Using pipe pools makes pipe management a lot easier. It also allows to
remove quite a bunch of #ifdefs in areas which depended on the presence
or not of support for kernel splicing.
The buffer now holds a pointer to a pipe structure which is always NULL
except if there are still data in the pipe. When it needs to use that
pipe, it dynamically allocates it from the pipe pool. When the data is
consumed, the pipe is immediately released.
That way, there is no need anymore to care about pipe closure upon
session termination, nor about pipe creation when trying to use
splice().
Another immediate advantage of this method is that it considerably
reduces the number of pipes needed to use splice(). Tests have shown
that even with 0.2 pipe per connection, almost all sessions can use
splice(), because the same pipe may be used by several consecutive
calls to splice().
A new data type has been added : pipes. Some pre-allocated empty pipes
are maintained in a pool for users such as splice which use them a lot
for very short times.
Pipes are allocated using get_pipe() and released using put_pipe().
Pipes which are released with pending data are immediately killed.
The struct pipe is small (16 to 20 bytes) and may even be further
reduced by unifying ->data and ->next.
It would be nice to have a dedicated cleanup task which would watch
for the pipes usage and destroy a few of them from time to time.
When CONFIG_HAP_LINUX_SPLICE is defined, the buffer structure will be
slightly enlarged to support information needed for kernel splicing
on Linux.
A first attempt consisted in putting this information into the stream
interface, but in the long term, it appeared really awkward. This
version puts the information into the buffer. The platform-dependant
part is conditionally added and will only enlarge the buffers when
compiled in.
One new flag has also been added to the buffers: BF_KERN_SPLICING.
It indicates that the application considers it is appropriate to
use splicing to forward remaining data.
Three new options have been added when CONFIG_HAP_LINUX_SPLICE is
set :
- splice-request
- splice-response
- splice-auto
They are used to enable splicing per frontend/backend. They are also
supported in defaults sections. The "splice-auto" option is meant to
automatically turn splice on for buffers marked as fast streamers.
This should save quite a bunch of file descriptors.
It was required to add a new "options2" field to the proxy structure
because the original "options" is full.
When global.maxpipes is not set, it is automatically adjusted to
the max of the sums of all frontend's and backend's maxconns for
those which have at least one splice option enabled.
In the buffers, the read limit used to leave some place for header
rewriting was set by a pointer to the end of the buffer. Not only
this required subtracts at every place in the code, but this will
also soon not be usable anymore when we want to support keepalive.
Let's replace this with a length limit, comparable to the buffer's
length. This has also sightly reduced the code size.
The way the buffers and stream interfaces handled ->to_forward was
really not handy for multiple reasons. Now we've moved its control
to the receive-side of the buffer, which is also responsible for
keeping send_max up to date. This makes more sense as it now becomes
possible to send some pre-formatted data followed by forwarded data.
The following explanation has also been added to buffer.h to clarify
the situation. Right now, tests show that the I/O is behaving extremely
well. Some work will have to be done to adapt existing splice code
though.
/* Note about the buffer structure
The buffer contains two length indicators, one to_forward counter and one
send_max limit. First, it must be understood that the buffer is in fact
split in two parts :
- the visible data (->data, for ->l bytes)
- the invisible data, typically in kernel buffers forwarded directly from
the source stream sock to the destination stream sock (->splice_len
bytes). Those are used only during forward.
In order not to mix data streams, the producer may only feed the invisible
data with data to forward, and only when the visible buffer is empty. The
consumer may not always be able to feed the invisible buffer due to platform
limitations (lack of kernel support).
Conversely, the consumer must always take data from the invisible data first
before ever considering visible data. There is no limit to the size of data
to consume from the invisible buffer, as platform-specific implementations
will rarely leave enough control on this. So any byte fed into the invisible
buffer is expected to reach the destination file descriptor, by any means.
However, it's the consumer's responsibility to ensure that the invisible
data has been entirely consumed before consuming visible data. This must be
reflected by ->splice_len. This is very important as this and only this can
ensure strict ordering of data between buffers.
The producer is responsible for decreasing ->to_forward and increasing
->send_max. The ->to_forward parameter indicates how many bytes may be fed
into either data buffer without waking the parent up. The ->send_max
parameter says how many bytes may be read from the visible buffer. Thus it
may never exceed ->l. This parameter is updated by any buffer_write() as
well as any data forwarded through the visible buffer.
The consumer is responsible for decreasing ->send_max when it sends data
from the visible buffer, and ->splice_len when it sends data from the
invisible buffer.
A real-world example consists in part in an HTTP response waiting in a
buffer to be forwarded. We know the header length (300) and the amount of
data to forward (content-length=9000). The buffer already contains 1000
bytes of data after the 300 bytes of headers. Thus the caller will set
->send_max to 300 indicating that it explicitly wants to send those data,
and set ->to_forward to 9000 (content-length). This value must be normalised
immediately after updating ->to_forward : since there are already 1300 bytes
in the buffer, 300 of which are already counted in ->send_max, and that size
is smaller than ->to_forward, we must update ->send_max to 1300 to flush the
whole buffer, and reduce ->to_forward to 8000. After that, the producer may
try to feed the additional data through the invisible buffer using a
platform-specific method such as splice().
*/
In preparation of splice support, let's add the splice_len member
to the buffer struct. An earlier implementation made it conditional,
which made the whole logics very complex due to a large number of
ifdefs.
Now BF_EMPTY is only set once both buf->l and buf->splice_len are
null. Splice_len is initialized to zero during buffer creation and
is currently not changed, so the whole logics remains unaffected.
When splice gets merged, splice_len will reflect the number of bytes
in flight out of the buffer but not yet sent, typically in a pipe for
the Linux case.
If an analyser sets buf->to_forward to a given value, that many
data will be forwarded between the two stream interfaces attached
to a buffer without waking the task up. The same applies once all
analysers have been released. This saves a large amount of calls
to process_session() and a number of task_dequeue/queue.
By letting the producer tell the consumer there is data to check,
and the consumer tell the producer there is some space left again,
we can cut in half the number of session wakeups.
This is also an important starting point for future splicing support.
Sometimes we don't care about a read timeout, for instance, from the
client when waiting for the server, but we still want the client to
be able to read.
Till now it was done by articially forcing the read timeout to ETERNITY.
But this will cause trouble when we want the low level stream sock to
communicate without waking the session up. So we add a BF_READ_NOEXP
flag to indicate that when the read timeout is to be set, it might
have to be set to ETERNITY.
Since BF_READ_ENA was not used, we replaced this flag.
We don't want to report a buffer timeout if there was I/O activity
for the same events. That way we'll not have to always re-arm timeouts
on I/O, without the fear of a timeout triggering too fast.
For keep-alive, line-mode protocols and splicing, we will need to
limit the sender to process a certain amount of bytes. The limit
is automatically set to the buffer size when analysers are detached
from the buffer.
Kai Krueger found that previous patch was incomplete, because there is
an unconditionnal call to process_srv_queue() in session_free() which
still causes a dead server to consume pending connections from the
backend.
This call was made unconditionnal so that we don't leave unserved
connections in the server queue, for instance connections coming
in with "option persist" which can bypass the server status check.
However, the server must not touch the backend's queue if it is down.
Another fear was that some connections might remain unserved when
the server is using a dynamic maxconn if the number of connections
to the backend is too low. Right now, srv_dynamic_maxconn() ensures
this cannot happen, so the call can remain conditionnal.
The fix consists in allowing a server to process it own queue whatever
its state, but not to touch the backend's queue if it is down. Its
queue should normally be empty when the server is down because it is
redistributed when the server goes down. The only remaining cases are
precisely the persistent connections with "option persist" set, coming
in after the queue has been redispatched. Those ones must still be
processed when a connection terminates.
(cherry picked from commit cd485c4480)
Kai Krueger reported a problem when a server goes down with active
connections. A lot of connections were drained by that server. Kai
did an amazing job at tracking this bug down to the dequeuing
mechanism which forgets to check the server state before allowing
a request to be sent to a server.
The problem occurs more often with long requests, which have a chance
to complete after the server is completely marked down, and to find
requests in the global queue which have not yet been fetched by other
servers.
The fix consists in ensuring that a server is up before sending it
any new request from the queue.
(cherry picked from commit 80b286a064)
(cherry picked from commit 2e5e0d2853f059a1d09dc81fdbbad9fd03124a98)
It is now possible to set or clear a cookie during a redirection. This
is useful for logout pages, or for protecting against some DoSes. Check
the documentation for the options supported by the "redirect" keyword.
(cherry-picked from commit 4af993822e880d8c932f4ad6920db4c9242b0981)
If "drop-query" is present on a "redirect" line using the "prefix" mode,
then the returned Location header will be the request URI without the
query-string. This may be used on some login/logout pages, or when it
must be decided to redirect the user to a non-secure server.
(cherry-picked from commit f2d361ccd73aa16538ce767c766362dd8f0a88fd)
There is a problem when an instance is marked "disabled". Its ports are
still bound but will not be unbound upon termination. This causes processes
to accumulate during soft restarts, and might even cause failures to restart
new ones due to the inability to bind to the same port.
The ideal solution would be to bind all ports at the end of the configuration
parsing. An acceptable workaround is to unbind all listeners of disabled
proxies. This is what the current patch does.
(cherry picked from commit a944218e9c)
(cherry picked from commit 8cfebbb82b87345bade831920177077e7d25840a)
It is now possible to list all known sessions by issuing "show sess"
on the unix stats socket. The format is not much evolved but it is
very useful for debugging.
The doc has been updated to reflect the new keyword.
This is the first step in implementing a session dump tool.
A session dump will need restart points. It will be necessary for
it to get references to sessions which can be moved when the session
dies.
The principle is not that complex : when a session ends, it looks for
any potential back-references. If it finds any, then it moves them to
the next session in the list. The dump function will of course have
to restart from that new point.
This type will be used to maintain back-references to items which
are subject to move between accesses. Typical usage includes session
removal during a listing.
Both should process the response buffer equally. They now both
clear the hijack bit once done, and both receive a pointer to
the response buffer in their arguments.
Instead of calling a hard-coded function to produce data, let's
reference this function into the buffer and call it from there
when BF_HIJACK is set. This goes in the direction of more generic
session management code.
The listener referenced in the fd was only used to check the
listener state upon session termination. There was no guarantee
that the FD had not been reassigned by the moment it was processed,
so this was a bit racy. Having it in the session is more robust.
The unix protocol handler had not been updated during the last
stream_sock changes. This has been done now. There is still a
lot of duplicated code between session.c and proto_uxst.c due
to the way the session is handled. Session.c relies on the existence
of a frontend while it does not exist here.
It is easier to see the difference between the stats part (placed
in dumpstats.c) and the unix-stream part (in proto_uxst.c).
The hijacking function still needs to be dynamically set into the
response buffer, and some cleanup is still required, then all those
changes should be forward-ported to the HTTP part. Adding support
for new keywords should not cause trouble now.
It will be very convenient to have an analyser state in the session.
It will always be initialized to zero. The analysers can make use of
it, but must reset it to zero when they leave.
In order to achieve more generic accept() code, we can set the request
analysers at the listener registration time. It's better than doing it
during accept(), and allows more code reuse.
The TCP analyser has moved to proto_tcp.c. Breaking the function
has required finer use of the return value and adding some tests
to process_session().
It was a bit awkward to have session.c call return_srv_error() for
HTTP error messages related to servers. The function has been adapted
to be passed a pointer to the faulty stream interface, and is now a
pointer in the session. It is possible that in the future, it will
become a callback in the stream interface itself.
The new function looks like the previous one except that it operates
at the stream interface level and assumes an already closed SI.
Also remove some old unused occurrences of srv_close_with_err().
In order to avoid having to call per-protocol logging function directly
from session.c, it's better to assign the logging function when the session
is created. This also eliminates a test when the function is needed, and
opens the way to more complete logging functions.
proto_http.c was not suitable for session-related processing, it was
just convenient for the tranformation.
Some more splitting must occur: process_request/response in proto_http.c
must be split again per protocol, and the caller must run a list.
Some functions should be directly attached to the session or the buffer
(eg: perform_http_redirect, return_srv_error, http_sess_log).
All the processing has now completely been split in layers. As of
now, everything is still in process_session() which is not the right
place, but the code sequence works. Timeouts, retries, errors, all
work.
The shutdown sequence has been strictly applied: BF_SHUTR/BF_SHUTW
are only assigned by lower layers. Upper layers can only indicate
their wish to close using BF_SHUTR_NOW and BF_SHUTW_NOW.
When a shutdown is performed on a stream interface, the buffer flags
are updated accordingly and re-checked by upper layers. A lot of care
has been taken to ensure that aborts during intermediate connection
setups are correctly handled and shutdowns correctly propagated to
both buffers.
A future evolution would consist in ensuring that BF_SHUT?_NOW may
be set at any time, and applies only when the buffer is empty. This
might help with error messages, but might complicate the processing
of data remaining in buffers.
Some useless buffer flag combinations have been removed.
Stat counters are still broken (eg: per-server total number of sessions).
Error messages should be delayed to the close instant and be produced by
protocol.
Many functions must now move to proper locations.
Now the global variable 'sessions' will be a dual-linked list of all
known sessions. The list element is set at the beginning of the session
so that it's easier to follow them all with gdb.
Two new functions are used instead : buffer_check_{shutr,shutw}.
It is indeed more adequate to check for new closures only when the
buffer reports them.
Several remaining unclosed connections were detected after a test,
even before this patch, so a bug remains. To reproduce, try the
following during 30 seconds :
inject30l4 -n 20000 -l -t 1000 -P 10 -o 4 -u 100 -s 100 -G 127.0.0.1:8000/
There were rare situations where it was not easy to detect that a failed
session attempt had occurred and needed some server cleanup. In particular,
client aborts sometimes lead to session leaks on the server side.
A new state "SI_ST_DIS" (disconnected) has been introduced for this. When
a session has been closed at a stream interface but the server cleanup has
not occurred, this state is entered instead of CLO. The cleanup is then
performed there and the state goes to CLO.
A new diagram has been added to show possible stream_interface state
transitions that can occur in a stream-sock. It makes debugging easier.
It is quite hard to track when the current session has already been counted
or discounted from the server's total number of established sessions. For
this reason, we introduce a new session flag, SN_CURR_SESS, which indicates
if the current session is one of those reported by the server or not. It
simplifies session accounting and makes it far more robust. It also makes
it possible to perform a last-minute cleanup during session_free().
Right now, with this fix and a few more buffer transitions fixes, no session
were found to remain after a test.
Tracking connection status changes was hard, and some code was
redundant. A new SI_ST_CER state was added to the stream interface
to indicate a past connection error, and an SI_FL_ERR flag was
added to report past I/O error. The stream_sock code does not set
the connection to SI_ST_CLO anymore in case of I/O error, it's
the upper layer which does it. This makes it possible to know
exactly when the file descriptors are allocated.
The new SI_ST_CER state permitted to split tcp_connection_status()
in two parts, one processing SI_ST_CON and the other one SI_ST_CER.
Synchronous connection errors now make use of this last state, hence
eliminating duplicate code.
Some ib<->ob copy paste errors were found and fixed, and all entities
setting SI_ST_CLO also shut the buffers down.
Some of these stream_interface specific functions and structures
have migrated to a new stream_interface.c file.
Some types of errors are still not detected by the buffers. For
instance, let's assume the following scenario in one single pass
of process_session: a connection sits in SI_ST_TAR state during
a retry. At TAR expiration, a new connection attempt is made, the
connection is obtained and srv->cur_sess is increased. Then the
buffer timeout is fires and everything is cleared, the new state
becomes SI_ST_CLO. The cleaning code checks that previous state
was either SI_ST_CON or SI_ST_EST to release the connection. But
that's wrong because last state is still SI_ST_TAR. So the
server's connection count does not get decreased.
This means that prev_state must not be used, and must be replaced
by some transition detection instead of level detection.
The following debugging line was useful to track state changes :
fprintf(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s-> rep->flags);
The connection setup code has been refactored in order to
make it run only on low level (stream interface). Several
complicated functions have been removed from backend.c,
and we now have sess_update_stream_int() to manage
an assigned connection, sess_prepare_conn_req() to assign a
server to a connection request, perform_http_redirect() to
redirect instead of connecting to server, and return_srv_error()
to return connection error status messages.
The stream_interface status changes are checked before adjusting
buffer flags, so that the buffers can be informed about this lower
level update.
A new connection is initiated by changing si->state from SI_ST_INI
to SI_ST_REQ.
The code seems to work but is awfully dirty. Some functions need
to be moved, and the layering is not yet quite clear.
A lot of dead old code has simply been removed.