haproxy/include/proto/server.h

269 lines
9.5 KiB
C
Raw Normal View History

2006-06-15 19:48:13 +00:00
/*
* include/proto/server.h
* This file defines everything related to servers.
*
* Copyright (C) 2000-2009 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
2006-06-15 19:48:13 +00:00
#ifndef _PROTO_SERVER_H
#define _PROTO_SERVER_H
#include <unistd.h>
#include <common/config.h>
#include <common/time.h>
#include <types/applet.h>
#include <types/dns.h>
#include <types/proxy.h>
#include <types/queue.h>
#include <types/server.h>
#include <proto/queue.h>
#include <proto/log.h>
#include <proto/freq_ctr.h>
2006-06-15 19:48:13 +00:00
int srv_downtime(const struct server *s);
int srv_lastsession(const struct server *s);
int srv_getinter(const struct check *check);
int parse_server(const char *file, int linenum, char **args, struct proxy *curproxy, struct proxy *defproxy, int parse_addr);
int update_server_addr(struct server *s, void *ip, int ip_sin_family, const char *updater);
const char *update_server_addr_port(struct server *s, const char *addr, const char *port, char *updater);
struct server *server_find_by_id(struct proxy *bk, int id);
struct server *server_find_by_name(struct proxy *bk, const char *name);
struct server *server_find_best_match(struct proxy *bk, char *name, int id, int *diff);
void apply_server_state(void);
BUG/MEDIUM: servers: properly propagate the maintenance states during startup Right now there is an issue with the way the maintenance flags are propagated upon startup. They are not propagate, just copied from the tracked server. This implies that depending on the server's order, some tracking servers may not be marked down. For example this configuration does not work as expected : server s1 1.1.1.1:8000 track s2 server s2 1.1.1.1:8000 track s3 server s3 1.1.1.1:8000 track s4 server s4 wtap:8000 check inter 1s disabled It results in s1/s2 being up, and s3/s4 being down, while all of them should be down. The only clean way to process this is to run through all "root" servers (those not tracking any other server), and to propagate their state down to all their trackers. This is the same algorithm used to propagate the state changes. It has to be done both to compute the IDRAIN flag and the IMAINT flag. However, doing so requires that tracking servers are not marked as inherited maintenance anymore while parsing the configuration (and given that it is wrong, better drop it). This fix also addresses another side effect of the bug above which is that the IDRAIN/IMAINT flags are stored in the state files, and if restored while the tracked server doesn't have the equivalent flag, the servers may end up in a situation where it's impossible to remove these flags. For example in the configuration above, after removing "disabled" on server s4, the other servers would have remained down, and not anymore with this fix. Similarly, the combination of IMAINT or IDRAIN with their respective forced modes was not accepted on reload, which is wrong as well. This bug has been present at least since 1.5, maybe even 1.4 (it came with tracking support). The fix needs to be backported there, though the srv-state parts are irrelevant. This commit relies on previous patch to silence warnings on startup.
2016-11-03 18:22:19 +00:00
void srv_compute_all_admin_states(struct proxy *px);
int srv_set_addr_via_libc(struct server *srv, int *err_code);
int srv_init_addr(void);
struct server *cli_find_server(struct appctx *appctx, char *arg);
struct server *new_server(struct proxy *proxy);
/* functions related to server name resolution */
int snr_update_srv_status(struct server *s, int has_no_ip);
const char *update_server_fqdn(struct server *server, const char *fqdn, const char *updater, int dns_locked);
MAJOR/REORG: dns: DNS resolution task and requester queues This patch is a major upgrade of the internal run-time DNS resolver in HAProxy and it brings the following 2 main changes: 1. DNS resolution task Up to now, DNS resolution was triggered by the health check task. From now, DNS resolution task is autonomous. It is started by HAProxy right after the scheduler is available and it is woken either when a network IO occurs for one of its nameserver or when a timeout is matched. From now, this means we can enable DNS resolution for a server without enabling health checking. 2. Introduction of a dns_requester structure Up to now, DNS resolution was purposely made for resolving server hostnames. The idea, is to ensure that any HAProxy internal object should be able to trigger a DNS resolution. For this purpose, 2 things has to be done: - clean up the DNS code from the server structure (this was already quite clean actually) and clean up the server's callbacks from manipulating too much DNS resolution - create an agnostic structure which allows linking a DNS resolution and a requester of any type (using obj_type enum) 3. Manage requesters through queues Up to now, there was an uniq relationship between a resolution and it's owner (aka the requester now). It's a shame, because in some cases, multiple objects may share the same hostname and may benefit from a resolution being performed by a third party. This patch introduces the notion of queues, which are basically lists of either currently running resolution or waiting ones. The resolutions are now available as a pool, which belongs to the resolvers. The pool has has a default size of 64 resolutions per resolvers and is allocated at configuration parsing.
2017-05-22 13:17:15 +00:00
int snr_resolution_cb(struct dns_requester *requester, struct dns_nameserver *nameserver);
int snr_resolution_error_cb(struct dns_requester *requester, int error_code);
struct server *snr_check_ip_callback(struct server *srv, void *ip, unsigned char *ip_family);
struct task *srv_cleanup_idle_connections(struct task *task, void *ctx, unsigned short state);
/* increase the number of cumulated connections on the designated server */
static void inline srv_inc_sess_ctr(struct server *s)
{
HA_ATOMIC_ADD(&s->counters.cum_sess, 1);
HA_ATOMIC_UPDATE_MAX(&s->counters.sps_max,
update_freq_ctr(&s->sess_per_sec, 1));
}
/* set the time of last session on the designated server */
static void inline srv_set_sess_last(struct server *s)
{
s->counters.last_sess = now.tv_sec;
}
/*
* Registers the server keyword list <kwl> as a list of valid keywords for next
* parsing sessions.
*/
void srv_register_keywords(struct srv_kw_list *kwl);
/* Return a pointer to the server keyword <kw>, or NULL if not found. */
struct srv_kw *srv_find_kw(const char *kw);
/* Dumps all registered "server" keywords to the <out> string pointer. */
void srv_dump_kws(char **out);
BUG/MAJOR: server: weight calculation fails for map-based algorithms A crash was reported by Igor at owind when changing a server's weight on the CLI. Lukas Tribus could reproduce a related bug where setting a server's weight would result in the new weight being multiplied by the initial one. The two bugs are the same. The incorrect weight calculation results in the total farm weight being larger than what was initially allocated, causing the map index to be out of bounds on some hashes. It's easy to reproduce using "balance url_param" with a variable param, or with "balance static-rr". It appears that the calculation is made at many places and is not always right and not always wrong the same way. Thus, this patch introduces a new function "server_recalc_eweight()" which is dedicated to this task of computing ->eweight from many other elements including uweight and current time (for slowstart), and all users now switch to use this function. The patch is a bit large but the code was not trivially fixable in a way that could guarantee this situation would not occur anymore. The fix is much more readable and has been verified to work with all algorithms, with both consistent and map-based hashes, and even with static-rr. Slowstart was tested as well, just like enable/disable server. The same bug is very likely present in 1.4 as well, so the patch will probably need to be backported eventhough it will not apply as-is. Thanks to Lukas and Igor for the information they provided to reproduce it.
2013-11-21 10:22:01 +00:00
/* Recomputes the server's eweight based on its state, uweight, the current time,
* and the proxy's algorihtm. To be used after updating sv->uweight. The warmup
* state is automatically disabled if the time is elapsed.
*/
void server_recalc_eweight(struct server *sv, int must_update);
BUG/MAJOR: server: weight calculation fails for map-based algorithms A crash was reported by Igor at owind when changing a server's weight on the CLI. Lukas Tribus could reproduce a related bug where setting a server's weight would result in the new weight being multiplied by the initial one. The two bugs are the same. The incorrect weight calculation results in the total farm weight being larger than what was initially allocated, causing the map index to be out of bounds on some hashes. It's easy to reproduce using "balance url_param" with a variable param, or with "balance static-rr". It appears that the calculation is made at many places and is not always right and not always wrong the same way. Thus, this patch introduces a new function "server_recalc_eweight()" which is dedicated to this task of computing ->eweight from many other elements including uweight and current time (for slowstart), and all users now switch to use this function. The patch is a bit large but the code was not trivially fixable in a way that could guarantee this situation would not occur anymore. The fix is much more readable and has been verified to work with all algorithms, with both consistent and map-based hashes, and even with static-rr. Slowstart was tested as well, just like enable/disable server. The same bug is very likely present in 1.4 as well, so the patch will probably need to be backported eventhough it will not apply as-is. Thanks to Lukas and Igor for the information they provided to reproduce it.
2013-11-21 10:22:01 +00:00
/* returns the current server throttle rate between 0 and 100% */
static inline unsigned int server_throttle_rate(struct server *sv)
{
struct proxy *px = sv->proxy;
/* when uweight is 0, we're in soft-stop so that cannot be a slowstart,
* thus the throttle is 100%.
*/
if (!sv->uweight)
return 100;
return (100U * px->lbprm.wmult * sv->cur_eweight + px->lbprm.wdiv - 1) / (px->lbprm.wdiv * sv->uweight);
}
/*
* Parses weight_str and configures sv accordingly.
* Returns NULL on success, error message string otherwise.
*/
const char *server_parse_weight_change_request(struct server *sv,
const char *weight_str);
/*
* Parses addr_str and configures sv accordingly. updater precise
* the source of the change in the associated message log.
* Returns NULL on success, error message string otherwise.
*/
const char *server_parse_addr_change_request(struct server *sv,
const char *addr_str, const char *updater);
/*
* Parses maxconn_str and configures sv accordingly.
* Returns NULL on success, error message string otherwise.
*/
const char *server_parse_maxconn_change_request(struct server *sv,
const char *maxconn_str);
/*
* Return true if the server has a zero user-weight, meaning it's in draining
* mode (ie: not taking new non-persistent connections).
*/
static inline int server_is_draining(const struct server *s)
{
return !s->uweight || (s->cur_admin & SRV_ADMF_DRAIN);
}
/* Shutdown all connections of a server. The caller must pass a termination
* code in <why>, which must be one of SF_ERR_* indicating the reason for the
* shutdown.
*/
void srv_shutdown_streams(struct server *srv, int why);
/* Shutdown all connections of all backup servers of a proxy. The caller must
* pass a termination code in <why>, which must be one of SF_ERR_* indicating
* the reason for the shutdown.
*/
void srv_shutdown_backup_streams(struct proxy *px, int why);
void srv_append_status(struct buffer *msg, struct server *s, struct check *,
int xferred, int forced);
void srv_set_stopped(struct server *s, const char *reason, struct check *check);
void srv_set_running(struct server *s, const char *reason, struct check *check);
void srv_set_stopping(struct server *s, const char *reason, struct check *check);
/* Enables admin flag <mode> (among SRV_ADMF_*) on server <s>. This is used to
* enforce either maint mode or drain mode. It is not allowed to set more than
* one flag at once. The equivalent "inherited" flag is propagated to all
* tracking servers. Maintenance mode disables health checks (but not agent
* checks). When either the flag is already set or no flag is passed, nothing
* is done. If <cause> is non-null, it will be displayed at the end of the log
* lines to justify the state change.
*/
void srv_set_admin_flag(struct server *s, enum srv_admin mode, const char *cause);
/* Disables admin flag <mode> (among SRV_ADMF_*) on server <s>. This is used to
* stop enforcing either maint mode or drain mode. It is not allowed to set more
* than one flag at once. The equivalent "inherited" flag is propagated to all
* tracking servers. Leaving maintenance mode re-enables health checks. When
* either the flag is already cleared or no flag is passed, nothing is done.
*/
void srv_clr_admin_flag(struct server *s, enum srv_admin mode);
/* Calculates the dynamic persitent cookie for a server, if a secret key has
* been provided.
*/
void srv_set_dyncookie(struct server *s);
/* Puts server <s> into maintenance mode, and propagate that status down to all
* tracking servers.
*/
static inline void srv_adm_set_maint(struct server *s)
{
srv_set_admin_flag(s, SRV_ADMF_FMAINT, NULL);
srv_clr_admin_flag(s, SRV_ADMF_FDRAIN);
}
/* Puts server <s> into drain mode, and propagate that status down to all
* tracking servers.
*/
static inline void srv_adm_set_drain(struct server *s)
{
srv_set_admin_flag(s, SRV_ADMF_FDRAIN, NULL);
srv_clr_admin_flag(s, SRV_ADMF_FMAINT);
}
/* Puts server <s> into ready mode, and propagate that status down to all
* tracking servers.
*/
static inline void srv_adm_set_ready(struct server *s)
{
srv_clr_admin_flag(s, SRV_ADMF_FDRAIN);
srv_clr_admin_flag(s, SRV_ADMF_FMAINT);
}
/* appends an initaddr method to the existing list. Returns 0 on failure. */
static inline int srv_append_initaddr(unsigned int *list, enum srv_initaddr addr)
{
int shift = 0;
while (shift + 3 < 32 && (*list >> shift))
shift += 3;
if (shift + 3 > 32)
return 0;
*list |= addr << shift;
return 1;
}
/* returns the next initaddr method and removes it from <list> by shifting
* it right (implying that it MUST NOT be the server's. Returns SRV_IADDR_END
* at the end.
*/
static inline enum srv_initaddr srv_get_next_initaddr(unsigned int *list)
{
enum srv_initaddr ret;
ret = *list & 7;
*list >>= 3;
return ret;
}
/* This adds an idle connection to the server's list if the connection is
* reusable, not held by any owner anymore, but still has available streams.
*/
static inline int srv_add_to_idle_list(struct server *srv, struct connection *conn)
{
if (srv && srv->pool_purge_delay > 0 &&
(srv->max_idle_conns == -1 || srv->max_idle_conns > srv->curr_idle_conns) &&
!(conn->flags & CO_FL_PRIVATE) &&
((srv->proxy->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR) &&
!conn->mux->used_streams(conn) && conn->mux->avail_streams(conn)) {
LIST_DEL(&conn->list);
LIST_ADDQ(&srv->idle_orphan_conns[tid], &conn->list);
srv->curr_idle_conns++;
conn->idle_time = now_ms;
if (!(task_in_wq(srv->idle_task[tid])) &&
!(task_in_rq(srv->idle_task[tid])))
task_schedule(srv->idle_task[tid],
tick_add(now_ms, srv->pool_purge_delay));
return 1;
}
return 0;
}
#endif /* _PROTO_SERVER_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/