When DEBUG_MEMORY_POOLS is used, we now use the link pointer at the end
of the pool to store a pointer to the pool, and to control it during
pool_free2() in order to serve four purposes :
- at any instant we can know what pool an object was allocated from
when examining memory, hence how we should possibly decode it ;
- it serves to detect double free when they happen, as the pointer
cannot be valid after the element is linked into the pool ;
- it serves to detect if an element is released in the wrong pool ;
- it serves as a canary, to detect if some buffers experienced an
overflow before being release.
All these elements will definitely help better troubleshoot strange
situations, or at least confirm that certain conditions did not happen.
When debugging a core file, it's sometimes convenient to be able to
visit the released entries in the pools (typically last released
session). Unfortunately the first bytes of these entries are destroyed
by the link elements of the pool. And of course, most structures have
their most accessed elements at the beginning of the structure (typically
flags). Let's add a build-time option DEBUG_MEMORY_POOLS which allocates
an extra pointer in each pool to put the link at the end of each pool
item instead of the beginning.
Sometimes analysing a core file isn't easy due to shared memory pools.
Let's add a build option to disable this. It's not enabled by default,
it could be backported to older versions.
When debugging an issue, sometimes it can be useful to be able to use
byte 0 to poison memory areas, resulting in the same effect as a calloc().
This patch changes the default mem_poison_byte to -1 to disable it so that
all positive values are usable.
Till now this function would only allocate one entry at a time. But with
dynamic buffers we'll like to allocate the number of missing entries to
properly refill the pool.
Let's modify it to take a minimum amount of available entries. This means
that when we know we need at least a number of available entries, we can
ask to allocate all of them at once. It also ensures that we don't move
the pointers back and forth between the caller and the pool, and that we
don't call pool_gc2() for each failed malloc. Instead, it's called only
once and the malloc is only allowed to fail once.
pool_alloc2() used to pick the entry from the pool, fall back to
pool_refill_alloc(), and to perform the poisonning itself, which
pool_refill_alloc() was also doing. While this led to optimal
code size, it imposes memory poisonning on the buffers as well,
which is extremely slow on large buffers.
This patch cuts the allocator in 3 layers :
- a layer to pick the first entry from the pool without falling back to
pool_refill_alloc() : pool_get_first()
- a layer to allocate a dirty area by falling back to pool_refill_alloc()
but never performing the poisonning : pool_alloc_dirty()
- pool_alloc2() which calls the latter and optionally poisons the area
No functional changes were made.
Till now, when memory poisonning was enabled, it used to be done only
after a calloc(). But sometimes it's not enough to detect unexpected
sharing, so let's ensure that we now poison every allocation once it's
in place. Note that enabling poisonning significantly hurts performance
(it can typically half the overall performance).
show pools
Dump the status of internal memory pools. This is useful to track memory
usage when suspecting a memory leak for example. It does exactly the same
as the SIGQUIT when running in foreground except that it does not flush
the pools.
From time to time, some bugs are discovered that are caused by non-initialized
memory areas. It happens that most platforms return a zero-filled area upon
first malloc() thus hiding potential bugs. This patch also replaces malloc()
in pools with calloc() to ensure that all platforms exhibit the same behaviour
upon startup. In order to catch these bugs more easily, add a -dM command line
flag to enable memory poisonning. Optionally, passing -dM<byte> forces the
poisonning byte to <byte>.
In order to make pool usage more convenient, let pool_free2()
support NULL pointers by doing nothing, just like the standard
free(3) call does.
The various call places have been updated to remove the now
useless checks.
When we're interrupted by another instance, it is very likely
that the other one will need some memory. Now we know how to
free what is not used, so let's do it.
Also only free non-null pointers. Previously, pool_destroy()
did implicitly check for this case which was incidentely
needed.
- keep the number of users of each pool
- call the garbage collector on out of memory conditions
- sort the pools by size for faster creation
- force the alignment size to 16 bytes instead of 4*sizeof(void *)