MINOR: net_helper: add functions to read from vectors

This patch adds the ability to read from a wrapping memory area (ie:
buffers). The new functions are called "readv_<type>". The original
ones were renamed to start with "read_" to make the difference more
obvious between the read method and the returned type.

It's worth noting that the memory barrier in readv_bytes() is critical,
as otherwise gcc decides that it doesn't need the resulting data, but
even worse, removes the length checks in readv_u64() and happily
performs an out-of-bounds unaligned read using read_u64()! Such
"optimizations" are a bit borderline, especially when they impact
security like this...
This commit is contained in:
Willy Tarreau 2017-09-19 14:59:52 +02:00
parent 26488ad358
commit d5370e1d6c
2 changed files with 131 additions and 29 deletions

View File

@ -3,6 +3,7 @@
* This file contains miscellaneous network helper functions.
*
* Copyright (C) 2017 Olivier Houchard
* Copyright (C) 2017 Willy Tarreau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -26,50 +27,151 @@
#ifndef _COMMON_NET_HELPER_H
#define _COMMON_NET_HELPER_H
#include <common/compiler.h>
#include <arpa/inet.h>
/* Functions to read various integer that may be unaligned */
/* Functions to read various integers that may be unaligned */
/* Read a uint16_t */
static inline uint16_t readu16(const void *p)
/* Read a uint16_t in native host order */
static inline uint16_t read_u16(const void *p)
{
const union { uint16_t u16; } __attribute__((packed))*u = p;
return u->u16;
}
/* Read a int16_t */
static inline int16_t readi16(const void *p)
{
const union { int16_t i16; } __attribute__((packed))*u = p;
return u->i16;
}
/* Read a uint16_t, and convert from network order to host order */
static inline uint16_t readn16(const void *p)
{
const union { uint16_t u16; } __attribute__((packed))*u = p;
return ntohs(u->u16);
}
/* Read a uint32_t */
static inline uint32_t readu32(const void *p)
/* Read a uint32_t in native host order */
static inline uint32_t read_u32(const void *p)
{
const union { uint32_t u32; } __attribute__((packed))*u = p;
return u->u32;
}
/* Read a int32_t */
static inline int16_t readi32(const void *p)
/* Read a possibly wrapping number of bytes <bytes> into destination <dst>. The
* first segment is composed of <s1> bytes at p1. The remaining byte(s), if any,
* are read from <p2>. <s1> may be zero and may also be larger than <bytes>. The
* caller is always responsible for providing enough bytes. Note: the function
* is purposely *not* marked inline to let the compiler decide what to do with
* it, because it's around 34 bytes long, placed on critical path but rarely
* called, and uses uses a lot of arguments if not inlined. The compiler will
* thus decide what's best to do with it depending on the context.
*/
static void readv_bytes(void *dst, const size_t bytes, const void *p1, size_t s1, const void *p2)
{
const union { int32_t i32; } __attribute__((packed))*u = p;
return u->i32;
size_t idx;
p2 -= s1;
for (idx = 0; idx < bytes; idx++) {
if (idx == s1)
p1 = p2;
((uint8_t *)dst)[idx] = ((const uint8_t *)p1)[idx];
}
/* this memory barrier is critical otherwise gcc may over-optimize this
* code, completely removing it as well as any surrounding boundary
* check (4.7.1..6.4.0)!
*/
__asm__ volatile("" ::: "memory");
}
/* Read a possibly wrapping uint16_t in native host order. The first segment is
* composed of <s1> bytes at p1. The remaining byte(s), if any, are read from
* <p2>. <s1> may be zero and may be larger than the type. The caller is always
* responsible for providing enough bytes.
*/
static inline uint16_t readv_u16(const void *p1, size_t s1, const void *p2)
{
if (unlikely(s1 == 1)) {
volatile uint16_t u16;
((uint8_t *)&u16)[0] = *(uint8_t *)p1;
((uint8_t *)&u16)[1] = *(uint8_t *)p2;
return u16;
}
else {
const union { uint16_t u16; } __attribute__((packed)) *u;
u = (s1 == 0) ? p2 : p1;
return u->u16;
}
}
/* Read a possibly wrapping uint32_t in native host order. The first segment is
* composed of <s1> bytes at p1. The remaining byte(s), if any, are read from
* <p2>. <s1> may be zero and may be larger than the type. The caller is always
* responsible for providing enough bytes.
*/
static inline uint32_t readv_u32(const void *p1, size_t s1, const void *p2)
{
uint32_t u32;
if (!unlikely(s1 < sizeof(u32)))
u32 = read_u32(p1);
else
readv_bytes(&u32, sizeof(u32), p1, s1, p2);
return u32;
}
/* Signed integer versions : return the same data but signed */
/* Read an int16_t in native host order */
static inline int16_t read_i16(const void *p)
{
return read_u16(p);
}
/* Read an int32_t in native host order */
static inline int32_t read_i32(const void *p)
{
return read_u32(p);
}
/* Read a possibly wrapping int16_t in native host order */
static inline int16_t readv_i16(const void *p1, size_t s1, const void *p2)
{
return readv_u16(p1, s1, p2);
}
/* Read a possibly wrapping int32_t in native host order */
static inline int32_t readv_i32(const void *p1, size_t s1, const void *p2)
{
return readv_u32(p1, s1, p2);
}
/* Read a uint16_t, and convert from network order to host order */
static inline uint16_t read_n16(const void *p)
{
return ntohs(read_u16(p));
}
/* Read a uint32_t, and convert from network order to host order */
static inline uint32_t readn32(const void *p)
static inline uint32_t read_n32(const void *p)
{
const union { uint32_t u32; } __attribute__((packed))*u = p;
return ntohl(u->u32);
return ntohl(read_u32(p));
}
/* Read a possibly wrapping uint16_t in network order. The first segment is
* composed of <s1> bytes at p1. The remaining byte(s), if any, are read from
* <p2>. <s1> may be zero and may be larger than the type. The caller is always
* responsible for providing enough bytes.
*/
static inline uint16_t readv_n16(const void *p1, size_t s1, const void *p2)
{
if (unlikely(s1 < 2)) {
if (s1 == 0)
p1 = p2++;
}
else
p2 = p1 + 1;
return (*(uint8_t *)p1 << 8) + *(uint8_t *)p2;
}
/* Read a possibly wrapping uint32_t in network order. The first segment is
* composed of <s1> bytes at p1. The remaining byte(s), if any, are read from
* <p2>. <s1> may be zero and may be larger than the type. The caller is always
* responsible for providing enough bytes.
*/
static inline uint32_t readv_n32(const void *p1, size_t s1, const void *p2)
{
return ntohl(readv_u32(p1, s1, p2));
}
#endif /* COMMON_NET_HELPER_H */

View File

@ -1333,11 +1333,11 @@ int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, struct
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->priority = readn16(reader);
dns_answer_record->priority = read_n16(reader);
reader += sizeof(uint16_t);
dns_answer_record->weight = readn16(reader);
dns_answer_record->weight = read_n16(reader);
reader += sizeof(uint16_t);
dns_answer_record->port = readn16(reader);
dns_answer_record->port = read_n16(reader);
reader += sizeof(uint16_t);
offset = 0;
len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset);