the functions (req|res)_get_headers() return only the last entry
for each header with the same name. This patch fix this behavior.
Each header name contain an array of values.
The stick counters in the session will be used for everything not related
to contents, hence the connections / concurrent sessions / etc. They will
be usable by "tcp-request connection" rules even without a stream. For now
they're just allocated and initialized.
Doing so ensures we don't need to use the stream anymore to prepare the
log information to report a failed handshake on an embryonic session.
Thus, prepare_mini_sess_log_prefix() now takes a session in argument.
Many such function need a session, and till now they used to dereference
the stream. Once we remove the stream from the embryonic session, this
will not be possible anymore.
So as of now, sample fetch functions will be called with this :
- sess = NULL, strm = NULL : never
- sess = valid, strm = NULL : tcp-req connection
- sess = valid, strm = valid, strm->txn = NULL : tcp-req content
- sess = valid, strm = valid, strm->txn = valid : http-req / http-res
The registerable http_req_rules / http_res_rules used to require a
struct http_txn at the end. It's redundant with struct stream and
propagates very deep into some parts (ie: it was the reason for lua
requiring l7). Let's remove it now.
All of them can now retrieve the HTTP transaction *if it exists* from
the stream and be sure to get NULL there when called with an embryonic
session.
The patch is a bit large because many locations were touched (all fetch
functions had to have their prototype adjusted). The opportunity was
taken to also uniformize the call names (the stream is now always "strm"
instead of "l4") and to fix indent where it was broken. This way when
we later introduce the session here there will be less confusion.
Now this one is dynamically allocated. It means that 280 bytes of memory
are saved per TCP stream, but more importantly that it will become
possible to remove the l7 pointer from fetches and converters since
it will be deduced from the stream and will support being null.
A lot of care was taken because it's easy to forget a test somewhere,
and the previous code used to always trust s->txn for being valid, but
all places seem to have been visited.
All HTTP fetch functions check the txn first so we shouldn't have any
issue there even when called from TCP. When branching from a TCP frontend
to an HTTP backend, the txn is properly allocated at the same time as the
hdr_idx.
The header captures are now general purpose captures since tcp rules
can use them to capture various contents. That removes a dependency
on http_txn that appeared in some sample fetch functions and in the
order by which captures and http_txn were allocated.
Interestingly the reset of the header captures were done at too many
places as http_init_txn() used to do it while it was done previously
in every call place.
When s->si[0].end was dereferenced as a connection or anything in
order to retrieve information about the originating session, we'll
now use sess->origin instead so that when we have to chain multiple
streams in HTTP/2, we'll keep accessing the same origin.
Just like for the listener, the frontend is session-wide so let's move
it to the session. There are a lot of places which were changed but the
changes are minimal in fact.
There is now a pointer to the session in the stream, which is NULL
for now. The session pool is created as well. Some parts will move
from the stream to the session now.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
These ones were found in the actions to set the query/path/method/uri.
Where it's used, "s" makes one think about session or something like
this, especially when mixed with http_txn.
hlua_run_sample_fetch() uses "struct hlua_smp *s" which starts to become
confusing when "s->s" is used, then hlua_txn_close() uses this for struct
hlua_txn with the same "s->s" everywhere. Let's uniformize everything with
htxn and hsmp as in other places.
Struct hlua_txn is called "htxn" or "ht" everywhere, while here it's
called "hs" which is the name used everywhere for struct "hlua_smp".
Such confusion participate to the dangers of copy-pasting code, so
let's fix the name here.
Last bug was an example of a side effect of abuse of copy-paste, but
there are other places at risk, so better fix all occurrences of sizeof
to really reference the object size in order to limit the risks in the
future.
In hlua_converters_new(), we used to allocate the size of an hlua_txn
instead of hlua_smp, resulting in random crashes with one integer being
randomly overwritten at the end, even when no converter is being used.
Lua supports a memory allocator. This is very important as it's the
only way we can control the amount of memory allocatable by Lua scripts.
That avoids prevents bogus scripts from eating all of the system's memory.
The value can be enforced using tune.lua.maxmem in the global section.
Thispatch adds global log function. Each log message is writed on
the stderr and is sent to the default syslog server. These two
actions are done according the configuration.
This class is accessible via the TXN object. It is created only if
the attached proxy have HTTP mode. It contain all the HTTP
manipulation functions:
- req_get_headers
- req_del_header
- req_rep_header
- req_rep_value
- req_add_header
- req_set_header
- req_set_method
- req_set_path
- req_set_query
- req_set_uri
- res_get_headers
- res_del_header
- res_rep_header
- res_rep_value
- res_add_header
- res_set_header
If the Lua code causes an infinite loop without yield possible, the
clock is not updated. This patch check the clock when the Lua control
code cannot yield.
When we explicitly write si[0] or si[1], we know whether we're working
with s->req or s->res, so better use that instead of si_ic/si_oc(), to
make the code simpler and more readable.
Some fetches uses a proxy name as first parameter. This is used to identify
frontend, backend or table. This first argument is declared as mandatory,
but the documentation says that is optional.
The behavior of the function smp_resolve_args() is to use the current proxy
if it match the required argument.
This patch implements the same behavior in the Lua argument checker for
sample-fetches and sample-converters.
The first argument in the stack is 1 and not 0. So the analyzer
starts at bad argument number, and the error message contains
also bad argument number.
It was inappropriate to put this flag on every failed write into an
input buffer because it depends where it happens. When it's in the
context of an analyser (eg: hlua) it makes sense. When it's in the
context of an applet (eg: dumpstats), it does not make sense, and
it only happens to work because currently applets are scheduled by
the sessions. The proper solution for applets would be to add the
flag SI_FL_WAIT_ROOM on the stream interface.
Thus, we now don't set any flag anymore in bi_put* and it's up to the
caller to either set CF_WAKE_WRITE on the channel or SI_FL_WAIT_ROOM
on the stream interface. Changes were applied to hlua, peers and
dumpstats.
This struct used to carry only a sample fetch function. Thanks to
lua_pushuserdata(), we don't need to have the Lua engine allocate
that struct for us and we can simply push our pointer onto the stack.
This makes the code more readable by removing several occurrences of
"f->f->". Just like the previous patch, it comes with the nice effect
of saving about 1.3% of performance when fetching samples from Lua.
Since last cleanups, this one was only used to carry a struct channel.
Removing it makes the code a bit cleaner (no more chn->chn) and easier
to follow (no more abstraction for a common type). Interestingly it
happens to also make the Lua code slightly faster (about 1.5%) when
using channels, probably thanks to less pointer dereferences and maybe
the use of lua_pushlightuserdata().
Now that we can get the session from the channel, let's simplify the
prototype of session_alloc_recv_buffer() to only require the channel.
Both the caller and the function are now simplified.