2015-04-13 21:40:55 +00:00
|
|
|
/*
|
|
|
|
* include/proto/dns.h
|
|
|
|
* This file provides functions related to DNS protocol
|
|
|
|
*
|
|
|
|
* Copyright (C) 2014 Baptiste Assmann <bedis9@gmail.com>
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation, version 2.1
|
|
|
|
* exclusively.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _PROTO_DNS_H
|
|
|
|
#define _PROTO_DNS_H
|
|
|
|
|
2019-01-21 07:34:50 +00:00
|
|
|
#include <types/action.h>
|
2015-04-13 21:40:55 +00:00
|
|
|
#include <types/dns.h>
|
|
|
|
|
MAJOR: dns: Refactor the DNS code
This is a huge patch with many changes, all about the DNS. Initially, the idea
was to update the DNS part to ease the threads support integration. But quickly,
I started to refactor some parts. And after several iterations, it was
impossible for me to commit the different parts atomically. So, instead of
adding tens of patches, often reworking the same parts, it was easier to merge
all my changes in a uniq patch. Here are all changes made on the DNS.
First, the DNS initialization has been refactored. The DNS configuration parsing
remains untouched, in cfgparse.c. But all checks have been moved in a post-check
callback. In the function dns_finalize_config, for each resolvers, the
nameservers configuration is tested and the task used to manage DNS resolutions
is created. The links between the backend's servers and the resolvers are also
created at this step. Here no connection are kept alive. So there is no needs
anymore to reopen them after HAProxy fork. Connections used to send DNS queries
will be opened on demand.
Then, the way DNS requesters are linked to a DNS resolution has been
reworked. The resolution used by a requester is now referenced into the
dns_requester structure and the resolution pointers in server and dns_srvrq
structures have been removed. wait and curr list of requesters, for a DNS
resolution, have been replaced by a uniq list. And Finally, the way a requester
is removed from a DNS resolution has been simplified. Now everything is done in
dns_unlink_resolution.
srv_set_fqdn function has been simplified. Now, there is only 1 way to set the
server's FQDN, independently it is done by the CLI or when a SRV record is
resolved.
The static DNS resolutions pool has been replaced by a dynamoc pool. The part
has been modified by Baptiste Assmann.
The way the DNS resolutions are triggered by the task or by a health-check has
been totally refactored. Now, all timeouts are respected. Especially
hold.valid. The default frequency to wake up a resolvers is now configurable
using "timeout resolve" parameter.
Now, as documented, as long as invalid repsonses are received, we really wait
all name servers responses before retrying.
As far as possible, resources allocated during DNS configuration parsing are
releases when HAProxy is shutdown.
Beside all these changes, the code has been cleaned to ease code review and the
doc has been updated.
2017-09-27 09:00:59 +00:00
|
|
|
extern struct list dns_resolvers;
|
2019-01-21 07:34:50 +00:00
|
|
|
extern unsigned int dns_failed_resolutions;
|
MAJOR: dns: Refactor the DNS code
This is a huge patch with many changes, all about the DNS. Initially, the idea
was to update the DNS part to ease the threads support integration. But quickly,
I started to refactor some parts. And after several iterations, it was
impossible for me to commit the different parts atomically. So, instead of
adding tens of patches, often reworking the same parts, it was easier to merge
all my changes in a uniq patch. Here are all changes made on the DNS.
First, the DNS initialization has been refactored. The DNS configuration parsing
remains untouched, in cfgparse.c. But all checks have been moved in a post-check
callback. In the function dns_finalize_config, for each resolvers, the
nameservers configuration is tested and the task used to manage DNS resolutions
is created. The links between the backend's servers and the resolvers are also
created at this step. Here no connection are kept alive. So there is no needs
anymore to reopen them after HAProxy fork. Connections used to send DNS queries
will be opened on demand.
Then, the way DNS requesters are linked to a DNS resolution has been
reworked. The resolution used by a requester is now referenced into the
dns_requester structure and the resolution pointers in server and dns_srvrq
structures have been removed. wait and curr list of requesters, for a DNS
resolution, have been replaced by a uniq list. And Finally, the way a requester
is removed from a DNS resolution has been simplified. Now everything is done in
dns_unlink_resolution.
srv_set_fqdn function has been simplified. Now, there is only 1 way to set the
server's FQDN, independently it is done by the CLI or when a SRV record is
resolved.
The static DNS resolutions pool has been replaced by a dynamoc pool. The part
has been modified by Baptiste Assmann.
The way the DNS resolutions are triggered by the task or by a health-check has
been totally refactored. Now, all timeouts are respected. Especially
hold.valid. The default frequency to wake up a resolvers is now configurable
using "timeout resolve" parameter.
Now, as documented, as long as invalid repsonses are received, we really wait
all name servers responses before retrying.
As far as possible, resources allocated during DNS configuration parsing are
releases when HAProxy is shutdown.
Beside all these changes, the code has been cleaned to ease code review and the
doc has been updated.
2017-09-27 09:00:59 +00:00
|
|
|
|
|
|
|
struct dns_resolvers *find_resolvers_by_id(const char *id);
|
|
|
|
struct dns_srvrq *find_srvrq_by_name(const char *name, struct proxy *px);
|
|
|
|
struct dns_srvrq *new_dns_srvrq(struct server *srv, char *fqdn);
|
|
|
|
|
|
|
|
int dns_str_to_dn_label(const char *str, int str_len, char *dn, int dn_len);
|
|
|
|
int dns_dn_label_to_str(const char *dn, int dn_len, char *str, int str_len);
|
|
|
|
|
2015-04-13 21:40:55 +00:00
|
|
|
int dns_hostname_validation(const char *string, char **err);
|
2017-05-03 13:43:12 +00:00
|
|
|
int dns_get_ip_from_response(struct dns_response_packet *dns_p,
|
2017-05-03 10:12:02 +00:00
|
|
|
struct dns_options *dns_opts, void *currentip,
|
2016-02-17 20:25:09 +00:00
|
|
|
short currentip_sin_family,
|
2017-05-03 13:43:12 +00:00
|
|
|
void **newip, short *newip_sin_family,
|
|
|
|
void *owner);
|
MAJOR/REORG: dns: DNS resolution task and requester queues
This patch is a major upgrade of the internal run-time DNS resolver in
HAProxy and it brings the following 2 main changes:
1. DNS resolution task
Up to now, DNS resolution was triggered by the health check task.
From now, DNS resolution task is autonomous. It is started by HAProxy
right after the scheduler is available and it is woken either when a
network IO occurs for one of its nameserver or when a timeout is
matched.
From now, this means we can enable DNS resolution for a server without
enabling health checking.
2. Introduction of a dns_requester structure
Up to now, DNS resolution was purposely made for resolving server
hostnames.
The idea, is to ensure that any HAProxy internal object should be able
to trigger a DNS resolution. For this purpose, 2 things has to be done:
- clean up the DNS code from the server structure (this was already
quite clean actually) and clean up the server's callbacks from
manipulating too much DNS resolution
- create an agnostic structure which allows linking a DNS resolution
and a requester of any type (using obj_type enum)
3. Manage requesters through queues
Up to now, there was an uniq relationship between a resolution and it's
owner (aka the requester now). It's a shame, because in some cases,
multiple objects may share the same hostname and may benefit from a
resolution being performed by a third party.
This patch introduces the notion of queues, which are basically lists of
either currently running resolution or waiting ones.
The resolutions are now available as a pool, which belongs to the resolvers.
The pool has has a default size of 64 resolutions per resolvers and is
allocated at configuration parsing.
2017-05-22 13:17:15 +00:00
|
|
|
|
2017-11-06 14:15:04 +00:00
|
|
|
int dns_link_resolution(void *requester, int requester_type, int requester_locked);
|
MAJOR: dns: Refactor the DNS code
This is a huge patch with many changes, all about the DNS. Initially, the idea
was to update the DNS part to ease the threads support integration. But quickly,
I started to refactor some parts. And after several iterations, it was
impossible for me to commit the different parts atomically. So, instead of
adding tens of patches, often reworking the same parts, it was easier to merge
all my changes in a uniq patch. Here are all changes made on the DNS.
First, the DNS initialization has been refactored. The DNS configuration parsing
remains untouched, in cfgparse.c. But all checks have been moved in a post-check
callback. In the function dns_finalize_config, for each resolvers, the
nameservers configuration is tested and the task used to manage DNS resolutions
is created. The links between the backend's servers and the resolvers are also
created at this step. Here no connection are kept alive. So there is no needs
anymore to reopen them after HAProxy fork. Connections used to send DNS queries
will be opened on demand.
Then, the way DNS requesters are linked to a DNS resolution has been
reworked. The resolution used by a requester is now referenced into the
dns_requester structure and the resolution pointers in server and dns_srvrq
structures have been removed. wait and curr list of requesters, for a DNS
resolution, have been replaced by a uniq list. And Finally, the way a requester
is removed from a DNS resolution has been simplified. Now everything is done in
dns_unlink_resolution.
srv_set_fqdn function has been simplified. Now, there is only 1 way to set the
server's FQDN, independently it is done by the CLI or when a SRV record is
resolved.
The static DNS resolutions pool has been replaced by a dynamoc pool. The part
has been modified by Baptiste Assmann.
The way the DNS resolutions are triggered by the task or by a health-check has
been totally refactored. Now, all timeouts are respected. Especially
hold.valid. The default frequency to wake up a resolvers is now configurable
using "timeout resolve" parameter.
Now, as documented, as long as invalid repsonses are received, we really wait
all name servers responses before retrying.
As far as possible, resources allocated during DNS configuration parsing are
releases when HAProxy is shutdown.
Beside all these changes, the code has been cleaned to ease code review and the
doc has been updated.
2017-09-27 09:00:59 +00:00
|
|
|
void dns_unlink_resolution(struct dns_requester *requester);
|
|
|
|
void dns_trigger_resolution(struct dns_requester *requester);
|
2019-01-21 07:34:50 +00:00
|
|
|
enum act_parse_ret dns_parse_do_resolve(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err);
|
|
|
|
int check_action_do_resolve(struct act_rule *rule, struct proxy *px, char **err);
|
MAJOR/REORG: dns: DNS resolution task and requester queues
This patch is a major upgrade of the internal run-time DNS resolver in
HAProxy and it brings the following 2 main changes:
1. DNS resolution task
Up to now, DNS resolution was triggered by the health check task.
From now, DNS resolution task is autonomous. It is started by HAProxy
right after the scheduler is available and it is woken either when a
network IO occurs for one of its nameserver or when a timeout is
matched.
From now, this means we can enable DNS resolution for a server without
enabling health checking.
2. Introduction of a dns_requester structure
Up to now, DNS resolution was purposely made for resolving server
hostnames.
The idea, is to ensure that any HAProxy internal object should be able
to trigger a DNS resolution. For this purpose, 2 things has to be done:
- clean up the DNS code from the server structure (this was already
quite clean actually) and clean up the server's callbacks from
manipulating too much DNS resolution
- create an agnostic structure which allows linking a DNS resolution
and a requester of any type (using obj_type enum)
3. Manage requesters through queues
Up to now, there was an uniq relationship between a resolution and it's
owner (aka the requester now). It's a shame, because in some cases,
multiple objects may share the same hostname and may benefit from a
resolution being performed by a third party.
This patch introduces the notion of queues, which are basically lists of
either currently running resolution or waiting ones.
The resolutions are now available as a pool, which belongs to the resolvers.
The pool has has a default size of 64 resolutions per resolvers and is
allocated at configuration parsing.
2017-05-22 13:17:15 +00:00
|
|
|
|
2015-04-13 21:40:55 +00:00
|
|
|
|
|
|
|
#endif // _PROTO_DNS_H
|