This patch implements analysers for parsing the CLI and extra features
for the master's CLI.
For each command (sent alone, or separated by ; or \n) the request
analyser will determine to which server it should send the request.
The 'mode cli' proxy is able to parse a prefix for each command which is
used to select the apropriate server. The prefix start by @ and is
followed by "master", the PID preceded by ! or the relative PID. (e.g.
@master, @1, @!1234). The servers are not round-robined anymore.
The command is sent with a SHUTW which force the server to close the
connection after sending its response. However the proxy allows a
keepalive connection on the client side and does not close.
The response analyser does not do much stuff, it only reinits the
connection when it received a close from the server, and forward the
response. It does not analyze the response data.
The only guarantee of the end of the response is the close of the
server, we can't rely on the double \n since it's not send by every
command.
This could be reimplemented later as a filter.
Add a struct server pointer in the mworker_proc struct so we can easily
use it as a target for the mworker proxy.
pcli_prefix_to_pid() is used to find the right PID of the worker
when using a prefix in the CLI. (@master, @#<relative pid> , @<pid>)
pcli_pid_to_server() is used to find the right target server for the
CLI proxy.
The master process does not need all the keywords of the cli, add 2
flags to chose which keyword to use.
It might be useful to activate some of them in a debug mode later...
This patch introduces mworker_cli_proxy_new_listener() which allows the
creation of new listeners for the CLI proxy.
Using this function it is possible to create new listeners from the
program arguments with -Sa <unix_socket>. It is allowed to create
multiple listeners with several -Sa.
This patch implements a listen proxy within the master. It uses the
sockpair of all the workers as servers.
In the current state of the code, the proxy is only doing round robin on
the CLI of the workers. A CLI mode will be needed to know to which CLI
send the requests.
The init code of the mworker_proc structs has been moved before the
init of the listeners.
Each socketpair is now connected to a CLI within the workers, which
allows the master to access their CLI.
The inherited flag of the worker side socketpair is removed so the
socket can be closed in the master.
With the new synchronous si_cs_send() at the end of process_stream(),
we're seeing re-appear the I/O layer specific part of the stream interface
which is supposed to deal with I/O event subscription. The only difference
is that now we subscribe to I/Os only after having attempted (and failed)
them.
This patch brings a cleanup in this by reintroducing stream_int_update_conn()
with the send code from process_stream(). However this alone would not be
enough because the flags which are cleared afterwards would result in the
loss of the possible events (write events only at the moment). So the flags
clearing and stream-int state updates are also performed inside si_update()
between the generic code and the I/O specific code. This definitely makes
sense as after this call we can simply check again for channel and SI flag
changes and decide to loop once again or not.
This will supersed channel_alloc_buffer() while relying on it. It will
automatically adjust SI_FL_WAIT_ROOM on the stream-int depending on
success or failure to allocate this buffer.
It's worth noting that it could make sense to also set SI_FL_WANT_PUT
each time we do this to further simplify the code at user places such
as applets, but it would possibly not be easy to clean this flag
everywhere an rx operation stops.
The behaviour of the flag CF_WRITE_PARTIAL was modified by commit
95fad5ba4 ("BUG/MAJOR: stream-int: don't re-arm recv if send fails") due
to a situation where it could trigger an immediate wake up of the other
side, both acting in loops via the FD cache. This loss has caused the
need to introduce CF_WRITE_EVENT as commit c5a9d5bf, to replace it, but
both flags express more or less the same thing and this distinction
creates a lot of confusion and complexity in the code.
Since the FD cache now acts via tasklets, the issue worked around in the
first patch no longer exists, so it's more than time to kill this hack
and to restore CF_WRITE_PARTIAL's semantics (i.e.: there has been some
write activity since we last left process_stream).
This patch mostly reverts the two commits above. Only the part making
use of CF_WROTE_DATA instead of CF_WRITE_PARTIAL to detect the loss of
data upon connection setup was kept because it's more accurate and
better suited.
This patch makes the capable of storing HTTP objects larger than a buffer.
It makes usage of the "block by block shared object allocation" new shctx API.
A new pointer to struct shared_block has been added to the cache applet
context to memorize the next block to be used by the HTTP cache I/O handler
http_cache_io_handler() to emit the data. Another member, named "sent" memorize
the number of bytes already sent by this handler. So, to send an object from cache,
http_cache_io_handler() must be called until "sent" counter reaches the size
of this object.
This patch makes shctx capable of storing objects in several parts,
each parts being made of several blocks. There is no more need to
walk through until reaching the end of a row to append new blocks.
A new pointer to a struct shared_block member, named last_reserved,
has been added to struct shared_block so that to memorize the last block which was
reserved by shctx_row_reserve_hot(). Same thing about "last_append" pointer which
is used to memorize the last block used by shctx_row_data_append() to store the data.
This option makes a proxy use only HTX-compatible muxes instead of the
HTTP-compatible ones for HTTP modes. It must be set on both ends, this
is checked at parsing time.
Some samples representing time will cover more than one sample at once
if they are units of time per time. For this we'd need to have the
ability to loop over swrate_add() multiple times but that would be
inefficient. By developing the function elevated to power N, it's
visible that some coefficients quickly disappear and that those which
remain at the first order more or less compensate each other.
Thus a simplified version of this function was added to provide a single
value for a given number of samples. Tests with multiple values, window
sizes and sample sizes have shown that it is possible to make it remain
surprisingly accurate (typical error < 0.2% over various large window
and sample sizes, even samples representing up to 1/4 of the window).
Avoid using conn_xprt_want_send/recv, and totally nuke cs_want_send/recv,
from the upper layers. The polling is now directly handled by the connection
layer, it is activated on subscribe(), and unactivated once we got the event
and we woke the related task.
Make sure we don't have any subscription when the connection is going in
idle mode, otherwise there's a race condition when the connection is
reused, if there are still old subscriptions, new ones won't be done.
No backport is needed.
When mapping memory with mmap(), we should use a fd of -1, not 0. 0 may
work on linux, but it doesn't work on FreeBSD, and probably other OSes.
It would be nice to backport this to 1.8 to help debugging there.
Commit ac6c880 ("BUILD: memory: fix pointer declaration for atomic CAS")
attemtped to fix a build warning affecting the lock-free version of the
pool allocator. But the fix tried to hide the cause instead of addressing
it, thus clang still complains about (void **) not matching (void ***).
The real solution is to declare free_list (void **) and not to use a cast.
Now this builds fine with gcc/clang with and without threads.
No backport is needed.
The purpose is to detect if threads or processes are competing for the
same CPU. This can happen when threads are incorrectly bound, or after a
reload if the previous process still has an important activity. With
threads this situation is problematic because a preempted thread holding
a lock will block other ones waiting for this lock to be released.
A first attempt consisted in measuring the cumulated lost time more
precisely but the system's scheduler is smart enough to try to limit the
thread preemption rate by mostly context switching during poll()'s blank
periods, so most of the time lost is not seen. In essence this is good
because it means a thread is not preempted with a lock held, and even
regarding the rendez-vous point it cannot prevent the other ones from
making progress. But still it happens tens to hundreds of times per
second that a thread might be preempted, so it's still possible to detect
that the situation is happening, thus it's interesting to measure and
report its frequency.
Each time we enter the poller, we check the CPU time spent working and
see if we've lost time doing something else. To limit false positives,
we're only interested in losses of 500 microseconds or more (i.e. half
a clock tick on a 1 kHz system). If so, it indicates that some time was
stolen by another thread or process. Note that we purposely store some
sub-millisecond counters so that under heavy traffic with a 1 kHz clock,
it's still possible to measure something without being subject to the
risk of rounding errors (i.e. if exactly 1 ms is stolen it's possible
that the time difference could often be slightly lower).
This counter of lost CPU time slots time is reported in "show activity"
in numbers of milliseconds of CPU lost per second, per 15s, and total
over the process' life. By definition, the per-second counter cannot
report values larger than 1000 per thread per second and the 15s one
will be limited to 15000/s in the worst case, but it's possible that
peak values exceed such thresholds after long pauses.
These two functions retrieve respectively the monotonic clock time and
the per-thread CPU time when available on the platform, or return zero.
These syscalls may require to link with -lrt on certain libc, which is
enabled in the Makefile with USE_RT=1 (default on Linux systems).
The calls to HA_ATOMIC_CAS() on the lockfree version of the pool allocator
were mistakenly done on (void*) for the old value instead of (void **).
While this has no impact on "recent" gcc, it does have one for gcc < 4.7
since the CAS was open coded and it's not possible to assign a temporary
variable of type "void".
No backport is needed, this only affects 1.9.
By placing this code into time.h (tv_entering_poll() and tv_leaving_poll())
we can remove the logic from the pollers and prepare for extending this to
offer more accurate time measurements.
The 4 pollers all contain the same code used to compute the poll timeout.
This is pointless, let's centralize this into fd.h. This also gets rid of
the useless SCHEDULER_RESOLUTION macro which used to work arond a very old
linux 2.2 bug causing select() to wake up slightly before the timeout.
Each thread now keeps the last ~512 kB of freed objects into a local
cache. There are some heuristics involved so that a specific pool cannot
use more than 1/8 of the total cache in number of objects. Tests have
shown that 512 kB is an optimal size on a 24-thread test running on a
dual-socket machine, resulting in an overall 7.5% performance increase
and a cache miss ratio reducing from 19.2 to 17.7%. Anyway it seems
pointless to keep more than an L2 cache, which probably explains why
sizes between 256 and 512 kB are optimal.
Cached objects appear in two lists, one per pool and one LRU to help
with fair eviction. Currently there is no way to check each thread's
cache state nor to flush it. This cache cannot be disabled and is
enabled as soon as the lockless pools are enabled (i.e.: threads are
enabled, no pool debugging is in use and the CPU supports a double word
CAS).
For caching it will be convenient to have indexes associated with pools,
without having to dereference the pool itself. One solution could consist
in replacing all pool pointers with integers but this would limit the
number of allocatable pools. Instead here we allocate the 32 first pools
from a pre-allocated array whose base address is known so that it's trivial
to convert a pool to an index in this array. Pools that cannot fit there
will be allocated normally.
Currently we have per-thread arrays of trees and counts, but these
ones unfortunately share cache lines and are accessed very often. This
patch moves the task-specific stuff into a structure taking a multiple
of a cache line, and has one such per thread. Just doing this has
reduced the cache miss ratio from 19.2% to 18.7% and increased the
12-thread test performance by 3%.
It starts to become visible that we really need a process-wide per-thread
storage area that would cover more than just these parts of the tasks.
The code was arranged so that it's easy to move the pieces elsewhere if
needed.
Now we still have a main contention point with the timers in the main
wait queue, but the vast majority of the tasks are pinned to a single
thread. This patch creates a per-thread wait queue and queues a task
to the local wait queue without any locking if the task is bound to a
single thread (the current one) otherwise to the shared queue using
locking. This significantly reduces contention on the wait queue. A
test with 12 threads showed 11 ms spent in the WQ lock compared to
4.7 seconds in the same test without this change. The cache miss ratio
decreased from 19.7% to 19.2% on the 12-thread test, and its performance
increased by 1.5%.
Another indirect benefit is that the average queue size is divided
by the number of threads, which roughly removes log(nbthreads) levels
in the tree and further speeds up lookups.
The vast majority of FDs are only seen by one thread. Currently the lock
on FDs costs a lot because it's touched often, though there should be very
little contention. This patch ensures that the lock is only grabbed if the
FD is shared by more than one thread, since otherwise the situation is safe.
Doing so resulted in a 15% performance boost on a 12-threads test.
peers_init_sync() doesn't check task_new()'s return value and doesn't
return any result to indicate success or failure. Let's make it return
an int and check it from the caller.
This can be backported as far as 1.6.
This statement is used as a hint for the compiler so that it knows that
the location where it's placed cannot be reached. It will mostly be used
after longjmp() or equivalent statements that deal with error processing
and that the compiler doesn't know will not return on certain conditions,
so that it doesn't complain about null dereferences on error paths.
Some pseudo-headers are added during the headers parsing, mainly for the mux
H2. With this flag, it is possible to not add them. This avoid some boring
filtering in the mux H1.
Instead of using offsets relating to the parsed buffer to store start line
infos, we now use indirect strings. So now, these infos remain valid only if the
origin buffer remains untouched. But it's not a real problem because this union
is used during the parsing and never stored to a later use.
This flags will be used by multiplexers to warn a conn-stream (and, by
transitivity, a stream) it is not the first one created by the mux. It will help
mux H1 to handle keep-alive connections.
Since keep-alive mode is the default mode, the passive close has disappeared,
and in the code, httpclose and forceclose options are handled the same way:
connections with the client and the server are closed as soon as the request and
the response are received and missing "Connection: close" header is added in
each direction.
So to make things clearer, forceclose is now an alias for httpclose. And
httpclose is explicitly an active close. So the old passive close does not exist
anymore. Internally, the flag PR_O_HTTP_PCL has been removed and PR_O_HTTP_FCL
has been replaced by PR_O_HTTP_CLO. In HTTP analyzers, the checks done to find
the right mode to use, depending on proxies options and "Connection: " header
value, have been simplified.
This should only be a cleanup and no changes are expected.
To ease the refactoring, the function "http_header_add_tail" have been
remove. Now, "http_header_add_tail2" is always used. And the function
"capture_headers" have been renamed into "http_capture_headers". Finally, some
functions have been exported.
HTTP_FLG_* and HTTP_IS_* were moved from "proto/proto_http.h" to "common/http.h"
but the associated comment was forgotten during the move.
This is 1.9-specific and should not be backported.
Make sure we unsubscribe from events before si_release_endpoint destroys
the conn_stream, or it will be never called. To do so, move the call to
unsubscribe to si_release_endpoint() directly.
This is 1.9-specific and shouldn't be backported.
When subscribing, we don't need to provide a list element, only the h2 mux
needs it. So instead, Add a list element to struct h2s, and use it when a
list is needed.
This forces us to use the unsubscribe method, since we can't just unsubscribe
by using LIST_DEL anymore.
This patch is larger than it should be because it includes some renaming.
As we don't know how subscriptions are handled, we can't just assume we can
use LIST_DEL() to unsubscribe, so introduce a new method to mux and connections
to do so.
This call is now used quite a bit in the fd cache, to decide which cache
to add/remove the fd to/from, when waking up a task for a single thread
in __task_wakeup(), in fd_cant_recv() and in fd_process_cached_events(),
and we can replace it with a single instruction, removing ~30 instructions
and ~80 bytes from the inner loop of some of these functions.
In addition the test for zero value was replaced with a comment saying
that it is illegal and leads to an undefined behaviour. The code does
not make use of this useless case today.
In commit f161d0f51 ("BUG/MINOR: pools/threads: don't ignore DEBUG_UAF
on double-word CAS capable archs") I moved some defines and accidently
messed up with lockfree pools. The problem is that the HA_HAVE_CAS_DW
macro is not defined anymore where the CONFIG_HAP_LOCKLESS_POOLS macro
is set, so this fix implicitly disabled lockfree pools.
This patch fixes this by moving the capabilities definition to config.h
(probably that we'd benefit from having an "arch.h" file to declare the
capabilities offered by the architecture). In a test on a 12-core machine,
we used to measure 19s spent in the pool lock for 1M requests without
this patch, and 0 with it so that's definitely a net saving.
No backport is required, this is only for 1.9.
OpenSSL released support for TLSv1.3. It also added a separate function
SSL_CTX_set_ciphersuites that is used to set the ciphers used in the
TLS 1.3 handshake. This change adds support for that new configuration
option by adding a ciphersuites configuration variable that works
essentially the same as the existing ciphers setting.
Note that it should likely be backported to 1.8 in order to ease usage
of the now released openssl-1.1.1.
In ci_insert_line2() and b_rep_blk(), we can't afford to wrap, so don't use
b_tail() to check if we do, use __b_tail() instead.
This should be backported to previous versions.
The prototypes of functions find_hdr_value_end(), extract_cookie_value()
and http_header_match2() were still in proto_http.h while some of them
don't exist anymore and the others were just moved. Let's remove them.
In addition, da.c was updated to use http_extract_cookie_value() which
is the correct one.
These ones are mostly called from cfgparse.c for the parsing and do
not depend on the HTTP representation. The functions's prototypes
were moved to proto/http_rules.h, making this file work exactly like
tcp_rules. Ideally we should stop calling these functions directly
from cfgparse and register keywords, but there are a few cases where
that wouldn't work (stats http-request) so it's probably not worth
trying to go this far.
The current proto_http.c file is huge and contains different processing
domains making it very difficult to work on an alternative representation.
This commit moves some parts to other files :
- ACL registration code => http_acl.c
This code only creates some ACL mappings and doesn't know anything
about HTTP nor about the representation. This code could even have
moved to acl.c but it was not worth polluting it again.
- HTTP sample conversion => http_conv.c
This code doesn't depend on the internal representation but definitely
manipulates some HTTP elements, such as dates. It also has access to
captures.
- HTTP sample fetching => http_fetch.c
This code does depend entirely on the internal representation but is
totally independent on the analysers. Placing it into a different
file will ease the transition to the new representation and the
creation of a wrapper if required. An include file was created due
to CHECK_HTTP_MESSAGE_FIRST() being used at various places.
- HTTP action registration => http_act.c
This code doesn't directly interact with the messages nor the
transaction but it does so via some exported http functions like
http_replace_req_line() or http_set_status() so it will be easier
to change only this after the conversion.
- a few very generic parts were found and moved to http.{c,h} as
relevant.
It is worth noting that the functions moved to these new files are not
referenced anywhere outside of the files and are only called as registered
callbacks, so these files do not even require associated include files.
This ads support for accessing stick tables from Lua. The supported
operations are reading general table info, lookup by string/IP key, and
dumping the table.
Similar to "show table", a data filter is available during dump, and as
an improvement over "show table" it's possible to use up to 4 filter
expressions instead of just one (with implicit AND clause binding the
expressions). Dumping with/without filters can take a long time for
large tables, and should be used sparingly.
Instead of using si_cs_io_cb() in process_stream() use si_cs_send/si_cs_recv
instead, as si_cs_io_cb() may lead to process_stream being woken up when it
shouldn't be, and thus timeout would never get triggered.
Tim Dsterhus found using afl-fuzz that some parts of the HPACK decoder
use incorrect bounds checking which do not catch negative values after
a type cast. The first culprit is hpack_valid_idx() which takes a signed
int and is fed with an unsigned one, but a few others are affected as
well due to being designed to work with an uint16_t as in the table
header, thus not being able to detect the high offset bits, though they
are not exposed if hpack_valid_idx() is fixed.
The impact is that the HPACK decoder can be crashed by an out-of-bounds
read. The only work-around without this patch is to disable H2 in the
configuration.
CVE-2018-14645 was assigned to this bug.
This patch addresses all of these issues at once. It must be backported
to 1.8.
Callers of si_appctx() always use the result without checking it because
they know by construction that it's valid. This results in unchecked null
pointer warnings at -Wextra, so let's remove this test and make it clear
that it's up to the caller to check validity first.
stktable_data_ptr() currently performs null pointer checks but most
callers don't check the result since they know by construction that
it cannot be null. This causes valid warnings when building with
-Wextra which are worth addressing since it will result in better
code. Let's provide an unguarded version of this function for use
where the check is known to be useless and untested.
These two functions were apparently written on the same model as their
parents when added by commit 11bcb6c4f ("[MEDIUM] IPv6 support for syslog")
except that they perform an assignment instead of a return, and as a
result fall through the next case where the assigned value may possibly
be partially overwritten. At least under Linux the port offset is the
same in both sockaddr_in and sockaddr_in6 so the value is written twice
without side effects.
This needs to be backported as far as 1.5.
The transfer-encoding header processing was a bit lenient in this part
because it was made to read messages already validated by haproxy. We
absolutely need to reinstate the strict processing defined in RFC7230
as is currently being done in proto_http.c. That is, transfer-encoding
presence alone is enough to cancel content-length, and must be
terminated by the "chunked" token, except in the response where we
can fall back to the close mode if it's not last.
For this we now use a specific parsing function which updates the
flags and we introduce a new flag H1_MF_XFER_ENC indicating that the
transfer-encoding header is present.
Last, if such a header is found, we delete all content-length header
fields found in the message.
This flag is usefull to handle cases where there is no body, regardless of CL or
TE headers (for instance, responses to HEAD requests). It will not be set by the
parser itself.
The new function h1_parse_connection_header() is called when facing a
connection header in the generic parser, and it will set up to 3 bits
in h1m->flags indicating if at least one "close", "keep-alive" or "upgrade"
tokens was seen.
This will be needed for the mux to know how to process the Connection
header, and will save it from having to re-parse the request line since
it's captured on the fly.
Till now it was very difficult for a mux to know what proxy it was
working for. Let's pass the proxy when the mux is instanciated at
init() time. It's not yet used but the H1 mux will definitely need
it, just like the H2 mux when dealing with backend connections.
The h1 parser used to systematically turn header field names to lower
case because it was designed for H2. Let's add a flag which is off by
default to condition this behaviour so that when using it from an H1
parser it will not affect the message.
This state was only a delimiter between headers and body but it now
causes more harm than good because it requires someone to change it.
Since the H1 parser knows if we're in DATA or CHUNK_SIZE, simply let
it set the right next state so that h1m->state constantly matches
what is expected afterwards.
This will allow the parser to fill some extra fields like the method or
status without having to store them permanently in the HTTP message. At
this point however the parser cannot restart from an interrupted read.
This way we maintain the old mechanism stating that -2 means we block
on errors, -1 means we only capture them, and a positive value indicates
the position of the first error.
Currently the only user of struct h1m is the h2 mux when it has to parse
an H1 message coming from the channel. Unfortunately this is not enough
to efficiently parse HTTP/1 messages like those coming from the network
as we don't want to restart from scratch at every byte received.
This patch reintroduces the "next" offset into the H1 message so that any
H1 parser can use it to restart when called with a state that is not the
initial state.
This is the *parsing* state of an HTTP/1 message. Currently the h1_state
is composite as it's made both of parsing and control (100SENT, BODY,
DONE, TUNNEL, ENDING etc). The purpose here is to have a purely H1 state
that can be used by H1 parsers. For now it's equivalent to h1_state.
Remove the recv() method from mux and conn_stream.
The goal is to always receive from the upper layers, instead of waiting
for the connection later. For now, recv() is still called from the wake()
method, but that should change soon.
For struct connection, struct conn_stream, and for the h2 mux, add 2 new
lists, one that handles waiters for recv, and one that handles waiters for
recv and send. That way we can ask to subscribe for either recv or send.
In tasklet_free(), if we're currently in the runnable task list, don't
forget to decrement taks_list_size, or it'll end up being to big, and we may
not process tasks in the global runqueue.
This protocol is based on the uxst one, but it uses socketpair and FD
passing insteads of a connect()/accept().
The "sockpair@" prefix has been implemented for both bind and server
keywords.
When HAProxy wants to connect through a sockpair@, it creates 2 new
sockets using the socketpair() syscall and pass one of the socket
through the FD specified on the server line.
On the bind side, haproxy will receive the FD, and will use it like it
was the FD of an accept() syscall.
This protocol was designed for internal communication within HAProxy
between the master and the workers, but it's possible to use it
externaly with a wrapper and pass the FD through environment variabls.
It's possible to have several protocols per family which is a problem
with the current way the protocols are stored.
This allows to register a new protocol in HAProxy which is not a
protocol in the strict socket definition. It will be used to register a
SOCK_STREAM protocol using socketpair().
The following functions only deal with header field values and are agnostic
to the HTTP version so they were moved to http.c :
http_header_match2(), find_hdr_value_end(), find_cookie_value_end(),
extract_cookie_value(), parse_qvalue(), http_find_url_param_pos(),
http_find_next_url_param().
Those lacking the "http_" prefix were modified to have it.
These error codes and messages are agnostic to the version, even if
they are represented as HTTP/1.0 messages. Ultimately they will have
to be transformed into internal HTTP messages to be used everywhere.
The HTTP/1.1 100 Continue message was turned to an IST and the local
copy in the Lua code was removed.
This function is purely HTTP once http_txn is put aside. So the original
one was renamed to http_txn_get_path() and it extracts the relevant offsets
from the txn to pass them to http_get_path(). One benefit of the new version
is that it returns the length at the same time so that allowed to slightly
simplify http_get_path_from_string() which had to look up the end pointer
previously and which is not needed anymore.
It's a bit painful to have to deal with HTTP semantics for each protocol
version (H1 and H2), and working on the version-agnostic code further
emphasizes the problem.
This patch creates http.h and http.c which are agnostic to the version
in use, and which borrow a few parts from proto_http and from h1. For
example the once thought h1-specific h1_char_classes array is in fact
dictated by RFC7231 and is used to parse HTTP headers. A few changes
were made to a few files which were including proto_http.h while they
only needed http.h.
Certain string definitions pre-dated the introduction of indirect
strings (ist) so some were used to simplify the definition of the known
HTTP methods. The current lookup code saves 2 kB of a heavily used table
and is faster than the previous table based lookup (typ. 14 ns vs 16
before).
Instead of having a separate area for the captured data, we now have a
contigous block made of the descriptor and the data. At the moment, since
the area is dynamically allocated, we can adjust its size to what is
needed, but the idea is to quickly switch to a pool and an LRU list.
Now upon error we dynamically allocate the snapshot instead of overwriting
it. This way there is no more memory wasted in the proxy to hold the two
error snapshot descriptors. Also an appreciable side effect of this is that
the proxy's lock is only taken during the pointer swap, no more while copying
the buffer's contents. This saves 480 bytes of memory per proxy.
This function now captures an error regardless of its side and protocol.
The caller must pass a number of elements and may pass a protocol-specific
structure and a callback to display it. Later this function may deal with
more advanced allocation techniques to avoid allocating as many buffers
as proxies.
The HTTP dumps are now configurable in the code : "show errors" now
calls a protocol-specific function to emit the decoded output. For
now only HTTP is implemented.
The idea will be to make the error snapshot feature accessible to other
protocols than just HTTP. This patch only introduces an "http_snapshot"
structure and renames a few fields to make things more explicit. The
HTTP part was installed inside a union so that we can easily add more
protocols in the future.
The snapshots have the ability to restart a partial dump and they use
the stream ID as the restart point. Since it's purely HTTP, let's use
the event ID instead.
This function returns the proxy associated to a connection. For front
connections it returns the frontend, and for back connections it
returns the backend. This will be used to retrieve some configuration
parameters from within a mux.
Sometimes a connection is prepared before the target is set, sometimes
after. There's no real rule since the few functions involved operate on
different and independent fields. Soon we'll benefit from knowing the
target at the connection layer, in order to figure the associated proxy
and retrieve the various parameters (timeouts etc). This patch slightly
reorders a few calls to conn_prepare() so that we can make sure that the
target is always known to the mux.
The new function sess_log() only needs a session to emit a log. It will
ignore the parts that depend on the stream. It is usable to emit a log
to report early errors in muxes. These ones will typically mention
"<BADREQ>" for the request and 0 for the HTTP status code.
The current build_logline() can only be used with valid streams, which
means it is not suitable for use from muxes. We start by moving it into
another more generic function which takes the session as an argument,
to avoid complexifying all the internal API for jsut a few use cases.
This new function is not supposed to be called directly from outside so
we'll be able to instrument it to support several calling conventions.
For now the behaviour and conditions remain unchanged.
This function was split in two at commit f7d0447 ("MINOR: buffers:
split b_putblk() into __b_putblk()") but it's wrong, the first half's
length is not adjusted to the requested size so it copies more than
desired.
This is purely 1.9-specific, no backport is needed.
The handshake processing time used to be stored per stream, which was
valid when there was exactly one stream per session. With H2 and
multiplexing it's not the case anymore and the reported handshake times
are wrong in the logs as it's computed between the TCP accept() and the
stream creation. Let's first move the handshake where it belongs, which
is the session.
However, this is not enough because we don't want to report an excessive
idle time either for H2 (since many requests use the connection).
So the solution used here is to have the stream retrieve sess->tv_accept
and the handshake duration when the stream is created, and let the mux
immediately reset them. This way, the handshake time becomes zero for the
second and subsequent requests in H2 (which was already the case in H1),
and the idle time exactly counts how long the connection remained unused
while it could be used, so in H1 it runs from the end of the previous
response and in H2 it runs from the end of the previous request since the
channel is already available.
This patch will need to be backported to 1.8.
We've been missing it several times and now we'll need it to increment
a request counter. Let's do it once for all.
This patch will need to be backported to 1.8 with the associated fix.
Server state file has no indication that a server is currently managed
by a DNS SRV resolution.
And thus, both feature (DNS SRV resolution and server state), when used
together, does not provide the expected behavior: a smooth experience...
This patch introduce the "SRV record name" in the server state file and
loads and applies it if found and wherever required.
This patch applies to haproxy-dev branch only. For backport, a specific patch
is provided for 1.8.
This patch improves the previous fix by implementing the socket draining
code directly in conn_sock_drain() so that it always applies regardless
of the protocol's family. Thus it gets rid of tcp_drain().
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
During a test it happened that a connection was deleted before the
stream it's attached to, resulting in a crash related to the fix
18a85fe ("BUG/MEDIUM: streams: Don't forget to remove the si from
the wait list.") during the LIST_DEL(). Make sure to always delete
the list's head in this case so that other elements can safely
detach later.
This is purely 1.9, no backport is needed.
Set the flag for the current thread in active_threads_mask when waking a
tasklet, or we will never run it if no tasks are available.
This is 1.9-specific, no backport is needed.
When we choose to insert a fd in either the global or the local fd update list,
and the thread_mask against all_threads_mask before checking if it's tid_bit,
that way, if we run with nbthreads==1, we will always use the local list,
which is cheaper than the global one.
Instead of just using the conn_stream wait_list, give the stream_interface
its own. When the conn_stream will have its own buffers, the stream_interface
may have to wait on it.
Instead of using si_cs_send() as a task handler, define a new function,
si_cs_io_cb(), and give si_cs_send() its original prototype. Right now
si_cs_io_cb() just handles send, but later it'll handle recv() too.
Modify tasklet_wakeup() so that it handles a task as well, and inserts it
directly into the tasklet list, making it effectively a tasklet.
This should make future developments easier.
This adds the set-priority-class and set-priority-offset actions to
http-request and tcp-request content. At this point they are not used
yet, which is the purpose of the next commit, but all the logic to
set and clear the values is there.
We'll need trees to manage the queues by priorities. This change replaces
the list with a tree based on a single key. It's effectively a list but
allows us to get rid of the list management right now.
We store the queue index in the stream and check it on dequeueing to
figure how many entries were processed in between. This way we'll be
able to count the elements that may later be added before ours.
The current name is misleading as it implies a queue size, but the value
instead indicates a position in the queue.
The value is only the queue size at the exact moment the element is enqueued.
Soon we will gain the ability to insert anywhere into the queue, upon which
clarity of the name is more important.
Commit 7ce0c89 ("MEDIUM: mux: Use the mux protocol specified on
bind/server lines") assumed a bit too strongly that we could only have
servers on the connect side :-) It segfaults under this config :
defaults
contimeout 5s
clitimeout 5s
srvtimeout 5s
mode http
listen test1
bind :8001
dispatch 127.0.0.1:8002
frontend test2
mode http
bind :8002
redirect location /
No backport needed.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
Because there can be several default multiplexers (without name), they are now
reported with the name "<default>". And a message warns they cannot be
referenced with the "proto" keyword on a bind line or a server line.
The update lock was removed by the commit 91c2826e1 ("CLEANUP: server: remove
the update list and the update lock"). But the lock label was not which makes
the compilation fail in debug mode.
pour vos modifications. Les lignes # commençant par '#' seront ignorées, et un
message vide abandonne la validation. # # Sur la branche temp # Votre branche
est en avance sur 'origin/master' de 87 commits. # (utilisez "git push" pour
publier vos commits locaux) # # Modifications qui seront validées : # modifié :
include/common/hathreads.h #
Now we try to synchronously push updates as they come using the new rdv
point, so that the call to the server update function from the main poll
loop is not needed anymore.
It further reduces the apparent latency in the health checks as the response
time almost always appears as 0 ms, resulting in a slightly higher check rate
of ~1960 conn/s. Despite this, the CPU consumption has slightly dropped again
to ~32% for the same test.
The only trick is that the checks code is built with a bit of recursivity
because srv_update_status() calls server_recalc_eweight(), and the latter
needs to signal srv_update_status() in case of updates. Thus we added an
extra argument to this function to indicate whether or not it must
propagate updates (no if it comes from srv_update_status).
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
Now, a multiplexer can specify if it can be install on incoming connections
(ALPN_SIDE_FE), on outgoing connections (ALPN_SIDE_BE) or both
(ALPN_SIDE_BOTH). These flags are compatible with proxies' ones.
This function is generic and is able to automatically transfer data from a
buffer to the conn_stream's tx buffer. It does this automatically if the mux
doesn't define another snd_buf() function.
It cannot yet be used as-is with the conn_stream's txbuf without risking to
lose data on close since conn_streams need to be orphaned for this.
To be symmetrical with the recv() part, we no handle retryable and partial
transmission using a intermediary buffer in the conn_stream. For now it's only
set to BUF_NULL and never allocated nor used.
It cannot yet be used as-is without risking to lose data on close since
conn_streams need to be orphaned for this.
This is a partial revert of the commit deccd1116 ("MEDIUM: mux: make
mux->snd_buf() take the byte count in argument"). It is a requirement to do
zero-copy transfers. This will be mandatory when the TX buffer of the
conn_stream will be used.
So, now, data are consumed by mux->snd_buf() and not only sent. So it needs to
update the buffer state. On its side, the caller must be aware the buffer can be
replaced y an empty or unallocated one.
As a side effet of this change, the function co_set_data() is now only responsible
to update the channel set, by update ->output field.
When b_slow_realign is called with the <output> parameter equal to 0, the
buffer's head, after the realign, must be set to 0. It was errornously set to
the buffer's size, because there was no test on the value of <output>.
The current synchronization point enforces certain restrictions which
are hard to workaround in certain areas of the code. The fact that the
critical code can only be called from the sync point itself is a problem
for some callback-driven parts. The "show fd" command for example is
fragile regarding this.
Also it is expensive in terms of CPU usage because it wakes every other
thread just to be sure all of them join to the rendez-vous point. It's a
problem because the sleeping threads would not need to be woken up just
to know they're doing nothing.
Here we implement a different approach. We keep track of harmless threads,
which are defined as those either doing nothing, or doing harmless things.
The rendez-vous is used "for others" as a way for a thread to isolate itself.
A thread then requests to be alone using thread_isolate() when approaching
the dangerous area, and then waits until all other threads are either doing
the same or are doing something harmless (typically polling). The function
only returns once the thread is guaranteed to be alone, and the critical
section is terminated using thread_release().
When threads are disabled, some variables such as tid and tid_bit are
still checked everywhere, the MAX_THREADS_MASK macro is ~0UL while
MAX_THREADS is 1, and the all_threads_mask variable is replaced with a
macro forced to zero. The compiler cannot optimize away all this code
involving checks on tid and tid_bit, and we end up in special cases
where all_threads_mask has to be specifically tested for being zero or
not. It is not even certain the code paths are always equivalent when
testing without threads and with nbthread 1.
Let's change this to make sure we always present a single thread when
threads are disabled, and have the relevant values declared as constants
so that the compiler can optimize all the tests away. Now we have
MAX_THREADS_MASK set to 1, all_threads_mask set to 1, tid set to zero
and tid_bit set to 1. Doing just this has removed 4 kB of code in the
no-thread case.
A few checks for all_threads_mask==0 have been removed since it never
happens anymore.
An offsetof() macro was introduced with commit 928fbfa ("MINOR: compiler:
introduce offsetoff().") with a fallback for older compilers. But this
breaks gcc 3.4 because __size_t and __uintptr_t are not defined there.
However size_t and uintptr_t are, so let's fix it this way. No backport
needed.
The purpose is to make sure that all variables which directly depend
on this nbthread argument are set at the right moment. For now only
all_threads_mask needs to be set. It used to be set while calling
thread_sync_init() which is called too late for certain checks. The
same function handles threads and non-threads, which removes the need
for some thread-specific knowledge from cfgparse.c.
If nbthread is MAX_THREADS, the shift operation needed to compute
all_threads_mask fails in thread_sync_init(). Instead pass a number
of threads to this function and let it compute the mask without
overflowing.
This should be backported to 1.8.
Since BoringSSL 3b2ff028, API now correctly match OpenSSL 1.1.0.
The patch revert part of haproxy 019f9b10: "Fix BoringSSL call and
openssl-compat.h/#define occordingly.".
This will not break openssl/libressl compat.
Add a new pipe, one per thread, so that we can write on it to wake a thread
sleeping in a poller, and use it to wake threads supposed to take care of a
task, if they are all sleeping.
This lock was necessary to manipulate the pendconn element between
concurrent places, but was causing great difficulties in the list walk
by having to iterate over multiple entries instead of being able to
safely pick the first one (in fact the first element was always the
right one but the locking model was hard to prove).
Here since we know we can always rely on the queue's locks, we take
the queue's lock every time we need to modify the element. In practice
it was already the case everywhere except in pendconn_dequeue() which
only works on an element that was already detached. This function had
to be protected against the risk of meeting an incompletely detached
element (which could be unlinked but not yet assigned). By taking the
queue lock around the LIST_ISEMPTY test, it's enough to ensure that a
concurrent thread either didn't begin or had completed the operation.
The true benefit really is in pendconn_process_next_strm() where we
can again safely work with the first element of each queue. This will
significantly simplify next updates to this code.
The pendconn struct uses ->px and ->srv to designate where the element is
queued. There is something confusing regarding threads though, because we
have to lock the appropriate queue before inserting/removing elements, and
this queue may only be determined by looking at ->srv (if it's not NULL
it's the server, otherwise use the proxy). But pendconn_grab_from_px() and
pendconn_process_next_strm() both assign this ->srv field, making it
complicated to know what queue to lock before manipulating the element,
which is exactly why we have the pendconn_lock in the first place.
This commit introduces pendconn->target which is the target server that
the two aforementioned functions will set when assigning the server.
Thanks to this, the server pointer may always be relied on to determine
what queue to use.
Now pendconn_free() takes a stream, checks that pend_pos is set, clears
it, and uses pendconn_unlink() to complete the job. It's cleaner and
centralizes all the bookkeeping work in pendconn_unlink() only and
ensures that there's a single place where the stream's position in the
queue is manipulated.
For now the pendconns may be dequeued at two places :
- pendconn_unlink(), which operates on a locked queue
- pendconn_free(), which operates on an unlocked queue and frees
everything.
Some changes are coming to the queue and we'll need to be able to be a
bit stricter regarding the places where we dequeue to keep the accounting
accurate. This first step renames the locked function __pendconn_unlink()
as it's for use by those aware of it, and introduces a new general purpose
pendconn_unlink() function which automatically grabs the necessary locks
before calling the former, and pendconn_cond_unlink() which additionally
checks the pointer and the presence in the queue.
As __task_wakeup() is responsible for increasing
rqueue_local[tid]/global_rqueue_size, make __task_unlink_rq responsible for
decreasing it, as process_runnable_tasks() isn't the only one that removes
tasks from runqueues.
By removing the reason code for the wakeup we can gain 8 extra bits to
encode the task's state. The reason code was never used at all and is
wrong by design since subsequent calls will OR this value anyway. Let's
say it goodbye and leave the room for more precious bits. The woken bits
were moved to the higher byte so that the most important bits can stay
grouped together.
Whenever it's possible to avoid a copy, b_xfer() will simply swap the
buffer's heads without touching the data. This has brought the performance
back from 140 kH/s to 202 kH/s on the test case.
This function is generic and is able to automatically transfer data
from a conn_stream's rx buffer to the destination buffer. It does this
automatically if the mux doesn't define another rcv_buf() function.
In order to reorganize the connection layers, recv() operations will
need to be retryable and to support partial transfers. This requires
an intermediary buffer to hold the data coming from the mux. After a
few attempts, it turns out that this buffer is best placed inside the
conn_stream itself. For now it's only set to buf_empty and it will be
up to the caller to allocate it if required.
The latter function is more suited to operations that don't require any
check because the check has already been performed. It will be used by
other b_* functions.
This function is used a lot in block copies and is needlessly
complicated since it still uses pointer arithmetic. Let's fall
back to regular offsets and simplify it. This removed around
23 bytes from b_putblk() and it removed any conditional jump.
In thread_sync_barrier, we exit when all threads have set their own bit in the
barrier mask. It is done by comparing it to all_threads_mask. But we must not
use a simple equality to do so, becaue all_threads_mask may change. Since commit
ba86c6c25 ("MINOR: threads: Be sure to remove threads from all_threads_mask on
exit"), when a thread exit, its bit is removed from all_threads_mask. Instead,
we must use a bitwise AND to test is all bits of all_threads_mask are set.
This also requires that all_threads_mask is set to volatile if we want to
catch changes.
This patch must be backported in 1.8.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
This one is more generic and designed to work on a random block. It
may later get a b_rep_ist() variant since many strings are already
available as (ptr,len).
There was no point keeping that function in the buffer part since it's
exclusively used by HTTP at the channel level, since it also automatically
appends the CRLF. This further cleans up the buffer code.
The new file istbuf.h links the indirect strings (ist) with the buffers.
The purpose is to encourage addition of more standard buffer manipulation
functions that rely on this in order to improve the overall ease of use
along all the code. Just like ist.h and buf.h, this new file is not
expected to depend on anything beyond these two files.
A few functions were added and/or converted from buffer.h :
- b_isteq() : indicates if a buffer and a string match
- b_isteat() : consumes a string from the buffer if it matches
- b_istput() : appends a small string to a buffer (all or none)
- b_putist() : appends part of a large string to a buffer
The equivalent functions were removed from buffer.h and changed at the
various call places.
The two variants now do exactly the same (appending at the tail of the
buffer) so let's not keep the distinction between these classes of
functions and have generic ones for this. It's also worth noting that
b{i,o}_putchk() wasn't used at all and was removed.
There's no distinction between in and out data now. The latter covers
the needs of the former and supports wrapping. The extra cost is
negligible given the locations where it's used.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
Since we use "_data" for the amount of data at many places, as opposed to
"_space" for the amount of space, let's rename the "data" field to "area"
so that we can reuse "data" later for the amount of data in the buffer
(currently called "len" despite not being contigous).
b_set_data() is used :
- in proto_http and hlua to trim input data (b_set_data(co_data()))
- in SPOE to append data to a buffer while building a message
In no case will this truncate a buffer so we can safely remove the
test for len < b->output.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>