In session, don't keep an infinite number of connection that can idle.
Add a new frontend parameter, "max-session-srv-conns" to set a max number,
with a default value of 5.
Instead of trying to get the session from the connection, which is not
always there, and of course there could be multiple sessions per connection,
provide it with the init() and attach() methods, so that we know the
session for each outgoing stream.
Instead of the old "idle-timeout" mechanism, add a new option,
"pool-purge-delay", that sets the delay before purging idle connections.
Each time the delay happens, we destroy half of the idle connections.
Add a new command, "pool-max-conn" that sets the maximum number of connections
waiting in the orphan idling connections list (as activated with idle-timeout).
Using "-1" means unlimited. Using pools is now dependant on this.
Sadly we didn't have the cumulated number of connections established to
servers till now, so let's now update it per backend and per-server and
report it in the stats. On the stats page it appears in the tooltip
when hovering over the total sessions count field.
Add a new method to mux, "reset", that is used to let the mux know the
connection attempt failed, and we're about to retry, so it just have to
reinit itself. Currently only the H1 mux needs it.
Handle the CLI level in the master CLI. In order to do this, the master
CLI stores the level in the stream. Each command are prefixed by a
"user" or "operator" command before they are forwarded to the target
CLI.
The level can be configured in the haproxy program arguments with the
level keyword: -S /tmp/sock,level,admin -S /tmp/sock2,level,user.
The maximum number of bytes in a DNS name is indeed 255, but we
need to allocate one more byte for the NULL-terminating byte.
Otherwise dns_read_name() might return 255 for a very long name,
causing dns_validate_dns_response() to write a NULL value one
byte after the end of the buffer:
dns_answer_record->name[len] = 0;
The next fields in the struct being filled from the content of the
query, it might have been possible to fill them with non-0 values,
causing for example a strlen() of the name to read past the end of
the struct and access unintended parts of the memory, possibly
leading to a crash.
To be backported to 1.8, probably also 1.7.
Since the data_len field of the dns_answer_item struct was an int16_t,
record length values larger than 2^15-1 were causing an integer
overflow and thus may have been interpreted as negative, making us
read well before the beginning of the buffer.
This might have led to information disclosure or a crash.
To be backported to 1.8, probably also 1.7.
These flags haven't been used for a while. SF_TUNNEL was reintroduced
by commit d62b98c6e ("MINOR: stream: don't set backend's nor response
analysers on SF_TUNNEL") to handle the two-level streams needed to
deal with the first model for H2, and was not removed after this model
was abandonned. SF_INITIALIZED was only set. SF_CONN_TAR was never
referenced at all.
All the HTX definition is self-contained and doesn't really depend on
anything external since it's a mostly protocol. In addition, some
external similar files (like h2) also placed in common used to rely
on it, making it a bit awkward.
This patch moves the two htx.h files into a single self-contained one.
The historical dependency on sample.h could be also removed since it
used to be there only for http_meth_t which is now in http.h.
The cache is now able to store and resend HTX messages. When an HTX message is
stored in the cache, the headers are prefixed with their block's info (an
uint32_t), containing its type and its length. Data, on their side, are stored
without any prefix. Only the value is copied in the cache. 2 fields have been
added in the structure cache_entry, hdrs_len and data_len, to known the size, in
the cache, of the headers part and the data part. If the message is chunked, the
trailers are also copied, the same way as data. When the HTX message is
recreated in the cache applet, the trailers size is known removing the headers
length and the data lenght from the total object length.
The CLI proxy was not handling payload. To do that, we needed to keep a
connection active on a server and to transfer each new line over that
connection until we receive a empty line.
The CLI proxy handles the payload in the same way that the CLI do it.
Examples:
$ echo -e "@1;add map #-1 <<\n$(cat data)\n" | socat /tmp/master-socket -
$ socat /tmp/master-socket readline
prompt
master> @1
25130> add map #-1 <<
+ test test
+ test2 test2
+ test3 test3
+
25130>
CS_FL_RCV_MORE is used in two cases, to let the conn_stream
know there may be more data available, and to let it know that
it needs more room. We can't easily differentiate between the
two, and that may leads to hangs, so split it into two flags,
CS_FL_RCV_MORE, that means there may be more data, and
CS_FL_WANT_ROOM, that means we need more room.
This should not be backported.
There are some situations where we need to wait for the other side to
be connected. None of the current blocking flags support this. It used
to work more or less by accident using the old flags. Let's add a new
flag to mention we're blocking on this, it's removed by si_chk_rcv()
when a connection is established. It should be enough for now.
Add a new keyword for servers, "idle-timeout". If set, unused connections are
kept alive until the timeout happens, and will be picked for reuse if no
other connection is available.
Add a new method to muxes, "max_streams", that returns the max number of
streams the mux can handle. This will be used to know if a mux is in use
or not.
First, to be called on HTX streams, a filter must explicitly be declared as
compatible by setting the flag STRM_FLT_FL_HAS_FILTERS on the filter's config at
HAProxy startup. This flag is checked when a filter implementation is attached
to a stream.
Then, some changes have been made on HTTP callbacks. The callback http_payload
has been added to filter HTX data. It will be called on HTX streams only. It
replaces the callbacks http_data, http_chunk_trailers and http_forward_data,
called on legacy HTTP streams only and marked as deprecated. The documention
(once updated)) will give all information to implement this new callback. Other
HTTP callbacks will be called for HTX and HTTP legacy streams. So it is the
filter's responsibility to known which kind of data it handles. The macro
IS_HTX_STRM should be used in such cases.
There is at least a noticeable changes in the way data are forwarded. In HTX,
after the call to the callback http_headers, all the headers are considered as
forwarded. So, in http_payload, only the body and eventually the trailers will
be filtered.
First of all, an dedicated error snapshot, h1_snapshot, has been added. It
contains more or less the some info than http_snapshot but adapted for H1
messages. Then, the function h1_capture_bad_message() has been added to capture
bad H1 messages. And finally, the function h1_show_error_snapshot() is used to
dump these errors. Only Headers or data parsing are captured.
If there is no start-line, this offset is set to -1. Otherwise, it is the
relative address where the start-line is stored in the data block. When the
start-line is added, replaced or removed, this offset is updated accordingly. On
remove, if the start-line is no set and if the next block is a start-line, the
offset is updated. Finally, when an HTX structure is defragmented, the offset is
also updated accordingly.
The HTX start-line is now a struct. It will be easier to extend, if needed. Same
info can be found, of course. In addition it is now possible to set flags on
it. It will be used to set some infos about the message.
Some macros and functions have been added in proto/htx.h to help accessing
different parts of the start-line.
Time to time, the need arises to get some info owned by the multiplexer about a
connection stream from the upper layer. Today we really need to get some dates
and durations specific to the conn_stream. It is only true for the mux H1 and
H2. Otherwise it will be impossible to have correct times reported in the logs.
To do so, the structure cs_info has been defined to provide all info we ever
need on a conn_stream from the upper layer. Of course, it is the first step. So
this structure will certainly envloved. But for now, only the bare minimum is
referenced. On the mux side, the callback get_cs_info() has been added in the
structure mux_ops. Multiplexers can now implement it, if necessary, to return a
pointer on a structure cs_info. And finally, the function si_get_cs_info()
should be used from the upper layer. If the stream interface is not attached to
a connection stream, this function returns NULL, likewise if the callback
get_cs_info() is not defined for the corresponding mux.
Instead of just storing the last connection in the session, store all of
the connections, for at most MAX_SRV_LIST (currently 5) targets.
That way we can do keepalive on more than 1 outgoing connection when the
client uses HTTP/2.
Most calls to hap_register_post_check(), hap_register_post_deinit(),
hap_register_per_thread_init(), hap_register_per_thread_deinit() can
be done using initcalls and will not require a constructor anymore.
Let's create a set of simplified macros for this, called respectively
REGISTER_POST_CHECK, REGISTER_POST_DEINIT, REGISTER_PER_THREAD_INIT,
and REGISTER_PER_THREAD_DEINIT.
Some files were not modified because they wouldn't benefit from this
or because they conditionally register (e.g. the pollers).
Most register_build_opts() calls use static strings. These ones were
replaced with a trivial REGISTER_BUILD_OPTS() statement adding the string
and its call to the STG_REGISTER section. A dedicated section could be
made for this if needed, but there are very few such calls for this to
be worth it. The calls made with computed strings however, like those
which retrieve OpenSSL's version or zlib's version, were moved to a
dedicated function to guarantee they are called late in the process.
For example, the SSL call probably requires that SSL_library_init()
has been called first.
In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines,
each time the process waits for an I/O using the poller, the processor
goes back to sleep or is offered to another VM for a long time, and it
causes excessively high latencies.
A solution to this provided by this patch is to enable busy polling using
a global option. When busy polling is enabled, the pollers never sleep and
loop over themselves waiting for an I/O event to happen or for a timeout
to occur. On multi-processor machines it can significantly overheat the
processor but it usually results in much lower latencies.
A typical test consisting in injecting traffic over a single connection at
a time over the loopback shows a bump from 4640 to 8540 connections per
second on forwarded connections, indicating a latency reduction of 98
microseconds for each connection, and a bump from 12500 to 21250 for
locally terminated connections (redirects), indicating a reduction of
33 microseconds.
It is only usable with epoll and kqueue because select() and poll()'s
API is not convenient for such usages, and the level of performance they
are used in doesn't benefit from this anyway.
The option, which obviously remains disabled by default, can be turned
on using "busy-polling" in the global section, and turned off later
using "no busy-polling". Its status is reported in "show info" to help
troubleshooting suspicious CPU spikes.
Right now we measure for each task the cumulated time spent waiting for
the CPU and using it. The timestamp uses a 64-bit integer to report a
nanosecond-level date. This is only enabled when "profiling.tasks" is
enabled, and consumes less than 1% extra CPU on x86_64 when enabled.
The cumulated processing time and wait time are reported in "show sess".
The task's counters are also reset when an HTTP transaction is reset
since the HTTP part pretends to restart on a fresh new stream. This
will make sure we always report correct numbers for each request in
the logs.
Since we know the time it takes to process everything between two poll()
calls, we can use this as the max latency measurement any task will
experience and average it.
This code does this, and reports in "show activity" the average of this
loop time over the last 1024 poll() loops, for each thread. It will vary
quickly at high loads and slowly under low to moderate loads, depending
on the rate at which poll() is called. The latency a task experiences
is expected to be half of this on average.
At the moment the situation with activity measurement is quite tricky
because the struct activity is defined in global.h and declared in
haproxy.c, with operations made in time.h and relying on freq_ctr
which are defined in freq_ctr.h which itself includes time.h. It's
barely possible to touch any of these files without breaking all the
circular dependency.
Let's move all this stuff to activity.{c,h} and be done with it. The
measurement of active and stolen time is now done in a dedicated
function called just after tv_before_poll() instead of mixing the two,
which used to be a lazy (but convenient) decision.
No code was changed, stuff was just moved around.
In the output of 'show fd', the worker CLI's socketpair was still
handled by an "unknown" function. That can be really confusing during
debug. Fixed it by showing "mworker_accept_wrapper" instead.
The mworker waitpid mode (which is used when a reload failed to apply
the new configuration) was still using a specific initialisation path.
That's a problem since we use a polling loop in the master now, the
master proxy is not initialized and the master CLI is not activated.
This patch removes the initialisation code of the wait mode and
introduce the MODE_MWORKER_WAIT in order to use the same init path as
the MODE_MWORKER with some exceptions. It allows to use the master proxy
and the master CLI during the waitpid mode.