This essentially reverts commit 2b4370078 ("MINOR: lb/api: let callers
of take_conn/drop_conn tell if they have the lock") that was merged
during 2.4 before the various locks could be eliminated at the lower
layers. Passing that information complicates the cleanup of the queuing
code and it's become useless.
The leastconn and roundrobin functions mention that the server's lock
must be held while this is not true at all and it is not used either.
The "first" algo doesn't mention anything about the need for locking,
so let's mention that it uses the lbprm lock.
The operations are only an insert and a delete into the LB tree, which
doesn't require the server's lock at all as the lbprm lock is already
held. Let's drop it.
The two algos defining these functions (first and leastconn) do not need the
server's lock. However it's already present in pendconn_process_next_strm()
so the API must be updated so that the functions may take it if needed and
that the callers indicate whether they already own it.
As such, the call places (backend.c and stream.c) now do not take it
anymore, queue.c was unchanged since it's already held, and both "first"
and "leastconn" were updated to take it if not already held.
A quick test on the "first" algo showed a jump from 432 to 565k rps by
just dropping the lock in stream.c!
The "first" algorithm creates a lot of contention because all threads
focus on the same server by definition (the first available one). By
turning the exclusive lock to a read lock in fas_get_next_server(),
the request rate increases by 16% for 8 threads when many servers are
getting close to their maxconn.
It was previously a spinlock, and it happens that a number of LB algos
only lock it for lookups, without performing any modification. Let's
first turn it to an rwlock and w-lock it everywhere. This is strictly
identical.
It was carefully checked that every HA_SPIN_LOCK() was turned to
HA_RWLOCK_WRLOCK() and that HA_SPIN_UNLOCK() was turned to
HA_RWLOCK_WRUNLOCK() on this lock. _INIT and _DESTROY were updated too.
This patch fixes all the leftovers from the include cleanup campaign. There
were not that many (~400 entries in ~150 files) but it was definitely worth
doing it as it revealed a few duplicates.
extern struct dict server_name_dict was moved from the type file to the
main file. A handful of inlined functions were moved at the bottom of
the file. Call places were updated to use server-t.h when relevant, or
to simply drop the entry when not needed.
The files remained mostly unchanged since they were OK. However, half of
the users didn't need to include them, and about as many actually needed
to have it and used to find functions like srv_currently_usable() through
a long chain that broke when moving the file.
global.h was one of the messiest files, it has accumulated tons of
implicit dependencies and declares many globals that make almost all
other file include it. It managed to silence a dependency loop between
server.h and proxy.h by being well placed to pre-define the required
structs, forcing struct proxy and struct server to be forward-declared
in a significant number of files.
It was split in to, one which is the global struct definition and the
few macros and flags, and the rest containing the functions prototypes.
The UNIX_MAX_PATH definition was moved to compat.h.
This one used to be stored into debug.h but the debug tools got larger
and require a lot of other includes, which can't use BUG_ON() anymore
because of this. It does not make sense and instead this macro should
be placed into the lower includes and given its omnipresence, the best
solution is to create a new bug.h with the few surrounding macros needed
to trigger bugs and place assertions anywhere.
Another benefit is that it won't be required to add include <debug.h>
anymore to use BUG_ON, it will automatically be covered by api.h. No
less than 32 occurrences were dropped.
The FSM_PRINTF macro was dropped since not used at all anymore (probably
since 1.6 or so).
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
This is where other imported components are located. All files which
used to directly include ebtree were touched to update their include
path so that "import/" is now prefixed before the ebtree-related files.
The ebtree.h file was slightly adjusted to read compiler.h from the
common/ subdirectory (this is the only change).
A build issue was encountered when eb32sctree.h is loaded before
eb32tree.h because only the former checks for the latter before
defining type u32. This was addressed by adding the reverse ifdef
in eb32tree.h.
No further cleanup was done yet in order to keep changes minimal.
In the function fas_srv_reposition(), the server's lb_tree is tested from
outside the lock. So it is possible to remove it after the test and then call
eb32_insert() in fas_queue_srv() with a NULL root pointer, which is
invalid. Moving the test in the scope of the lock fixes the bug.
This issue was reported on Github, issue #126.
This patch must be backported to 2.0, 1.9 and 1.8.
Since commit 3ff577e ("MAJOR: server: make server state changes
synchronous again"), srv_update_status() calls the various maintenance
operations of the LB algorithms (->set_server_up, ->set_server_down,
->update_server_weight()). These ones are called with a single thread
guaranteed by the rendez-vous point, so the fact that they're lacking
some locks has no effect. However we'll need to remove the rendez-vous
point so we have to take care of properly locking all the LB algos.
The comments have been properly updated on the various functions to
mention their locking expectations. All these functions are called
with the server lock held, and all of them now support concurrent
calls by using the lbprm's lock.
This fix doesn't need to be backported at the moment, though if any
check-specific issue surfaced in 1.8, it could make sense to reuse it.
A lock for LB parameters has been added inside the proxy structure and atomic
operations have been used to update server variables releated to lb.
The only significant change is about lb_map. Because the servers status are
updated in the sync-point, we can call recalc_server_map function synchronously
in map_set_server_status_up/down function.
The server state and weight was reworked to handle
"pending" values updated by checks/CLI/LUA/agent.
These values are commited to be propagated to the
LB stack.
In further dev related to multi-thread, the commit
will be handled into a sync point.
Pending values are named using the prefix 'next_'
Current values used by the LB stack are named 'cur_'
Till now, the server's state and flags were all saved as a single bit
field. It causes some difficulties because we'd like to have an enum
for the state and separate flags.
This commit starts by splitting them in two distinct fields. The first
one is srv->state (with its counter-part srv->prev_state) which are now
enums, but which still contain bits (SRV_STF_*).
The flags now lie in their own field (srv->flags).
The function srv_is_usable() was updated to use the enum as input, since
it already used to deal only with the state.
Note that currently, the maintenance mode is still in the state for
simplicity, but it must move as well.
We used to call srv_is_usable() with either the current state and weights
or the previous ones. This causes trouble for future changes, so let's first
split it in two variants :
- srv_is_usable(srv) considers the current status
- srv_was_usable(srv) considers the previous status
Detecting that a server's status has changed is a bit messy, as well
as it is to commit the status changes. We'll have to add new conditions
soon and we'd better avoid to multiply the number of touched locations
with the high risk of forgetting them.
This commit introduces :
- srv_lb_status_changed() to report if the status changed from the
previously committed one ;
- svr_lb_commit_status() to commit the current status
The function is now used by all load-balancing algorithms.
A crash was reported by Igor at owind when changing a server's weight
on the CLI. Lukas Tribus could reproduce a related bug where setting
a server's weight would result in the new weight being multiplied by
the initial one. The two bugs are the same.
The incorrect weight calculation results in the total farm weight being
larger than what was initially allocated, causing the map index to be out
of bounds on some hashes. It's easy to reproduce using "balance url_param"
with a variable param, or with "balance static-rr".
It appears that the calculation is made at many places and is not always
right and not always wrong the same way. Thus, this patch introduces a
new function "server_recalc_eweight()" which is dedicated to this task
of computing ->eweight from many other elements including uweight and
current time (for slowstart), and all users now switch to use this
function.
The patch is a bit large but the code was not trivially fixable in a way
that could guarantee this situation would not occur anymore. The fix is
much more readable and has been verified to work with all algorithms,
with both consistent and map-based hashes, and even with static-rr.
Slowstart was tested as well, just like enable/disable server.
The same bug is very likely present in 1.4 as well, so the patch will
probably need to be backported eventhough it will not apply as-is.
Thanks to Lukas and Igor for the information they provided to reproduce it.
The principle behind this load balancing algorithm was first imagined
and modeled by Steen Larsen then iteratively refined through several
work sessions until it would totally address its original goal.
The purpose of this algorithm is to always use the smallest number of
servers so that extra servers can be powered off during non-intensive
hours. Additional tools may be used to do that work, possibly by
locally monitoring the servers' activity.
The first server with available connection slots receives the connection.
The servers are choosen from the lowest numeric identifier to the highest
(see server parameter "id"), which defaults to the server's position in
the farm. Once a server reaches its maxconn value, the next server is used.
It does not make sense to use this algorithm without setting maxconn. Note
that it can however make sense to use minconn so that servers are not used
at full load before starting new servers, and so that introduction of new
servers requires a progressively increasing load (the number of servers
would more or less follow the square root of the load until maxconn is
reached). This algorithm ignores the server weight, and is more beneficial
to long sessions such as RDP or IMAP than HTTP, though it can be useful
there too.