to set the query/path/method/uri.
Where it's used, "s" makes one think about session or something like
this, especially when mixed with http_txn.
hlua_run_sample_fetch() uses "struct hlua_smp *s" which starts to become
confusing when "s->s" is used, then hlua_txn_close() uses this for struct
hlua_txn with the same "s->s" everywhere. Let's uniformize everything with
htxn and hsmp as in other places.
Struct hlua_txn is called "htxn" or "ht" everywhere, while here it's
called "hs" which is the name used everywhere for struct "hlua_smp".
Such confusion participate to the dangers of copy-pasting code, so
let's fix the name here.
Last bug was an example of a side effect of abuse of copy-paste, but
there are other places at risk, so better fix all occurrences of sizeof
to really reference the object size in order to limit the risks in the
future.
In hlua_converters_new(), we used to allocate the size of an hlua_txn
instead of hlua_smp, resulting in random crashes with one integer being
randomly overwritten at the end, even when no converter is being used.
Commit a0dc23f ("MEDIUM: http: implement http-request set-{method,path,query,uri}")
forgot to null-terminate the list, resulting in crashes when these actions
are used if the platform doesn't pad the struct with nulls.
Thanks to Gunay Arslan for reporting a detailed trace showing the
origin of this bug.
No backport to 1.5 is needed.
It's documented that these sample fetch functions should count all headers
and/or all values when called with no name but in practice it's not what is
being done as a missing name causes an immediate return and an absence of
result.
This bug is present in 1.5 as well and must be backported.
This library is designed to emit a zlib-compatible stream with no
memory usage and to favor resource savings over compression ratio.
While zlib requires 256 kB of RAM per compression context (and can only
support 4000 connections per GB of RAM), the stateless compression
offered by libslz does not need to retain buffers between subsequent
calls. In theory this slightly reduces the compression ratio but in
practice it does not have that much of an effect since the zlib
window is limited to 32kB.
Libslz is available at :
http://git.1wt.eu/web?p=libslz.git
It was designed for web compression and provides a lot of savings
over zlib in haproxy. Here are the preliminary results on a single
core of a core2-quad 3.0 GHz in 32-bit for only 300 concurrent
sessions visiting the home page of www.haproxy.org (76 kB) with
the default 16kB buffers :
BW In BW Out BW Saved Ratio memory VSZ/RSS
zlib 237 Mbps 92 Mbps 145 Mbps 2.58 84M / 69M
slz 733 Mbps 380 Mbps 353 Mbps 1.93 5.9M / 4.2M
So while the compression ratio is lower, the bandwidth savings are
much more important due to the significantly lower compression cost
which allows to consume even more data from the servers. In the
example above, zlib became the bottleneck at 24% of the output
bandwidth. Also the difference in memory usage is obvious.
More tests run on a single core of a core i5-3320M, with 500 concurrent
users and the default 16kB buffers :
At 100% CPU (no limit) :
BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s
zlib 480 Mbps 188 Mbps 292 Mbps 2.55 130M / 101M 744
slz 1700 Mbps 810 Mbps 890 Mbps 2.10 23.7M / 9.7M 2382
At 85% CPU (limited) :
BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s
zlib 1240 Mbps 976 Mbps 264 Mbps 1.27 130M / 100M 1738
slz 1600 Mbps 976 Mbps 624 Mbps 1.64 23.7M / 9.7M 2210
The most important benefit really happens when the CPU usage is
limited by "maxcompcpuusage" or the BW limited by "maxcomprate" :
in order to preserve resources, haproxy throttles the compression
ratio until usage is within limits. Since slz is much cheaper, the
average compression ratio is much higher and the input bandwidth
is quite higher for one Gbps output.
Other tests made with some reference files :
BW In BW Out BW Saved Ratio hits/s
daniels.html zlib 1320 Mbps 163 Mbps 1157 Mbps 8.10 1925
slz 3600 Mbps 580 Mbps 3020 Mbps 6.20 5300
tv.com/listing zlib 980 Mbps 124 Mbps 856 Mbps 7.90 310
slz 3300 Mbps 553 Mbps 2747 Mbps 5.97 1100
jquery.min.js zlib 430 Mbps 180 Mbps 250 Mbps 2.39 547
slz 1470 Mbps 764 Mbps 706 Mbps 1.92 1815
bootstrap.min.css zlib 790 Mbps 165 Mbps 625 Mbps 4.79 777
slz 2450 Mbps 650 Mbps 1800 Mbps 3.77 2400
So on top of saving a lot of memory, slz is constantly 2.5-3.5 times
faster than zlib and results in providing more savings for a fixed CPU
usage. For links smaller than 100 Mbps, zlib still provides a better
compression ratio, at the expense of a much higher CPU usage.
Larger input files provide slightly higher bandwidth for both libs, at
the expense of a bit more memory usage for zlib (it converges to 256kB
per connection).
This function used to take a zlib-specific flag as argument to indicate
whether a buffer flush or end of contents was met, let's split it in two
so that we don't depend on zlib anymore.
This algorithm is exactly the same as "deflate" without the zlib wrapper,
and used as an alternative when the browser wants "deflate". All major
browsers understand it and despite violating the standards, it is known
to work better than "deflate", at least on MSIE and some versions of
Safari. Do not use it in conjunction with "deflate", use either one or
the other since both react to the same Accept-Encoding token. Note that
the lack of Adler32 checksum makes it slightly faster.
Thanks to MSIE/IIS, the "deflate" name is ambigous. According to the RFC
it's a zlib-wrapped deflate stream, but IIS used to send only a raw deflate
stream, which is the only format MSIE understands for "deflate". The other
widely used browsers do support both formats. For this reason some people
prefer to emit a raw deflate stream on "deflate" to serve more users even
it that means violating the standards. Haproxy only follows the standard,
so they cannot do this.
This patch makes it possible to have one algorithm name in the configuration
and another one in the protocol. This will make it possible to have a new
configuration token to add a different algorithm so that users can decide if
they want a raw deflate or the standard one.
There's no reason for exporting identity_* nor deflate_*, they're only
used in the same file. Mark them static, it will make it easier to add
other algorithms.
When checking if the buffer is large enough, we used to rely on a fixed
size that was "apparently" enough. We need to consider the expansion
factor of deflate-encoded streams instead, which is of 5 bytes per 32kB.
The previous value was OK till 128kB buffers but became wrong past that.
It's totally harmless since we always keep the reserve when compressiong,
so there's 1kB or so available, which is enough for buffers as large as
6.5 MB, but better fix the check anyway.
This fix could be backported into 1.5 since compression was added there.