haproxy/Makefile

873 lines
31 KiB
Makefile
Raw Normal View History

# This GNU Makefile supports different OS and CPU combinations.
#
# You should use it this way :
# [g]make TARGET=os ARCH=arch CPU=cpu USE_xxx=1 ...
#
# Valid USE_* options are the following. Most of them are automatically set by
# the TARGET, others have to be explictly specified :
# USE_DLMALLOC : enable use of dlmalloc (see DLMALLOC_SRC)
# USE_EPOLL : enable epoll() on Linux 2.6. Automatic.
# USE_GETSOCKNAME : enable getsockname() on Linux 2.2. Automatic.
# USE_KQUEUE : enable kqueue() on BSD. Automatic.
# USE_MY_EPOLL : redefine epoll_* syscalls. Automatic.
# USE_MY_SPLICE : redefine the splice syscall if build fails without.
# USE_NETFILTER : enable netfilter on Linux. Automatic.
# USE_PCRE : enable use of libpcre for regex. Recommended.
# USE_PCRE_JIT : enable JIT for faster regex on libpcre >= 8.32
# USE_POLL : enable poll(). Automatic.
# USE_PRIVATE_CACHE : disable shared memory cache of ssl sessions.
# USE_PTHREAD_PSHARED : enable pthread process shared mutex on sslcache.
# USE_REGPARM : enable regparm optimization. Recommended on x86.
# USE_STATIC_PCRE : enable static libpcre. Recommended.
# USE_TPROXY : enable transparent proxy. Automatic.
# USE_LINUX_TPROXY : enable full transparent proxy. Automatic.
# USE_LINUX_SPLICE : enable kernel 2.6 splicing. Automatic.
# USE_LIBCRYPT : enable crypted passwords using -lcrypt
# USE_CRYPT_H : set it if your system requires including crypt.h
# USE_VSYSCALL : enable vsyscall on Linux x86, bypassing libc
# USE_GETADDRINFO : use getaddrinfo() to resolve IPv6 host names.
# USE_OPENSSL : enable use of OpenSSL. Recommended, but see below.
# USE_LUA : enable Lua support.
# USE_FUTEX : enable use of futex on kernel 2.6. Automatic.
# USE_ACCEPT4 : enable use of accept4() on linux. Automatic.
# USE_MY_ACCEPT4 : use own implemention of accept4() if glibc < 2.10.
MEDIUM: HTTP compression (zlib library support) This commit introduces HTTP compression using the zlib library. http_response_forward_body has been modified to call the compression functions. This feature includes 3 algorithms: identity, gzip and deflate: * identity: this is mostly for debugging, and it was useful for developping the compression feature. With Content-Length in input, it is making each chunk with the data available in the current buffer. With chunks in input, it is rechunking, the output chunks will be bigger or smaller depending of the size of the input chunk and the size of the buffer. Identity does not apply any change on data. * gzip: same as identity, but applying a gzip compression. The data are deflated using the Z_NO_FLUSH flag in zlib. When there is no more data in the input buffer, it flushes the data in the output buffer (Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in input, or when there is no more data to read, it writes the end of data with Z_FINISH and the ending chunk. * deflate: same as gzip, but with deflate algorithm and zlib format. Note that this algorithm has ambiguous support on many browsers and no support at all from recent ones. It is strongly recommended not to use it for anything else than experimentation. You can't choose the compression ratio at the moment, it will be set to Z_BEST_SPEED (1), as tests have shown very little benefit in terms of compression ration when going above for HTML contents, at the cost of a massive CPU impact. Compression will be activated depending of the Accept-Encoding request header. With identity, it does not take care of that header. To build HAProxy with zlib support, use USE_ZLIB=1 in the make parameters. This work was initially started by David Du Colombier at Exceliance.
2012-10-23 08:25:10 +00:00
# USE_ZLIB : enable zlib library support.
MAJOR: compression: integrate support for libslz This library is designed to emit a zlib-compatible stream with no memory usage and to favor resource savings over compression ratio. While zlib requires 256 kB of RAM per compression context (and can only support 4000 connections per GB of RAM), the stateless compression offered by libslz does not need to retain buffers between subsequent calls. In theory this slightly reduces the compression ratio but in practice it does not have that much of an effect since the zlib window is limited to 32kB. Libslz is available at : http://git.1wt.eu/web?p=libslz.git It was designed for web compression and provides a lot of savings over zlib in haproxy. Here are the preliminary results on a single core of a core2-quad 3.0 GHz in 32-bit for only 300 concurrent sessions visiting the home page of www.haproxy.org (76 kB) with the default 16kB buffers : BW In BW Out BW Saved Ratio memory VSZ/RSS zlib 237 Mbps 92 Mbps 145 Mbps 2.58 84M / 69M slz 733 Mbps 380 Mbps 353 Mbps 1.93 5.9M / 4.2M So while the compression ratio is lower, the bandwidth savings are much more important due to the significantly lower compression cost which allows to consume even more data from the servers. In the example above, zlib became the bottleneck at 24% of the output bandwidth. Also the difference in memory usage is obvious. More tests run on a single core of a core i5-3320M, with 500 concurrent users and the default 16kB buffers : At 100% CPU (no limit) : BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s zlib 480 Mbps 188 Mbps 292 Mbps 2.55 130M / 101M 744 slz 1700 Mbps 810 Mbps 890 Mbps 2.10 23.7M / 9.7M 2382 At 85% CPU (limited) : BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s zlib 1240 Mbps 976 Mbps 264 Mbps 1.27 130M / 100M 1738 slz 1600 Mbps 976 Mbps 624 Mbps 1.64 23.7M / 9.7M 2210 The most important benefit really happens when the CPU usage is limited by "maxcompcpuusage" or the BW limited by "maxcomprate" : in order to preserve resources, haproxy throttles the compression ratio until usage is within limits. Since slz is much cheaper, the average compression ratio is much higher and the input bandwidth is quite higher for one Gbps output. Other tests made with some reference files : BW In BW Out BW Saved Ratio hits/s daniels.html zlib 1320 Mbps 163 Mbps 1157 Mbps 8.10 1925 slz 3600 Mbps 580 Mbps 3020 Mbps 6.20 5300 tv.com/listing zlib 980 Mbps 124 Mbps 856 Mbps 7.90 310 slz 3300 Mbps 553 Mbps 2747 Mbps 5.97 1100 jquery.min.js zlib 430 Mbps 180 Mbps 250 Mbps 2.39 547 slz 1470 Mbps 764 Mbps 706 Mbps 1.92 1815 bootstrap.min.css zlib 790 Mbps 165 Mbps 625 Mbps 4.79 777 slz 2450 Mbps 650 Mbps 1800 Mbps 3.77 2400 So on top of saving a lot of memory, slz is constantly 2.5-3.5 times faster than zlib and results in providing more savings for a fixed CPU usage. For links smaller than 100 Mbps, zlib still provides a better compression ratio, at the expense of a much higher CPU usage. Larger input files provide slightly higher bandwidth for both libs, at the expense of a bit more memory usage for zlib (it converges to 256kB per connection).
2015-03-29 01:32:06 +00:00
# USE_SLZ : enable slz library instead of zlib (pick at most one).
# USE_CPU_AFFINITY : enable pinning processes to CPU on Linux. Automatic.
# USE_TFO : enable TCP fast open. Supported on Linux >= 3.7.
MAJOR: namespace: add Linux network namespace support This patch makes it possible to create binds and servers in separate namespaces. This can be used to proxy between multiple completely independent virtual networks (with possibly overlapping IP addresses) and a non-namespace-aware proxy implementation that supports the proxy protocol (v2). The setup is something like this: net1 on VLAN 1 (namespace 1) -\ net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0) net3 on VLAN 3 (namespace 3) -/ The proxy is configured to make server connections through haproxy and sending the expected source/target addresses to haproxy using the proxy protocol. The network namespace setup on the haproxy node is something like this: = 8< = $ cat setup.sh ip netns add 1 ip link add link eth1 type vlan id 1 ip link set eth1.1 netns 1 ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1 ip netns exec 1 ip link set eth1.$id up ... = 8< = = 8< = $ cat haproxy.cfg frontend clients bind 127.0.0.1:50022 namespace 1 transparent default_backend scb backend server mode tcp server server1 192.168.122.4:2222 namespace 2 send-proxy-v2 = 8< = A bind line creates the listener in the specified namespace, and connections originating from that listener also have their network namespace set to that of the listener. A server line either forces the connection to be made in a specified namespace or may use the namespace from the client-side connection if that was set. For more documentation please read the documentation included in the patch itself. Signed-off-by: KOVACS Tamas <ktamas@balabit.com> Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com> Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
2014-11-17 14:11:45 +00:00
# USE_NS : enable network namespace support. Supported on Linux >= 2.6.24.
# USE_DL : enable it if your system requires -ldl. Automatic on Linux.
# USE_DEVICEATLAS : enable DeviceAtlas api.
# USE_51DEGREES : enable third party device detection library from 51Degrees
#
# Options can be forced by specifying "USE_xxx=1" or can be disabled by using
# "USE_xxx=" (empty string).
#
# Variables useful for packagers :
# CC is set to "gcc" by default and is used for compilation only.
# LD is set to "gcc" by default and is used for linking only.
# ARCH may be useful to force build of 32-bit binary on 64-bit systems
# CFLAGS is automatically set for the specified CPU and may be overridden.
# LDFLAGS is automatically set to -g and may be overridden.
# SMALL_OPTS may be used to specify some options to shrink memory usage.
# DEBUG may be used to set some internal debugging options.
# ADDINC may be used to complete the include path in the form -Ipath.
# ADDLIB may be used to complete the library list in the form -Lpath -llib.
# DEFINE may be used to specify any additional define, which will be reported
# by "haproxy -vv" in CFLAGS.
# SILENT_DEFINE may be used to specify other defines which will not be
# reported by "haproxy -vv".
# EXTRA is used to force building or not building some extra tools. By
# default on Linux 2.6+, it contains "haproxy-systemd-wrapper".
# DESTDIR is not set by default and is used for installation only.
# It might be useful to set DESTDIR if you want to install haproxy
# in a sandbox.
# PREFIX is set to "/usr/local" by default and is used for installation only.
# SBINDIR is set to "$(PREFIX)/sbin" by default and is used for installation
# only.
# MANDIR is set to "$(PREFIX)/share/man" by default and is used for
# installation only.
# DOCDIR is set to "$(PREFIX)/doc/haproxy" by default and is used for
# installation only.
#
# Other variables :
# DLMALLOC_SRC : build with dlmalloc, indicate the location of dlmalloc.c.
# DLMALLOC_THRES : should match PAGE_SIZE on every platform (default: 4096).
# PCREDIR : force the path to libpcre.
# PCRE_LIB : force the lib path to libpcre (defaults to $PCREDIR/lib).
# PCRE_INC : force the include path to libpcre ($PCREDIR/inc)
# SSL_LIB : force the lib path to libssl/libcrypto
# SSL_INC : force the include path to libssl/libcrypto
# LUA_LIB : force the lib path to lua
# LUA_INC : force the include path to lua
# LUA_LIB_NAME : force the lib name (or automatically evaluated, by order of
# priority : lua5.3, lua53, lua).
# IGNOREGIT : ignore GIT commit versions if set.
# VERSION : force haproxy version reporting.
# SUBVERS : add a sub-version (eg: platform, model, ...).
# VERDATE : force haproxy's release date.
#### Installation options.
DESTDIR =
PREFIX = /usr/local
SBINDIR = $(PREFIX)/sbin
MANDIR = $(PREFIX)/share/man
DOCDIR = $(PREFIX)/doc/haproxy
#### TARGET system
# Use TARGET=<target_name> to optimize for a specifc target OS among the
# following list (use the default "generic" if uncertain) :
# generic, linux22, linux24, linux24e, linux26, solaris,
2015-10-19 23:01:16 +00:00
# freebsd, openbsd, netbsd, cygwin, haiku, custom, aix51, aix52
TARGET =
#### TARGET CPU
# Use CPU=<cpu_name> to optimize for a particular CPU, among the following
# list :
# generic, native, i586, i686, ultrasparc, custom
CPU = generic
2005-12-17 11:21:26 +00:00
#### Architecture, used when not building for native architecture
# Use ARCH=<arch_name> to force build for a specific architecture. Known
# architectures will lead to "-m32" or "-m64" being added to CFLAGS and
# LDFLAGS. This can be required to build 32-bit binaries on 64-bit targets.
# Currently, only 32, 64, x86_64, i386, i486, i586 and i686 are understood.
ARCH =
#### Toolchain options.
# GCC is normally used both for compiling and linking.
CC = gcc
LD = $(CC)
#### Debug flags (typically "-g").
# Those flags only feed CFLAGS so it is not mandatory to use this form.
DEBUG_CFLAGS = -g
#### Compiler-specific flags that may be used to disable some negative over-
# optimization or to silence some warnings. -fno-strict-aliasing is needed with
# gcc >= 4.4.
SPEC_CFLAGS = -fno-strict-aliasing -Wdeclaration-after-statement
#### Memory usage tuning
# If small memory footprint is required, you can reduce the buffer size. There
# are 2 buffers per concurrent session, so 16 kB buffers will eat 32 MB memory
# with 1000 concurrent sessions. Putting it slightly lower than a page size
# will prevent the additional parameters to go beyond a page. 8030 bytes is
# exactly 5.5 TCP segments of 1460 bytes and is generally good. Useful tuning
# macros include :
# SYSTEM_MAXCONN, BUFSIZE, MAXREWRITE, REQURI_LEN, CAPTURE_LEN.
# Example: SMALL_OPTS = -DBUFSIZE=8030 -DMAXREWRITE=1030 -DSYSTEM_MAXCONN=1024
SMALL_OPTS =
2005-12-17 11:21:26 +00:00
#### Debug settings
# You can enable debugging on specific code parts by setting DEBUG=-DDEBUG_xxx.
# Currently defined DEBUG macros include DEBUG_FULL, DEBUG_MEMORY, DEBUG_FSM,
# DEBUG_HASH and DEBUG_AUTH. Please check sources for exact meaning or do not
# use at all.
DEBUG =
MINOR: add a new function call tracer for debugging purposes This feature relies on GCC's ability to call helpers at function entry/exit points. We define these helpers to quickly dump the minimum info into a trace file that can be converted to a human readable format using a script in the contrib/trace directory. This has only been implemented in the GNU makefile for now on as it is unsure whether it's supported on all OSes. The feature is enabled by building with "TRACE=1". The performance impact is huge, so this feature should only be used when debugging. To limit the loss of performance, fprintf() has been disabled and the output is hand-crafted and emitted using fwrite(), resulting in doubling the performance. Using the TSC instead of gettimeofday() also doubles the performance. Around 1200 conns/s may be achieved on a Pentium-M 1.7 GHz which leads to around 50 MB/s of traces. The entry and exits of all functions will be dumped into a file designated by the HAPROXY_TRACE environment variable, or by default "trace.out". If the trace file name is empty or "/dev/null", then traces are disabled. If opening the trace file fails, then stderr is used. If HAPROXY_TRACE_FAST is used, then the time is taken from the global <now> variable. Last, if HAPROXY_TRACE_TSC is used, then the machine's TSC is used instead of the real time (almost twice as fast). The output format is : <sec.usec> <level> <caller_ptr> <dir> <callee_ptr> or : <tsc> <level> <caller_ptr> <dir> <callee_ptr> where <dir> is '>' when entering a function and '<' when leaving. The awk script in contrib/trace provides a nicer indented output : 6f74989e6f8 ->->-> run_poll_loop > signal_process_queue [src/haproxy.c:1097:0x804bd69] > [include/proto/signal.h:32:0x8049cd0] 6f74989eb00 run_poll_loop < signal_process_queue [src/haproxy.c:1097:0x804bd69] < [include/proto/signal.h:32:0x8049cd0] 6f74989ef44 ->->-> run_poll_loop > wake_expired_tasks [src/haproxy.c:1100:0x804bd72] > [src/task.c:123:0x8055060] 6f74989f3a6 ->->->-> wake_expired_tasks > eb32_lookup_ge [src/task.c:128:0x8055091] > [ebtree/eb32tree.c:138:0x80a8c70] 6f74989f7e9 wake_expired_tasks < eb32_lookup_ge [src/task.c:128:0x8055091] < [ebtree/eb32tree.c:138:0x80a8c70] 6f74989fc0d ->->->-> wake_expired_tasks > eb32_first [src/task.c:134:0x80550d5] > [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a003d ->->->->-> eb32_first > eb_first [ebtree/eb32tree.h:56:0x8054af1] > [ebtree/ebtree.h:520:0x8054a10] 6f7498a0436 ->->->->->-> eb_first > eb_walk_down [ebtree/ebtree.h:521:0x8054a33] > [ebtree/ebtree.h:442:0x80549a0] 6f7498a0843 ->->->->->->-> eb_walk_down > eb_gettag [ebtree/ebtree.h:445:0x80549d6] > [ebtree/ebtree.h:418:0x80548e0] 6f7498a0c2b eb_walk_down < eb_gettag [ebtree/ebtree.h:445:0x80549d6] < [ebtree/ebtree.h:418:0x80548e0] 6f7498a1042 ->->->->->->-> eb_walk_down > eb_untag [ebtree/ebtree.h:447:0x80549e2] > [ebtree/ebtree.h:412:0x80548a0] 6f7498a1498 eb_walk_down < eb_untag [ebtree/ebtree.h:447:0x80549e2] < [ebtree/ebtree.h:412:0x80548a0] 6f7498a18c6 ->->->->->->-> eb_walk_down > eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] > [ebtree/ebtree.h:432:0x8054960] 6f7498a1cd4 eb_walk_down < eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] < [ebtree/ebtree.h:432:0x8054960] 6f7498a20c4 eb_first < eb_walk_down [ebtree/ebtree.h:521:0x8054a33] < [ebtree/ebtree.h:442:0x80549a0] 6f7498a24b4 eb32_first < eb_first [ebtree/eb32tree.h:56:0x8054af1] < [ebtree/ebtree.h:520:0x8054a10] 6f7498a289c wake_expired_tasks < eb32_first [src/task.c:134:0x80550d5] < [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a2c8c run_poll_loop < wake_expired_tasks [src/haproxy.c:1100:0x804bd72] < [src/task.c:123:0x8055060] 6f7498a3095 ->->-> run_poll_loop > process_runnable_tasks [src/haproxy.c:1103:0x804bd7a] > [src/task.c:190:0x8055150] A nice improvement would possibly consist in trying to get the function's arguments in the stack and to dump a few more infor for some well-known functions (eg: the session's status for process_session).
2012-05-25 21:53:16 +00:00
#### Trace options
# Use TRACE=1 to trace function calls to file "trace.out" or to stderr if not
# possible.
TRACE =
#### Additional include and library dirs
# Redefine this if you want to add some special PATH to include/libs
ADDINC =
ADDLIB =
#### Specific macro definitions
# Use DEFINE=-Dxxx to set any tunable macro. Anything declared here will appear
# in the build options reported by "haproxy -vv". Use SILENT_DEFINE if you do
# not want to pollute the report with complex defines.
# The following settings might be of interest when SSL is enabled :
# LISTEN_DEFAULT_CIPHERS is a cipher suite string used to set the default SSL
# ciphers on "bind" lines instead of using OpenSSL's defaults.
# CONNECT_DEFAULT_CIPHERS is a cipher suite string used to set the default
# SSL ciphers on "server" lines instead of using OpenSSL's defaults.
DEFINE =
SILENT_DEFINE =
#### extra programs to build (eg: haproxy-systemd-wrapper)
# Force this to enable building extra programs or to disable them.
# It's automatically appended depending on the targets.
EXTRA =
#### CPU dependant optimizations
# Some CFLAGS are set by default depending on the target CPU. Those flags only
# feed CPU_CFLAGS, which in turn feed CFLAGS, so it is not mandatory to use
# them. You should not have to change these options. Better use CPU_CFLAGS or
# even CFLAGS instead.
CPU_CFLAGS.generic = -O2
CPU_CFLAGS.native = -O2 -march=native
CPU_CFLAGS.i586 = -O2 -march=i586
CPU_CFLAGS.i686 = -O2 -march=i686
CPU_CFLAGS.ultrasparc = -O6 -mcpu=v9 -mtune=ultrasparc
CPU_CFLAGS = $(CPU_CFLAGS.$(CPU))
#### ARCH dependant flags, may be overriden by CPU flags
ARCH_FLAGS.32 = -m32
ARCH_FLAGS.64 = -m64
ARCH_FLAGS.i386 = -m32 -march=i386
ARCH_FLAGS.i486 = -m32 -march=i486
ARCH_FLAGS.i586 = -m32 -march=i586
ARCH_FLAGS.i686 = -m32 -march=i686
ARCH_FLAGS.x86_64 = -m64 -march=x86-64
ARCH_FLAGS = $(ARCH_FLAGS.$(ARCH))
#### Common CFLAGS
# These CFLAGS contain general optimization options, CPU-specific optimizations
# and debug flags. They may be overridden by some distributions which prefer to
# set all of them at once instead of playing with the CPU and DEBUG variables.
CFLAGS = $(ARCH_FLAGS) $(CPU_CFLAGS) $(DEBUG_CFLAGS) $(SPEC_CFLAGS)
#### Common LDFLAGS
# These LDFLAGS are used as the first "ld" options, regardless of any library
# path or any other option. They may be changed to add any linker-specific
# option at the beginning of the ld command line.
LDFLAGS = $(ARCH_FLAGS) -g
#### Target system options
# Depending on the target platform, some options are set, as well as some
# CFLAGS and LDFLAGS. The USE_* values are set to "implicit" so that they are
# not reported in the build options string. You should not have to change
# anything there. poll() is always supported, unless explicitly disabled by
# passing USE_POLL="" on the make command line.
USE_POLL = default
ifeq ($(TARGET),generic)
# generic system target has nothing specific
USE_POLL = implicit
USE_TPROXY = implicit
else
2015-10-19 23:01:16 +00:00
ifeq ($(TARGET),haiku)
# For Haiku
TARGET_LDFLAGS = -lnetwork
USE_POLL = implicit
USE_TPROXY = implicit
else
ifeq ($(TARGET),linux22)
# This is for Linux 2.2
USE_GETSOCKNAME = implicit
USE_POLL = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_DL = implicit
else
ifeq ($(TARGET),linux24)
# This is for standard Linux 2.4 with netfilter but without epoll()
USE_GETSOCKNAME = implicit
USE_NETFILTER = implicit
USE_POLL = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_DL = implicit
else
ifeq ($(TARGET),linux24e)
# This is for enhanced Linux 2.4 with netfilter and epoll() patch > 0.21
USE_GETSOCKNAME = implicit
USE_NETFILTER = implicit
USE_POLL = implicit
USE_EPOLL = implicit
USE_MY_EPOLL = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_DL = implicit
else
ifeq ($(TARGET),linux26)
# This is for standard Linux 2.6 with netfilter and standard epoll()
USE_GETSOCKNAME = implicit
USE_NETFILTER = implicit
USE_POLL = implicit
USE_EPOLL = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_FUTEX = implicit
EXTRA += haproxy-systemd-wrapper
USE_DL = implicit
else
ifeq ($(TARGET),linux2628)
# This is for standard Linux >= 2.6.28 with netfilter, epoll, tproxy and splice
USE_GETSOCKNAME = implicit
USE_NETFILTER = implicit
USE_POLL = implicit
USE_EPOLL = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_LINUX_SPLICE= implicit
USE_LINUX_TPROXY= implicit
USE_ACCEPT4 = implicit
USE_FUTEX = implicit
USE_CPU_AFFINITY= implicit
ASSUME_SPLICE_WORKS= implicit
EXTRA += haproxy-systemd-wrapper
USE_DL = implicit
else
ifeq ($(TARGET),solaris)
# This is for Solaris 8
# We also enable getaddrinfo() which works since solaris 8.
USE_POLL = implicit
TARGET_CFLAGS = -fomit-frame-pointer -DFD_SETSIZE=65536 -D_REENTRANT
TARGET_LDFLAGS = -lnsl -lsocket
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
USE_CRYPT_H = implicit
USE_GETADDRINFO = implicit
else
ifeq ($(TARGET),freebsd)
# This is for FreeBSD
USE_POLL = implicit
USE_KQUEUE = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
else
ifeq ($(TARGET),osx)
# This is for Mac OS/X
USE_POLL = implicit
USE_KQUEUE = implicit
USE_TPROXY = implicit
USE_LIBCRYPT = implicit
else
ifeq ($(TARGET),openbsd)
# This is for OpenBSD >= 3.0
USE_POLL = implicit
USE_KQUEUE = implicit
USE_TPROXY = implicit
else
ifeq ($(TARGET),netbsd)
# This is for NetBSD
USE_POLL = implicit
USE_KQUEUE = implicit
USE_TPROXY = implicit
else
ifeq ($(TARGET),aix51)
# This is for AIX 5.1
USE_POLL = implicit
USE_LIBCRYPT = implicit
TARGET_CFLAGS = -Dss_family=__ss_family
DEBUG_CFLAGS =
else
ifeq ($(TARGET),aix52)
# This is for AIX 5.2 and later
USE_POLL = implicit
USE_LIBCRYPT = implicit
TARGET_CFLAGS = -D_MSGQSUPPORT
DEBUG_CFLAGS =
else
ifeq ($(TARGET),cygwin)
# This is for Cygwin
# Cygwin adds IPv6 support only in version 1.7 (in beta right now).
USE_POLL = implicit
USE_TPROXY = implicit
TARGET_CFLAGS = $(if $(filter 1.5.%, $(shell uname -r)), -DUSE_IPV6 -DAF_INET6=23 -DINET6_ADDRSTRLEN=46, )
endif # cygwin
endif # aix52
endif # aix51
endif # netbsd
endif # openbsd
endif # osx
endif # freebsd
endif # solaris
endif # linux2628
endif # linux26
endif # linux24e
endif # linux24
endif # linux22
2015-10-19 23:01:16 +00:00
endif # haiku
endif # generic
#### Old-style REGEX library settings for compatibility with previous setups.
# It is still possible to use REGEX=<regex_lib> to select an alternative regex
# library. By default, we use libc's regex. On Solaris 8/Sparc, grouping seems
# to be broken using libc, so consider using pcre instead. Supported values are
# "libc", "pcre", and "static-pcre". Use of this method is deprecated in favor
# of "USE_PCRE" and "USE_STATIC_PCRE" (see build options below).
REGEX = libc
ifeq ($(REGEX),pcre)
USE_PCRE = 1
$(warning WARNING! use of "REGEX=pcre" is deprecated, consider using "USE_PCRE=1" instead.)
endif
ifeq ($(REGEX),static-pcre)
USE_STATIC_PCRE = 1
$(warning WARNING! use of "REGEX=pcre-static" is deprecated, consider using "USE_STATIC_PCRE=1" instead.)
endif
#### Old-style TPROXY settings
ifneq ($(findstring -DTPROXY,$(DEFINE)),)
USE_TPROXY = 1
$(warning WARNING! use of "DEFINE=-DTPROXY" is deprecated, consider using "USE_TPROXY=1" instead.)
endif
#### Determine version, sub-version and release date.
# If GIT is found, and IGNOREGIT is not set, VERSION, SUBVERS and VERDATE are
# extracted from the last commit. Otherwise, use the contents of the files
# holding the same names in the current directory.
ifeq ($(IGNOREGIT),)
VERSION := $(shell [ -d .git/. ] && ref=`(git describe --tags --match 'v*' --abbrev=0) 2>/dev/null` && ref=$${ref%-g*} && echo "$${ref\#v}")
ifneq ($(VERSION),)
# OK git is there and works.
SUBVERS := $(shell comms=`git log --format=oneline --no-merges v$(VERSION).. 2>/dev/null | wc -l | tr -dc '0-9'`; commit=`(git log -1 --pretty=%h --abbrev=6) 2>/dev/null`; [ $$comms -gt 0 ] && echo "-$$commit-$$comms")
VERDATE := $(shell git log -1 --pretty=format:%ci | cut -f1 -d' ' | tr '-' '/')
endif
endif
# Last commit version not found, take it from the files.
ifeq ($(VERSION),)
VERSION := $(shell cat VERSION 2>/dev/null || touch VERSION)
endif
ifeq ($(SUBVERS),)
SUBVERS := $(shell (grep -v '\$$Format' SUBVERS 2>/dev/null || touch SUBVERS) | head -n 1)
endif
ifeq ($(VERDATE),)
VERDATE := $(shell (grep -v '^\$$Format' VERDATE 2>/dev/null || touch VERDATE) | head -n 1 | cut -f1 -d' ' | tr '-' '/')
endif
#### Build options
# Do not change these ones, enable USE_* variables instead.
OPTIONS_CFLAGS =
OPTIONS_LDFLAGS =
OPTIONS_OBJS =
# This variable collects all USE_* values except those set to "implicit". This
# is used to report a list of all flags which were used to build this version.
# Do not assign anything to it.
BUILD_OPTIONS =
# Return USE_xxx=$(USE_xxx) unless $(USE_xxx) = "implicit"
# Usage:
# BUILD_OPTIONS += $(call ignore_implicit,USE_xxx)
ignore_implicit = $(patsubst %=implicit,,$(1)=$($(1)))
ifneq ($(USE_TCPSPLICE),)
$(error experimental option USE_TCPSPLICE has been removed, check USE_LINUX_SPLICE)
endif
ifneq ($(USE_LINUX_SPLICE),)
OPTIONS_CFLAGS += -DCONFIG_HAP_LINUX_SPLICE
BUILD_OPTIONS += $(call ignore_implicit,USE_LINUX_SPLICE)
endif
ifneq ($(USE_TPROXY),)
OPTIONS_CFLAGS += -DTPROXY
BUILD_OPTIONS += $(call ignore_implicit,USE_TPROXY)
endif
ifneq ($(USE_LINUX_TPROXY),)
OPTIONS_CFLAGS += -DCONFIG_HAP_LINUX_TPROXY
BUILD_OPTIONS += $(call ignore_implicit,USE_LINUX_TPROXY)
endif
ifneq ($(USE_LIBCRYPT),)
OPTIONS_CFLAGS += -DCONFIG_HAP_CRYPT
BUILD_OPTIONS += $(call ignore_implicit,USE_LIBCRYPT)
OPTIONS_LDFLAGS += -lcrypt
endif
ifneq ($(USE_CRYPT_H),)
OPTIONS_CFLAGS += -DNEED_CRYPT_H
BUILD_OPTIONS += $(call ignore_implicit,USE_CRYPT_H)
endif
ifneq ($(USE_GETADDRINFO),)
OPTIONS_CFLAGS += -DUSE_GETADDRINFO
BUILD_OPTIONS += $(call ignore_implicit,USE_GETADDRINFO)
endif
MAJOR: compression: integrate support for libslz This library is designed to emit a zlib-compatible stream with no memory usage and to favor resource savings over compression ratio. While zlib requires 256 kB of RAM per compression context (and can only support 4000 connections per GB of RAM), the stateless compression offered by libslz does not need to retain buffers between subsequent calls. In theory this slightly reduces the compression ratio but in practice it does not have that much of an effect since the zlib window is limited to 32kB. Libslz is available at : http://git.1wt.eu/web?p=libslz.git It was designed for web compression and provides a lot of savings over zlib in haproxy. Here are the preliminary results on a single core of a core2-quad 3.0 GHz in 32-bit for only 300 concurrent sessions visiting the home page of www.haproxy.org (76 kB) with the default 16kB buffers : BW In BW Out BW Saved Ratio memory VSZ/RSS zlib 237 Mbps 92 Mbps 145 Mbps 2.58 84M / 69M slz 733 Mbps 380 Mbps 353 Mbps 1.93 5.9M / 4.2M So while the compression ratio is lower, the bandwidth savings are much more important due to the significantly lower compression cost which allows to consume even more data from the servers. In the example above, zlib became the bottleneck at 24% of the output bandwidth. Also the difference in memory usage is obvious. More tests run on a single core of a core i5-3320M, with 500 concurrent users and the default 16kB buffers : At 100% CPU (no limit) : BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s zlib 480 Mbps 188 Mbps 292 Mbps 2.55 130M / 101M 744 slz 1700 Mbps 810 Mbps 890 Mbps 2.10 23.7M / 9.7M 2382 At 85% CPU (limited) : BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s zlib 1240 Mbps 976 Mbps 264 Mbps 1.27 130M / 100M 1738 slz 1600 Mbps 976 Mbps 624 Mbps 1.64 23.7M / 9.7M 2210 The most important benefit really happens when the CPU usage is limited by "maxcompcpuusage" or the BW limited by "maxcomprate" : in order to preserve resources, haproxy throttles the compression ratio until usage is within limits. Since slz is much cheaper, the average compression ratio is much higher and the input bandwidth is quite higher for one Gbps output. Other tests made with some reference files : BW In BW Out BW Saved Ratio hits/s daniels.html zlib 1320 Mbps 163 Mbps 1157 Mbps 8.10 1925 slz 3600 Mbps 580 Mbps 3020 Mbps 6.20 5300 tv.com/listing zlib 980 Mbps 124 Mbps 856 Mbps 7.90 310 slz 3300 Mbps 553 Mbps 2747 Mbps 5.97 1100 jquery.min.js zlib 430 Mbps 180 Mbps 250 Mbps 2.39 547 slz 1470 Mbps 764 Mbps 706 Mbps 1.92 1815 bootstrap.min.css zlib 790 Mbps 165 Mbps 625 Mbps 4.79 777 slz 2450 Mbps 650 Mbps 1800 Mbps 3.77 2400 So on top of saving a lot of memory, slz is constantly 2.5-3.5 times faster than zlib and results in providing more savings for a fixed CPU usage. For links smaller than 100 Mbps, zlib still provides a better compression ratio, at the expense of a much higher CPU usage. Larger input files provide slightly higher bandwidth for both libs, at the expense of a bit more memory usage for zlib (it converges to 256kB per connection).
2015-03-29 01:32:06 +00:00
ifneq ($(USE_SLZ),)
# Use SLZ_INC and SLZ_LIB to force path to zlib.h and libz.{a,so} if needed.
SLZ_INC =
SLZ_LIB =
OPTIONS_CFLAGS += -DUSE_SLZ $(if $(SLZ_INC),-I$(SLZ_INC))
BUILD_OPTIONS += $(call ignore_implicit,USE_SLZ)
OPTIONS_LDFLAGS += $(if $(SLZ_LIB),-L$(SLZ_LIB)) -lslz
endif
MEDIUM: HTTP compression (zlib library support) This commit introduces HTTP compression using the zlib library. http_response_forward_body has been modified to call the compression functions. This feature includes 3 algorithms: identity, gzip and deflate: * identity: this is mostly for debugging, and it was useful for developping the compression feature. With Content-Length in input, it is making each chunk with the data available in the current buffer. With chunks in input, it is rechunking, the output chunks will be bigger or smaller depending of the size of the input chunk and the size of the buffer. Identity does not apply any change on data. * gzip: same as identity, but applying a gzip compression. The data are deflated using the Z_NO_FLUSH flag in zlib. When there is no more data in the input buffer, it flushes the data in the output buffer (Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in input, or when there is no more data to read, it writes the end of data with Z_FINISH and the ending chunk. * deflate: same as gzip, but with deflate algorithm and zlib format. Note that this algorithm has ambiguous support on many browsers and no support at all from recent ones. It is strongly recommended not to use it for anything else than experimentation. You can't choose the compression ratio at the moment, it will be set to Z_BEST_SPEED (1), as tests have shown very little benefit in terms of compression ration when going above for HTML contents, at the cost of a massive CPU impact. Compression will be activated depending of the Accept-Encoding request header. With identity, it does not take care of that header. To build HAProxy with zlib support, use USE_ZLIB=1 in the make parameters. This work was initially started by David Du Colombier at Exceliance.
2012-10-23 08:25:10 +00:00
ifneq ($(USE_ZLIB),)
# Use ZLIB_INC and ZLIB_LIB to force path to zlib.h and libz.{a,so} if needed.
ZLIB_INC =
ZLIB_LIB =
OPTIONS_CFLAGS += -DUSE_ZLIB $(if $(ZLIB_INC),-I$(ZLIB_INC))
MEDIUM: HTTP compression (zlib library support) This commit introduces HTTP compression using the zlib library. http_response_forward_body has been modified to call the compression functions. This feature includes 3 algorithms: identity, gzip and deflate: * identity: this is mostly for debugging, and it was useful for developping the compression feature. With Content-Length in input, it is making each chunk with the data available in the current buffer. With chunks in input, it is rechunking, the output chunks will be bigger or smaller depending of the size of the input chunk and the size of the buffer. Identity does not apply any change on data. * gzip: same as identity, but applying a gzip compression. The data are deflated using the Z_NO_FLUSH flag in zlib. When there is no more data in the input buffer, it flushes the data in the output buffer (Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in input, or when there is no more data to read, it writes the end of data with Z_FINISH and the ending chunk. * deflate: same as gzip, but with deflate algorithm and zlib format. Note that this algorithm has ambiguous support on many browsers and no support at all from recent ones. It is strongly recommended not to use it for anything else than experimentation. You can't choose the compression ratio at the moment, it will be set to Z_BEST_SPEED (1), as tests have shown very little benefit in terms of compression ration when going above for HTML contents, at the cost of a massive CPU impact. Compression will be activated depending of the Accept-Encoding request header. With identity, it does not take care of that header. To build HAProxy with zlib support, use USE_ZLIB=1 in the make parameters. This work was initially started by David Du Colombier at Exceliance.
2012-10-23 08:25:10 +00:00
BUILD_OPTIONS += $(call ignore_implicit,USE_ZLIB)
OPTIONS_LDFLAGS += $(if $(ZLIB_LIB),-L$(ZLIB_LIB)) -lz
MEDIUM: HTTP compression (zlib library support) This commit introduces HTTP compression using the zlib library. http_response_forward_body has been modified to call the compression functions. This feature includes 3 algorithms: identity, gzip and deflate: * identity: this is mostly for debugging, and it was useful for developping the compression feature. With Content-Length in input, it is making each chunk with the data available in the current buffer. With chunks in input, it is rechunking, the output chunks will be bigger or smaller depending of the size of the input chunk and the size of the buffer. Identity does not apply any change on data. * gzip: same as identity, but applying a gzip compression. The data are deflated using the Z_NO_FLUSH flag in zlib. When there is no more data in the input buffer, it flushes the data in the output buffer (Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in input, or when there is no more data to read, it writes the end of data with Z_FINISH and the ending chunk. * deflate: same as gzip, but with deflate algorithm and zlib format. Note that this algorithm has ambiguous support on many browsers and no support at all from recent ones. It is strongly recommended not to use it for anything else than experimentation. You can't choose the compression ratio at the moment, it will be set to Z_BEST_SPEED (1), as tests have shown very little benefit in terms of compression ration when going above for HTML contents, at the cost of a massive CPU impact. Compression will be activated depending of the Accept-Encoding request header. With identity, it does not take care of that header. To build HAProxy with zlib support, use USE_ZLIB=1 in the make parameters. This work was initially started by David Du Colombier at Exceliance.
2012-10-23 08:25:10 +00:00
endif
ifneq ($(USE_POLL),)
OPTIONS_CFLAGS += -DENABLE_POLL
OPTIONS_OBJS += src/ev_poll.o
BUILD_OPTIONS += $(call ignore_implicit,USE_POLL)
endif
ifneq ($(USE_EPOLL),)
OPTIONS_CFLAGS += -DENABLE_EPOLL
OPTIONS_OBJS += src/ev_epoll.o
BUILD_OPTIONS += $(call ignore_implicit,USE_EPOLL)
endif
ifneq ($(USE_MY_EPOLL),)
OPTIONS_CFLAGS += -DUSE_MY_EPOLL
BUILD_OPTIONS += $(call ignore_implicit,USE_MY_EPOLL)
endif
ifneq ($(USE_KQUEUE),)
OPTIONS_CFLAGS += -DENABLE_KQUEUE
OPTIONS_OBJS += src/ev_kqueue.o
BUILD_OPTIONS += $(call ignore_implicit,USE_KQUEUE)
endif
ifneq ($(USE_VSYSCALL),)
OPTIONS_OBJS += src/i386-linux-vsys.o
OPTIONS_CFLAGS += -DCONFIG_HAP_LINUX_VSYSCALL
BUILD_OPTIONS += $(call ignore_implicit,USE_VSYSCALL)
endif
ifneq ($(USE_CPU_AFFINITY),)
OPTIONS_CFLAGS += -DUSE_CPU_AFFINITY
BUILD_OPTIONS += $(call ignore_implicit,USE_CPU_AFFINITY)
endif
ifneq ($(USE_MY_SPLICE),)
OPTIONS_CFLAGS += -DUSE_MY_SPLICE
BUILD_OPTIONS += $(call ignore_implicit,USE_MY_SPLICE)
endif
ifneq ($(ASSUME_SPLICE_WORKS),)
OPTIONS_CFLAGS += -DASSUME_SPLICE_WORKS
BUILD_OPTIONS += $(call ignore_implicit,ASSUME_SPLICE_WORKS)
endif
ifneq ($(USE_ACCEPT4),)
OPTIONS_CFLAGS += -DUSE_ACCEPT4
BUILD_OPTIONS += $(call ignore_implicit,USE_ACCEPT4)
endif
ifneq ($(USE_MY_ACCEPT4),)
OPTIONS_CFLAGS += -DUSE_MY_ACCEPT4
BUILD_OPTIONS += $(call ignore_implicit,USE_MY_ACCEPT4)
endif
ifneq ($(USE_NETFILTER),)
OPTIONS_CFLAGS += -DNETFILTER
BUILD_OPTIONS += $(call ignore_implicit,USE_NETFILTER)
endif
ifneq ($(USE_GETSOCKNAME),)
OPTIONS_CFLAGS += -DUSE_GETSOCKNAME
BUILD_OPTIONS += $(call ignore_implicit,USE_GETSOCKNAME)
endif
ifneq ($(USE_REGPARM),)
OPTIONS_CFLAGS += -DCONFIG_REGPARM=3
BUILD_OPTIONS += $(call ignore_implicit,USE_REGPARM)
endif
ifneq ($(USE_DL),)
BUILD_OPTIONS += $(call ignore_implicit,USE_DL)
OPTIONS_LDFLAGS += -ldl
endif
# report DLMALLOC_SRC only if explicitly specified
ifneq ($(DLMALLOC_SRC),)
BUILD_OPTIONS += DLMALLOC_SRC=$(DLMALLOC_SRC)
endif
ifneq ($(USE_DLMALLOC),)
BUILD_OPTIONS += $(call ignore_implicit,USE_DLMALLOC)
ifeq ($(DLMALLOC_SRC),)
DLMALLOC_SRC=src/dlmalloc.c
endif
endif
ifneq ($(DLMALLOC_SRC),)
# DLMALLOC_THRES may be changed to match PAGE_SIZE on every platform
DLMALLOC_THRES = 4096
OPTIONS_OBJS += src/dlmalloc.o
endif
ifneq ($(USE_OPENSSL),)
# OpenSSL is packaged in various forms and with various dependencies.
# In general -lssl is enough, but on some platforms, -lcrypto may be needed,
# reason why it's added by default. Some even need -lz, then you'll need to
# pass it in the "ADDLIB" variable if needed. If your SSL libraries are not
# in the usual path, use SSL_INC=/path/to/inc and SSL_LIB=/path/to/lib.
BUILD_OPTIONS += $(call ignore_implicit,USE_OPENSSL)
OPTIONS_CFLAGS += -DUSE_OPENSSL $(if $(SSL_INC),-I$(SSL_INC))
OPTIONS_LDFLAGS += $(if $(SSL_LIB),-L$(SSL_LIB)) -lssl -lcrypto
OPTIONS_OBJS += src/ssl_sock.o src/shctx.o
ifneq ($(USE_PRIVATE_CACHE),)
OPTIONS_CFLAGS += -DUSE_PRIVATE_CACHE
else
ifneq ($(USE_PTHREAD_PSHARED),)
OPTIONS_CFLAGS += -DUSE_PTHREAD_PSHARED
OPTIONS_LDFLAGS += -lpthread
else
ifneq ($(USE_FUTEX),)
OPTIONS_CFLAGS += -DUSE_SYSCALL_FUTEX
endif
endif
endif
endif
ifneq ($(USE_LUA),)
check_lua_lib = $(shell echo "int main(){}" | $(CC) -o /dev/null -x c - $(2) -l$(1) 2>/dev/null && echo $(1))
BUILD_OPTIONS += $(call ignore_implicit,USE_LUA)
OPTIONS_CFLAGS += -DUSE_LUA $(if $(LUA_INC),-I$(LUA_INC))
LUA_LD_FLAGS := $(if $(LUA_LIB),-L$(LUA_LIB))
ifeq ($(LUA_LIB_NAME),)
# Try to automatically detect the Lua library
LUA_LIB_NAME := $(firstword $(foreach lib,lua5.3 lua53 lua,$(call check_lua_lib,$(lib),$(LUA_LD_FLAGS))))
ifeq ($(LUA_LIB_NAME),)
$(error unable to automatically detect the Lua library name, you can enforce its name with LUA_LIB_NAME=<name> (where <name> can be lua5.3, lua53, lua, ...))
endif
endif
OPTIONS_LDFLAGS += $(LUA_LD_FLAGS) -l$(LUA_LIB_NAME) -lm
ifneq ($(USE_DL),)
OPTIONS_LDFLAGS += -ldl
endif
OPTIONS_OBJS += src/hlua.o
endif
ifneq ($(USE_DEVICEATLAS),)
ifeq ($(USE_PCRE),)
$(error the DeviceAtlas module needs the PCRE library in order to compile)
endif
# Use DEVICEATLAS_SRC and possibly DEVICEATLAS_INC and DEVICEATLAS_LIB to force path
# to DeviceAtlas headers and libraries if needed.
DEVICEATLAS_SRC =
DEVICEATLAS_INC = $(DEVICEATLAS_SRC)
DEVICEATLAS_LIB = $(DEVICEATLAS_SRC)
OPTIONS_OBJS += $(DEVICEATLAS_LIB)/json.o
OPTIONS_OBJS += $(DEVICEATLAS_LIB)/dac.o
OPTIONS_OBJS += src/da.o
OPTIONS_CFLAGS += -DUSE_DEVICEATLAS $(if $(DEVICEATLAS_INC),-I$(DEVICEATLAS_INC))
BUILD_OPTIONS += $(call ignore_implicit,USE_DEVICEATLAS)
endif
ifneq ($(USE_51DEGREES),)
# Use 51DEGREES_SRC and possibly 51DEGREES_INC and 51DEGREES_LIB to force path
# to 51degrees headers and libraries if needed.
51DEGREES_SRC =
51DEGREES_INC = $(51DEGREES_SRC)
51DEGREES_LIB = $(51DEGREES_SRC)
OPTIONS_OBJS += $(51DEGREES_LIB)/../cityhash/city.o
OPTIONS_OBJS += $(51DEGREES_LIB)/51Degrees.o
OPTIONS_OBJS += src/51d.o
OPTIONS_CFLAGS += -DUSE_51DEGREES -DFIFTYONEDEGREES_NO_THREADING $(if $(51DEGREES_INC),-I$(51DEGREES_INC))
BUILD_OPTIONS += $(call ignore_implicit,USE_51DEGREES)
OPTIONS_LDFLAGS += $(if $(51DEGREES_LIB),-L$(51DEGREES_LIB)) -lm
endif
ifneq ($(USE_PCRE)$(USE_STATIC_PCRE)$(USE_PCRE_JIT),)
# PCREDIR is used to automatically construct the PCRE_INC and PCRE_LIB paths,
# by appending /include and /lib respectively. If your system does not use the
# same sub-directories, simply force these variables instead of PCREDIR. It is
# automatically detected but can be forced if required (for cross-compiling).
# Forcing PCREDIR to an empty string will let the compiler use the default
# locations.
PCREDIR := $(shell pcre-config --prefix 2>/dev/null || echo /usr/local)
ifneq ($(PCREDIR),)
PCRE_INC := $(PCREDIR)/include
PCRE_LIB := $(PCREDIR)/lib
endif
ifeq ($(USE_STATIC_PCRE),)
# dynamic PCRE
OPTIONS_CFLAGS += -DUSE_PCRE $(if $(PCRE_INC),-I$(PCRE_INC))
OPTIONS_LDFLAGS += $(if $(PCRE_LIB),-L$(PCRE_LIB)) -lpcreposix -lpcre
BUILD_OPTIONS += $(call ignore_implicit,USE_PCRE)
else
# static PCRE
OPTIONS_CFLAGS += -DUSE_PCRE $(if $(PCRE_INC),-I$(PCRE_INC))
OPTIONS_LDFLAGS += $(if $(PCRE_LIB),-L$(PCRE_LIB)) -Wl,-Bstatic -lpcreposix -lpcre -Wl,-Bdynamic
BUILD_OPTIONS += $(call ignore_implicit,USE_STATIC_PCRE)
endif
# JIT PCRE
ifneq ($(USE_PCRE_JIT),)
OPTIONS_CFLAGS += -DUSE_PCRE_JIT
BUILD_OPTIONS += $(call ignore_implicit,USE_PCRE_JIT)
endif
endif
# TCP Fast Open
ifneq ($(USE_TFO),)
OPTIONS_CFLAGS += -DUSE_TFO
BUILD_OPTIONS += $(call ignore_implicit,USE_TFO)
endif
# This one can be changed to look for ebtree files in an external directory
EBTREE_DIR := ebtree
#### Global compile options
VERBOSE_CFLAGS = $(CFLAGS) $(TARGET_CFLAGS) $(SMALL_OPTS) $(DEFINE)
COPTS = -Iinclude -I$(EBTREE_DIR) -Wall
COPTS += $(CFLAGS) $(TARGET_CFLAGS) $(SMALL_OPTS) $(DEFINE) $(SILENT_DEFINE)
COPTS += $(DEBUG) $(OPTIONS_CFLAGS) $(ADDINC)
ifneq ($(VERSION)$(SUBVERS),)
COPTS += -DCONFIG_HAPROXY_VERSION=\"$(VERSION)$(SUBVERS)\"
endif
ifneq ($(VERDATE),)
COPTS += -DCONFIG_HAPROXY_DATE=\"$(VERDATE)\"
endif
MINOR: add a new function call tracer for debugging purposes This feature relies on GCC's ability to call helpers at function entry/exit points. We define these helpers to quickly dump the minimum info into a trace file that can be converted to a human readable format using a script in the contrib/trace directory. This has only been implemented in the GNU makefile for now on as it is unsure whether it's supported on all OSes. The feature is enabled by building with "TRACE=1". The performance impact is huge, so this feature should only be used when debugging. To limit the loss of performance, fprintf() has been disabled and the output is hand-crafted and emitted using fwrite(), resulting in doubling the performance. Using the TSC instead of gettimeofday() also doubles the performance. Around 1200 conns/s may be achieved on a Pentium-M 1.7 GHz which leads to around 50 MB/s of traces. The entry and exits of all functions will be dumped into a file designated by the HAPROXY_TRACE environment variable, or by default "trace.out". If the trace file name is empty or "/dev/null", then traces are disabled. If opening the trace file fails, then stderr is used. If HAPROXY_TRACE_FAST is used, then the time is taken from the global <now> variable. Last, if HAPROXY_TRACE_TSC is used, then the machine's TSC is used instead of the real time (almost twice as fast). The output format is : <sec.usec> <level> <caller_ptr> <dir> <callee_ptr> or : <tsc> <level> <caller_ptr> <dir> <callee_ptr> where <dir> is '>' when entering a function and '<' when leaving. The awk script in contrib/trace provides a nicer indented output : 6f74989e6f8 ->->-> run_poll_loop > signal_process_queue [src/haproxy.c:1097:0x804bd69] > [include/proto/signal.h:32:0x8049cd0] 6f74989eb00 run_poll_loop < signal_process_queue [src/haproxy.c:1097:0x804bd69] < [include/proto/signal.h:32:0x8049cd0] 6f74989ef44 ->->-> run_poll_loop > wake_expired_tasks [src/haproxy.c:1100:0x804bd72] > [src/task.c:123:0x8055060] 6f74989f3a6 ->->->-> wake_expired_tasks > eb32_lookup_ge [src/task.c:128:0x8055091] > [ebtree/eb32tree.c:138:0x80a8c70] 6f74989f7e9 wake_expired_tasks < eb32_lookup_ge [src/task.c:128:0x8055091] < [ebtree/eb32tree.c:138:0x80a8c70] 6f74989fc0d ->->->-> wake_expired_tasks > eb32_first [src/task.c:134:0x80550d5] > [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a003d ->->->->-> eb32_first > eb_first [ebtree/eb32tree.h:56:0x8054af1] > [ebtree/ebtree.h:520:0x8054a10] 6f7498a0436 ->->->->->-> eb_first > eb_walk_down [ebtree/ebtree.h:521:0x8054a33] > [ebtree/ebtree.h:442:0x80549a0] 6f7498a0843 ->->->->->->-> eb_walk_down > eb_gettag [ebtree/ebtree.h:445:0x80549d6] > [ebtree/ebtree.h:418:0x80548e0] 6f7498a0c2b eb_walk_down < eb_gettag [ebtree/ebtree.h:445:0x80549d6] < [ebtree/ebtree.h:418:0x80548e0] 6f7498a1042 ->->->->->->-> eb_walk_down > eb_untag [ebtree/ebtree.h:447:0x80549e2] > [ebtree/ebtree.h:412:0x80548a0] 6f7498a1498 eb_walk_down < eb_untag [ebtree/ebtree.h:447:0x80549e2] < [ebtree/ebtree.h:412:0x80548a0] 6f7498a18c6 ->->->->->->-> eb_walk_down > eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] > [ebtree/ebtree.h:432:0x8054960] 6f7498a1cd4 eb_walk_down < eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] < [ebtree/ebtree.h:432:0x8054960] 6f7498a20c4 eb_first < eb_walk_down [ebtree/ebtree.h:521:0x8054a33] < [ebtree/ebtree.h:442:0x80549a0] 6f7498a24b4 eb32_first < eb_first [ebtree/eb32tree.h:56:0x8054af1] < [ebtree/ebtree.h:520:0x8054a10] 6f7498a289c wake_expired_tasks < eb32_first [src/task.c:134:0x80550d5] < [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a2c8c run_poll_loop < wake_expired_tasks [src/haproxy.c:1100:0x804bd72] < [src/task.c:123:0x8055060] 6f7498a3095 ->->-> run_poll_loop > process_runnable_tasks [src/haproxy.c:1103:0x804bd7a] > [src/task.c:190:0x8055150] A nice improvement would possibly consist in trying to get the function's arguments in the stack and to dump a few more infor for some well-known functions (eg: the session's status for process_session).
2012-05-25 21:53:16 +00:00
ifneq ($(TRACE),)
# if tracing is enabled, we want it to be as fast as possible
TRACE_COPTS := $(filter-out -O0 -O1 -O2 -pg -finstrument-functions,$(COPTS)) -O3 -fomit-frame-pointer
COPTS += -finstrument-functions
endif
MAJOR: namespace: add Linux network namespace support This patch makes it possible to create binds and servers in separate namespaces. This can be used to proxy between multiple completely independent virtual networks (with possibly overlapping IP addresses) and a non-namespace-aware proxy implementation that supports the proxy protocol (v2). The setup is something like this: net1 on VLAN 1 (namespace 1) -\ net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0) net3 on VLAN 3 (namespace 3) -/ The proxy is configured to make server connections through haproxy and sending the expected source/target addresses to haproxy using the proxy protocol. The network namespace setup on the haproxy node is something like this: = 8< = $ cat setup.sh ip netns add 1 ip link add link eth1 type vlan id 1 ip link set eth1.1 netns 1 ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1 ip netns exec 1 ip link set eth1.$id up ... = 8< = = 8< = $ cat haproxy.cfg frontend clients bind 127.0.0.1:50022 namespace 1 transparent default_backend scb backend server mode tcp server server1 192.168.122.4:2222 namespace 2 send-proxy-v2 = 8< = A bind line creates the listener in the specified namespace, and connections originating from that listener also have their network namespace set to that of the listener. A server line either forces the connection to be made in a specified namespace or may use the namespace from the client-side connection if that was set. For more documentation please read the documentation included in the patch itself. Signed-off-by: KOVACS Tamas <ktamas@balabit.com> Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com> Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
2014-11-17 14:11:45 +00:00
ifneq ($(USE_NS),)
OPTIONS_CFLAGS += -DCONFIG_HAP_NS
BUILD_OPTIONS += $(call ignore_implicit,USE_NS)
endif
#### Global link options
# These options are added at the end of the "ld" command line. Use LDFLAGS to
# add options at the beginning of the "ld" command line if needed.
LDOPTS = $(TARGET_LDFLAGS) $(OPTIONS_LDFLAGS) $(ADDLIB)
ifeq ($(TARGET),)
all:
@echo
@echo "Due to too many reports of suboptimized setups, building without"
@echo "specifying the target is no longer supported. Please specify the"
@echo "target OS in the TARGET variable, in the following form:"
@echo
@echo " $ make TARGET=xxx"
@echo
@echo "Please choose the target among the following supported list :"
@echo
@echo " linux2628, linux26, linux24, linux24e, linux22, solaris"
@echo " freebsd, openbsd, cygwin, custom, generic"
@echo
@echo "Use \"generic\" if you don't want any optimization, \"custom\" if you"
@echo "want to precisely tweak every option, or choose the target which"
@echo "matches your OS the most in order to gain the maximum performance"
@echo "out of it. Please check the Makefile in case of doubts."
@echo
@exit 1
else
all: haproxy $(EXTRA)
endif
2005-12-17 11:21:26 +00:00
OBJS = src/haproxy.o src/base64.o src/protocol.o \
src/uri_auth.o src/standard.o src/buffer.o src/log.o src/task.o \
src/chunk.o src/channel.o src/listener.o src/lru.o src/xxhash.o \
src/time.o src/fd.o src/pipe.o src/regex.o src/cfgparse.o src/server.o \
src/checks.o src/queue.o src/frontend.o src/proxy.o src/peers.o \
src/arg.o src/stick_table.o src/proto_uxst.o src/connection.o \
src/proto_http.o src/raw_sock.o src/backend.o \
src/lb_chash.o src/lb_fwlc.o src/lb_fwrr.o src/lb_map.o src/lb_fas.o \
src/stream_interface.o src/dumpstats.o src/proto_tcp.o src/applet.o \
src/session.o src/stream.o src/hdr_idx.o src/ev_select.o src/signal.o \
src/acl.o src/sample.o src/memory.o src/freq_ctr.o src/auth.o src/proto_udp.o \
MAJOR: namespace: add Linux network namespace support This patch makes it possible to create binds and servers in separate namespaces. This can be used to proxy between multiple completely independent virtual networks (with possibly overlapping IP addresses) and a non-namespace-aware proxy implementation that supports the proxy protocol (v2). The setup is something like this: net1 on VLAN 1 (namespace 1) -\ net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0) net3 on VLAN 3 (namespace 3) -/ The proxy is configured to make server connections through haproxy and sending the expected source/target addresses to haproxy using the proxy protocol. The network namespace setup on the haproxy node is something like this: = 8< = $ cat setup.sh ip netns add 1 ip link add link eth1 type vlan id 1 ip link set eth1.1 netns 1 ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1 ip netns exec 1 ip link set eth1.$id up ... = 8< = = 8< = $ cat haproxy.cfg frontend clients bind 127.0.0.1:50022 namespace 1 transparent default_backend scb backend server mode tcp server server1 192.168.122.4:2222 namespace 2 send-proxy-v2 = 8< = A bind line creates the listener in the specified namespace, and connections originating from that listener also have their network namespace set to that of the listener. A server line either forces the connection to be made in a specified namespace or may use the namespace from the client-side connection if that was set. For more documentation please read the documentation included in the patch itself. Signed-off-by: KOVACS Tamas <ktamas@balabit.com> Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com> Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
2014-11-17 14:11:45 +00:00
src/compression.o src/payload.o src/hash.o src/pattern.o src/map.o \
src/namespace.o src/mailers.o src/dns.o src/vars.o
EBTREE_OBJS = $(EBTREE_DIR)/ebtree.o \
$(EBTREE_DIR)/eb32tree.o $(EBTREE_DIR)/eb64tree.o \
$(EBTREE_DIR)/ebmbtree.o $(EBTREE_DIR)/ebsttree.o \
$(EBTREE_DIR)/ebimtree.o $(EBTREE_DIR)/ebistree.o
MINOR: add a new function call tracer for debugging purposes This feature relies on GCC's ability to call helpers at function entry/exit points. We define these helpers to quickly dump the minimum info into a trace file that can be converted to a human readable format using a script in the contrib/trace directory. This has only been implemented in the GNU makefile for now on as it is unsure whether it's supported on all OSes. The feature is enabled by building with "TRACE=1". The performance impact is huge, so this feature should only be used when debugging. To limit the loss of performance, fprintf() has been disabled and the output is hand-crafted and emitted using fwrite(), resulting in doubling the performance. Using the TSC instead of gettimeofday() also doubles the performance. Around 1200 conns/s may be achieved on a Pentium-M 1.7 GHz which leads to around 50 MB/s of traces. The entry and exits of all functions will be dumped into a file designated by the HAPROXY_TRACE environment variable, or by default "trace.out". If the trace file name is empty or "/dev/null", then traces are disabled. If opening the trace file fails, then stderr is used. If HAPROXY_TRACE_FAST is used, then the time is taken from the global <now> variable. Last, if HAPROXY_TRACE_TSC is used, then the machine's TSC is used instead of the real time (almost twice as fast). The output format is : <sec.usec> <level> <caller_ptr> <dir> <callee_ptr> or : <tsc> <level> <caller_ptr> <dir> <callee_ptr> where <dir> is '>' when entering a function and '<' when leaving. The awk script in contrib/trace provides a nicer indented output : 6f74989e6f8 ->->-> run_poll_loop > signal_process_queue [src/haproxy.c:1097:0x804bd69] > [include/proto/signal.h:32:0x8049cd0] 6f74989eb00 run_poll_loop < signal_process_queue [src/haproxy.c:1097:0x804bd69] < [include/proto/signal.h:32:0x8049cd0] 6f74989ef44 ->->-> run_poll_loop > wake_expired_tasks [src/haproxy.c:1100:0x804bd72] > [src/task.c:123:0x8055060] 6f74989f3a6 ->->->-> wake_expired_tasks > eb32_lookup_ge [src/task.c:128:0x8055091] > [ebtree/eb32tree.c:138:0x80a8c70] 6f74989f7e9 wake_expired_tasks < eb32_lookup_ge [src/task.c:128:0x8055091] < [ebtree/eb32tree.c:138:0x80a8c70] 6f74989fc0d ->->->-> wake_expired_tasks > eb32_first [src/task.c:134:0x80550d5] > [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a003d ->->->->-> eb32_first > eb_first [ebtree/eb32tree.h:56:0x8054af1] > [ebtree/ebtree.h:520:0x8054a10] 6f7498a0436 ->->->->->-> eb_first > eb_walk_down [ebtree/ebtree.h:521:0x8054a33] > [ebtree/ebtree.h:442:0x80549a0] 6f7498a0843 ->->->->->->-> eb_walk_down > eb_gettag [ebtree/ebtree.h:445:0x80549d6] > [ebtree/ebtree.h:418:0x80548e0] 6f7498a0c2b eb_walk_down < eb_gettag [ebtree/ebtree.h:445:0x80549d6] < [ebtree/ebtree.h:418:0x80548e0] 6f7498a1042 ->->->->->->-> eb_walk_down > eb_untag [ebtree/ebtree.h:447:0x80549e2] > [ebtree/ebtree.h:412:0x80548a0] 6f7498a1498 eb_walk_down < eb_untag [ebtree/ebtree.h:447:0x80549e2] < [ebtree/ebtree.h:412:0x80548a0] 6f7498a18c6 ->->->->->->-> eb_walk_down > eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] > [ebtree/ebtree.h:432:0x8054960] 6f7498a1cd4 eb_walk_down < eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] < [ebtree/ebtree.h:432:0x8054960] 6f7498a20c4 eb_first < eb_walk_down [ebtree/ebtree.h:521:0x8054a33] < [ebtree/ebtree.h:442:0x80549a0] 6f7498a24b4 eb32_first < eb_first [ebtree/eb32tree.h:56:0x8054af1] < [ebtree/ebtree.h:520:0x8054a10] 6f7498a289c wake_expired_tasks < eb32_first [src/task.c:134:0x80550d5] < [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a2c8c run_poll_loop < wake_expired_tasks [src/haproxy.c:1100:0x804bd72] < [src/task.c:123:0x8055060] 6f7498a3095 ->->-> run_poll_loop > process_runnable_tasks [src/haproxy.c:1103:0x804bd7a] > [src/task.c:190:0x8055150] A nice improvement would possibly consist in trying to get the function's arguments in the stack and to dump a few more infor for some well-known functions (eg: the session's status for process_session).
2012-05-25 21:53:16 +00:00
ifneq ($(TRACE),)
OBJS += src/trace.o
endif
WRAPPER_OBJS = src/haproxy-systemd-wrapper.o
# Not used right now
LIB_EBTREE = $(EBTREE_DIR)/libebtree.a
haproxy: $(OBJS) $(OPTIONS_OBJS) $(EBTREE_OBJS)
$(LD) $(LDFLAGS) -o $@ $^ $(LDOPTS)
2005-12-17 11:21:26 +00:00
haproxy-systemd-wrapper: $(WRAPPER_OBJS)
$(LD) $(LDFLAGS) -o $@ $^ $(LDOPTS)
$(LIB_EBTREE): $(EBTREE_OBJS)
$(AR) rv $@ $^
objsize: haproxy
@objdump -t $^|grep ' g '|grep -F '.text'|awk '{print $$5 FS $$6}'|sort
2005-12-17 11:21:26 +00:00
%.o: %.c
$(CC) $(COPTS) -c -o $@ $<
2005-12-17 11:21:26 +00:00
MINOR: add a new function call tracer for debugging purposes This feature relies on GCC's ability to call helpers at function entry/exit points. We define these helpers to quickly dump the minimum info into a trace file that can be converted to a human readable format using a script in the contrib/trace directory. This has only been implemented in the GNU makefile for now on as it is unsure whether it's supported on all OSes. The feature is enabled by building with "TRACE=1". The performance impact is huge, so this feature should only be used when debugging. To limit the loss of performance, fprintf() has been disabled and the output is hand-crafted and emitted using fwrite(), resulting in doubling the performance. Using the TSC instead of gettimeofday() also doubles the performance. Around 1200 conns/s may be achieved on a Pentium-M 1.7 GHz which leads to around 50 MB/s of traces. The entry and exits of all functions will be dumped into a file designated by the HAPROXY_TRACE environment variable, or by default "trace.out". If the trace file name is empty or "/dev/null", then traces are disabled. If opening the trace file fails, then stderr is used. If HAPROXY_TRACE_FAST is used, then the time is taken from the global <now> variable. Last, if HAPROXY_TRACE_TSC is used, then the machine's TSC is used instead of the real time (almost twice as fast). The output format is : <sec.usec> <level> <caller_ptr> <dir> <callee_ptr> or : <tsc> <level> <caller_ptr> <dir> <callee_ptr> where <dir> is '>' when entering a function and '<' when leaving. The awk script in contrib/trace provides a nicer indented output : 6f74989e6f8 ->->-> run_poll_loop > signal_process_queue [src/haproxy.c:1097:0x804bd69] > [include/proto/signal.h:32:0x8049cd0] 6f74989eb00 run_poll_loop < signal_process_queue [src/haproxy.c:1097:0x804bd69] < [include/proto/signal.h:32:0x8049cd0] 6f74989ef44 ->->-> run_poll_loop > wake_expired_tasks [src/haproxy.c:1100:0x804bd72] > [src/task.c:123:0x8055060] 6f74989f3a6 ->->->-> wake_expired_tasks > eb32_lookup_ge [src/task.c:128:0x8055091] > [ebtree/eb32tree.c:138:0x80a8c70] 6f74989f7e9 wake_expired_tasks < eb32_lookup_ge [src/task.c:128:0x8055091] < [ebtree/eb32tree.c:138:0x80a8c70] 6f74989fc0d ->->->-> wake_expired_tasks > eb32_first [src/task.c:134:0x80550d5] > [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a003d ->->->->-> eb32_first > eb_first [ebtree/eb32tree.h:56:0x8054af1] > [ebtree/ebtree.h:520:0x8054a10] 6f7498a0436 ->->->->->-> eb_first > eb_walk_down [ebtree/ebtree.h:521:0x8054a33] > [ebtree/ebtree.h:442:0x80549a0] 6f7498a0843 ->->->->->->-> eb_walk_down > eb_gettag [ebtree/ebtree.h:445:0x80549d6] > [ebtree/ebtree.h:418:0x80548e0] 6f7498a0c2b eb_walk_down < eb_gettag [ebtree/ebtree.h:445:0x80549d6] < [ebtree/ebtree.h:418:0x80548e0] 6f7498a1042 ->->->->->->-> eb_walk_down > eb_untag [ebtree/ebtree.h:447:0x80549e2] > [ebtree/ebtree.h:412:0x80548a0] 6f7498a1498 eb_walk_down < eb_untag [ebtree/ebtree.h:447:0x80549e2] < [ebtree/ebtree.h:412:0x80548a0] 6f7498a18c6 ->->->->->->-> eb_walk_down > eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] > [ebtree/ebtree.h:432:0x8054960] 6f7498a1cd4 eb_walk_down < eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] < [ebtree/ebtree.h:432:0x8054960] 6f7498a20c4 eb_first < eb_walk_down [ebtree/ebtree.h:521:0x8054a33] < [ebtree/ebtree.h:442:0x80549a0] 6f7498a24b4 eb32_first < eb_first [ebtree/eb32tree.h:56:0x8054af1] < [ebtree/ebtree.h:520:0x8054a10] 6f7498a289c wake_expired_tasks < eb32_first [src/task.c:134:0x80550d5] < [ebtree/eb32tree.h:55:0x8054ad0] 6f7498a2c8c run_poll_loop < wake_expired_tasks [src/haproxy.c:1100:0x804bd72] < [src/task.c:123:0x8055060] 6f7498a3095 ->->-> run_poll_loop > process_runnable_tasks [src/haproxy.c:1103:0x804bd7a] > [src/task.c:190:0x8055150] A nice improvement would possibly consist in trying to get the function's arguments in the stack and to dump a few more infor for some well-known functions (eg: the session's status for process_session).
2012-05-25 21:53:16 +00:00
src/trace.o: src/trace.c
$(CC) $(TRACE_COPTS) -c -o $@ $<
src/haproxy.o: src/haproxy.c
$(CC) $(COPTS) \
-DBUILD_TARGET='"$(strip $(TARGET))"' \
-DBUILD_ARCH='"$(strip $(ARCH))"' \
-DBUILD_CPU='"$(strip $(CPU))"' \
-DBUILD_CC='"$(strip $(CC))"' \
-DBUILD_CFLAGS='"$(strip $(VERBOSE_CFLAGS))"' \
-DBUILD_OPTIONS='"$(strip $(BUILD_OPTIONS))"' \
-c -o $@ $<
src/haproxy-systemd-wrapper.o: src/haproxy-systemd-wrapper.c
$(CC) $(COPTS) \
-DSBINDIR='"$(strip $(SBINDIR))"' \
-c -o $@ $<
src/dlmalloc.o: $(DLMALLOC_SRC)
$(CC) $(COPTS) -DDEFAULT_MMAP_THRESHOLD=$(DLMALLOC_THRES) -c -o $@ $<
install-man:
install -d "$(DESTDIR)$(MANDIR)"/man1
install -m 644 doc/haproxy.1 "$(DESTDIR)$(MANDIR)"/man1
EXCLUDE_DOCUMENTATION = lgpl gpl coding-style
DOCUMENTATION = $(filter-out $(EXCLUDE_DOCUMENTATION),$(patsubst doc/%.txt,%,$(wildcard doc/*.txt)))
install-doc:
install -d "$(DESTDIR)$(DOCDIR)"
for x in $(DOCUMENTATION); do \
install -m 644 doc/$$x.txt "$(DESTDIR)$(DOCDIR)" ; \
done
install-bin: haproxy $(EXTRA)
install -d "$(DESTDIR)$(SBINDIR)"
install haproxy $(EXTRA) "$(DESTDIR)$(SBINDIR)"
install: install-bin install-man install-doc
uninstall:
rm -f "$(DESTDIR)$(MANDIR)"/man1/haproxy.1
for x in $(DOCUMENTATION); do \
rm -f "$(DESTDIR)$(DOCDIR)"/$$x.txt ; \
done
-rmdir "$(DESTDIR)$(DOCDIR)"
rm -f "$(DESTDIR)$(SBINDIR)"/haproxy
rm -f "$(DESTDIR)$(SBINDIR)"/haproxy-systemd-wrapper
2005-12-17 11:21:26 +00:00
clean:
rm -f *.[oas] src/*.[oas] ebtree/*.[oas] haproxy test
for dir in . src include/* doc ebtree; do rm -f $$dir/*~ $$dir/*.rej $$dir/core; done
rm -f haproxy-$(VERSION).tar.gz haproxy-$(VERSION)$(SUBVERS).tar.gz
rm -f haproxy-$(VERSION) haproxy-$(VERSION)$(SUBVERS) nohup.out gmon.out
rm -f haproxy-systemd-wrapper
2009-10-10 20:20:44 +00:00
tags:
find src include \( -name '*.c' -o -name '*.h' \) -print0 | \
2009-10-10 20:20:44 +00:00
xargs -0 etags --declarations --members
cscope:
find src include -name "*.[ch]" -print | cscope -q -b -i -
tar: clean
ln -s . haproxy-$(VERSION)$(SUBVERS)
tar --exclude=haproxy-$(VERSION)$(SUBVERS)/.git \
--exclude=haproxy-$(VERSION)$(SUBVERS)/haproxy-$(VERSION)$(SUBVERS) \
--exclude=haproxy-$(VERSION)$(SUBVERS)/haproxy-$(VERSION)$(SUBVERS).tar.gz \
-cf - haproxy-$(VERSION)$(SUBVERS)/* | gzip -c9 >haproxy-$(VERSION)$(SUBVERS).tar.gz
rm -f haproxy-$(VERSION)$(SUBVERS)
git-tar:
git archive --format=tar --prefix="haproxy-$(VERSION)$(SUBVERS)/" HEAD | gzip -9 > haproxy-$(VERSION)$(SUBVERS).tar.gz
version:
@echo "VERSION: $(VERSION)"
@echo "SUBVERS: $(SUBVERS)"
@echo "VERDATE: $(VERDATE)"
# never use this one if you don't know what it is used for.
update-version:
@echo "Ready to update the following versions :"
@echo "VERSION: $(VERSION)"
@echo "SUBVERS: $(SUBVERS)"
@echo "VERDATE: $(VERDATE)"
@echo "Press [ENTER] to continue or Ctrl-C to abort now.";read
echo "$(VERSION)" > VERSION
echo "$(SUBVERS)" > SUBVERS
echo "$(VERDATE)" > VERDATE