At the moment sepoll is not 100% event-driven, because a call to fd_set()
on an event which is already being polled will not change its state.
This causes issues with OpenSSL because if some I/O processing is interrupted
after clearing the I/O event (eg: read all data from a socket, can't put it
all into the buffer), then there is no way to call the SSL_read() again once
the buffer releases some space.
The only real solution is to go 100% event-driven. The principle is to use
the spec list as an event cache and that each time an I/O event is reported
by epoll_wait(), this event is automatically scheduled for addition to the
spec list for future calls until the consumer explicitly asks for polling
or stopping.
Doing this is a bit tricky because sepoll used to provide a substantial
number of optimizations such as event merging. These optimizations have
been maintained : a dedicated update list is affected when events change,
but not the event list, so that updates may cancel themselves without any
side effect such as displacing events. A specific case was considered for
handling newly created FDs as soon as they are detected from within the
poll loop. This ensures that their read or write operation will always be
attempted as soon as possible, thus reducing the number of poll loops and
process_session wakeups. This is especially true for newly accepted fds
which immediately perform their first recv() call.
Two new flags were added to the fdtab[] struct to tag the fact that a file
descriptor already exists in the update list. One flag indicates that a
file descriptor is new and has just been created (fdtab[].new) and the other
one indicates that a file descriptor is already referenced by the update list
(fdtab[].updated). Even if the FD state changes during operations or if the
fd is closed and replaced, it's not an issue because the update flag remains
and is easily spotted during list walks. The flag must absolutely reflect the
presence of the fd in the update list in order to avoid overflowing the update
list with more events than there are distinct fds.
Note that this change also recovers the small performance loss introduced
by its connection counter-part and goes even beyond.
The old EV_FD_SET() macro was confusing, as it would enable receipt but there
was no way to indicate that EAGAIN was received, hence the recently added
FD_WAIT_* flags. They're not enough as we're still facing a conflict between
EV_FD_* and FD_WAIT_*. So let's offer I/O functions what they need to explicitly
request polling.
These functions have a more explicity meaning and will offer provisions
for explicit polling.
EV_FD_ISSET() has been left for now as it is still in use in checks.
These primitives were initially introduced so that callers were able to
conditionally set/disable polling on a file descriptor and check in return
what the state was. It's been long since we last had an "if" on this, and
all pollers' functions were the same for cond_* and their systematic
counter parts, except that this required a check and a specific return
value that are not always necessary.
So let's simplify the FD API by removing this now unused distinction and
by making all specific functions return void.
New functions implemented:
- deinit_pollers: called at the end of deinit())
- prune_acl: called via list_for_each_entry_safe
Add missing pool_destroy2 calls:
- p->hdr_idx_pool
- pool2_tree64
Implement all task stopping:
- health-check: needs new "struct task" in the struct server
- queue processing: queue_mgt
- appsess_refresh: appsession_refresh
before (idle system):
==6079== LEAK SUMMARY:
==6079== definitely lost: 1,112 bytes in 75 blocks.
==6079== indirectly lost: 53,356 bytes in 2,090 blocks.
==6079== possibly lost: 52 bytes in 1 blocks.
==6079== still reachable: 150,996 bytes in 504 blocks.
==6079== suppressed: 0 bytes in 0 blocks.
after (idle system):
==6945== LEAK SUMMARY:
==6945== definitely lost: 7,644 bytes in 137 blocks.
==6945== indirectly lost: 9,913 bytes in 587 blocks.
==6945== possibly lost: 0 bytes in 0 blocks.
==6945== still reachable: 0 bytes in 0 blocks.
==6945== suppressed: 0 bytes in 0 blocks.
before (running system for ~2m):
==9343== LEAK SUMMARY:
==9343== definitely lost: 1,112 bytes in 75 blocks.
==9343== indirectly lost: 54,199 bytes in 2,122 blocks.
==9343== possibly lost: 52 bytes in 1 blocks.
==9343== still reachable: 151,128 bytes in 509 blocks.
==9343== suppressed: 0 bytes in 0 blocks.
after (running system for ~2m):
==11616== LEAK SUMMARY:
==11616== definitely lost: 7,644 bytes in 137 blocks.
==11616== indirectly lost: 9,981 bytes in 591 blocks.
==11616== possibly lost: 0 bytes in 0 blocks.
==11616== still reachable: 4 bytes in 1 blocks.
==11616== suppressed: 0 bytes in 0 blocks.
Still not perfect but significant improvement.
Due to the way Linux delivers EPOLLIN and EPOLLHUP, a closed connection
received after some server data sometimes results in truncated responses
if the client disconnects before server starts to respond. The reason
is that the EPOLLHUP flag is processed as an indication of end of
transfer while some data may remain in the system's socket buffers.
This problem could only be triggered with sepoll, although nothing should
prevent it from happening with normal epoll. In fact, the work factoring
performed by sepoll increases the risk that this bug appears.
The fix consists in making FD_POLL_HUP and FD_POLL_ERR sticky and that
they are only checked if FD_POLL_IN is not set, meaning that we have
read all pending data.
That way, the problem is definitely fixed and sepoll still remains about
17% faster than epoll since it can take into account all information
returned by the kernel.
Gcc provides __attribute__((constructor)) which is very convenient
to execute functions at startup right before main(). All the pollers
have been converted to have their register() function declared like
this, so that it is not necessary anymore to call them from a centralized
file.
Some pollers such as kqueue lose their FD across fork(), meaning that
the registered file descriptors are lost too. Now when the proxies are
started by start_proxies(), the file descriptors are not registered yet,
leaving enough time for the fork() to take place and to get a new pollfd.
It will be the first call to maintain_proxies that will register them.
select, poll and epoll now have their dedicated functions and have
been split into distinct files. Several FD manipulation primitives
have been provided with each poller.
The rest of the code needs to be cleaned to remove traces of
StaticReadEvent/StaticWriteEvent. A trick involving a macro has
temporarily been used right now. Some work needs to be done to
factorize tests and sets everywhere.
The files are now stored under :
- include/haproxy for the generic includes
- include/types.h for the structures needed within prototypes
- include/proto.h for function prototypes and inline functions
- src/*.c for the C files
Most include files are now covered by LGPL. A last move still needs
to be done to put inline functions under GPL and not LGPL.
Version has been set to 1.3.0 in the code but some control still
needs to be done before releasing.