haproxy/src/memory.c

541 lines
15 KiB
C
Raw Normal View History

/*
* Memory management functions.
*
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <types/applet.h>
#include <types/cli.h>
#include <types/global.h>
#include <types/stats.h>
#include <common/config.h>
[MEDIUM] Fix memory freeing at exit New functions implemented: - deinit_pollers: called at the end of deinit()) - prune_acl: called via list_for_each_entry_safe Add missing pool_destroy2 calls: - p->hdr_idx_pool - pool2_tree64 Implement all task stopping: - health-check: needs new "struct task" in the struct server - queue processing: queue_mgt - appsess_refresh: appsession_refresh before (idle system): ==6079== LEAK SUMMARY: ==6079== definitely lost: 1,112 bytes in 75 blocks. ==6079== indirectly lost: 53,356 bytes in 2,090 blocks. ==6079== possibly lost: 52 bytes in 1 blocks. ==6079== still reachable: 150,996 bytes in 504 blocks. ==6079== suppressed: 0 bytes in 0 blocks. after (idle system): ==6945== LEAK SUMMARY: ==6945== definitely lost: 7,644 bytes in 137 blocks. ==6945== indirectly lost: 9,913 bytes in 587 blocks. ==6945== possibly lost: 0 bytes in 0 blocks. ==6945== still reachable: 0 bytes in 0 blocks. ==6945== suppressed: 0 bytes in 0 blocks. before (running system for ~2m): ==9343== LEAK SUMMARY: ==9343== definitely lost: 1,112 bytes in 75 blocks. ==9343== indirectly lost: 54,199 bytes in 2,122 blocks. ==9343== possibly lost: 52 bytes in 1 blocks. ==9343== still reachable: 151,128 bytes in 509 blocks. ==9343== suppressed: 0 bytes in 0 blocks. after (running system for ~2m): ==11616== LEAK SUMMARY: ==11616== definitely lost: 7,644 bytes in 137 blocks. ==11616== indirectly lost: 9,981 bytes in 591 blocks. ==11616== possibly lost: 0 bytes in 0 blocks. ==11616== still reachable: 4 bytes in 1 blocks. ==11616== suppressed: 0 bytes in 0 blocks. Still not perfect but significant improvement.
2008-05-29 21:53:44 +00:00
#include <common/debug.h>
#include <common/hathreads.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <proto/applet.h>
#include <proto/cli.h>
#include <proto/channel.h>
#include <proto/log.h>
#include <proto/stream_interface.h>
#include <proto/stats.h>
/* These are the most common pools, expected to be initialized first. These
* ones are allocated from an array, allowing to map them to an index.
*/
struct pool_head pool_base_start[MAX_BASE_POOLS] = { };
unsigned int pool_base_count = 0;
THREAD_LOCAL struct pool_cache_head pool_cache[MAX_BASE_POOLS] = { };
THREAD_LOCAL struct list pool_lru_head = { }; /* oldest objects */
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
static struct list pools = LIST_HEAD_INIT(pools);
int mem_poison_byte = -1;
/* Try to find an existing shared pool with the same characteristics and
* returns it, otherwise creates this one. NULL is returned if no memory
* is available for a new creation. Two flags are supported :
* - MEM_F_SHARED to indicate that the pool may be shared with other users
* - MEM_F_EXACT to indicate that the size must not be rounded up
*/
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
{
struct pool_head *pool;
struct pool_head *entry;
struct list *start;
unsigned int align;
/* We need to store a (void *) at the end of the chunks. Since we know
* that the malloc() function will never return such a small size,
* let's round the size up to something slightly bigger, in order to
* ease merging of entries. Note that the rounding is a power of two.
* This extra (void *) is not accounted for in the size computation
* so that the visible parts outside are not affected.
*
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
*/
if (!(flags & MEM_F_EXACT)) {
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA;
}
/* TODO: thread: we do not lock pool list for now because all pools are
* created during HAProxy startup (so before threads creation) */
start = &pools;
pool = NULL;
list_for_each_entry(entry, &pools, list) {
if (entry->size == size) {
/* either we can share this place and we take it, or
* we look for a sharable one or for the next position
* before which we will insert a new one.
*/
if (flags & entry->flags & MEM_F_SHARED) {
/* we can share this one */
pool = entry;
[MEDIUM] Fix memory freeing at exit New functions implemented: - deinit_pollers: called at the end of deinit()) - prune_acl: called via list_for_each_entry_safe Add missing pool_destroy2 calls: - p->hdr_idx_pool - pool2_tree64 Implement all task stopping: - health-check: needs new "struct task" in the struct server - queue processing: queue_mgt - appsess_refresh: appsession_refresh before (idle system): ==6079== LEAK SUMMARY: ==6079== definitely lost: 1,112 bytes in 75 blocks. ==6079== indirectly lost: 53,356 bytes in 2,090 blocks. ==6079== possibly lost: 52 bytes in 1 blocks. ==6079== still reachable: 150,996 bytes in 504 blocks. ==6079== suppressed: 0 bytes in 0 blocks. after (idle system): ==6945== LEAK SUMMARY: ==6945== definitely lost: 7,644 bytes in 137 blocks. ==6945== indirectly lost: 9,913 bytes in 587 blocks. ==6945== possibly lost: 0 bytes in 0 blocks. ==6945== still reachable: 0 bytes in 0 blocks. ==6945== suppressed: 0 bytes in 0 blocks. before (running system for ~2m): ==9343== LEAK SUMMARY: ==9343== definitely lost: 1,112 bytes in 75 blocks. ==9343== indirectly lost: 54,199 bytes in 2,122 blocks. ==9343== possibly lost: 52 bytes in 1 blocks. ==9343== still reachable: 151,128 bytes in 509 blocks. ==9343== suppressed: 0 bytes in 0 blocks. after (running system for ~2m): ==11616== LEAK SUMMARY: ==11616== definitely lost: 7,644 bytes in 137 blocks. ==11616== indirectly lost: 9,981 bytes in 591 blocks. ==11616== possibly lost: 0 bytes in 0 blocks. ==11616== still reachable: 4 bytes in 1 blocks. ==11616== suppressed: 0 bytes in 0 blocks. Still not perfect but significant improvement.
2008-05-29 21:53:44 +00:00
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
break;
}
}
else if (entry->size > size) {
/* insert before this one */
start = &entry->list;
break;
}
}
if (!pool) {
if (pool_base_count < MAX_BASE_POOLS)
pool = &pool_base_start[pool_base_count++];
if (!pool) {
/* look for a freed entry */
for (entry = pool_base_start; entry != pool_base_start + MAX_BASE_POOLS; entry++) {
if (!entry->size) {
pool = entry;
break;
}
}
}
if (!pool)
pool = calloc(1, sizeof(*pool));
if (!pool)
return NULL;
if (name)
strlcpy2(pool->name, name, sizeof(pool->name));
pool->size = size;
pool->flags = flags;
LIST_ADDQ(start, &pool->list);
}
pool->users++;
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_INIT(&pool->lock);
#endif
return pool;
}
#ifdef CONFIG_HAP_LOCKLESS_POOLS
/* Allocates new entries for pool <pool> until there are at least <avail> + 1
* available, then returns the last one for immediate use, so that at least
* <avail> are left available in the pool upon return. NULL is returned if the
* last entry could not be allocated. It's important to note that at least one
* allocation is always performed even if there are enough entries in the pool.
* A call to the garbage collector is performed at most once in case malloc()
* returns an error, before returning NULL.
*/
void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail)
{
void *ptr = NULL, **free_list;
int failed = 0;
int size = pool->size;
int limit = pool->limit;
int allocated = pool->allocated, allocated_orig = allocated;
/* stop point */
avail += pool->used;
while (1) {
if (limit && allocated >= limit) {
HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig);
return NULL;
}
ptr = malloc(size + POOL_EXTRA);
if (!ptr) {
HA_ATOMIC_ADD(&pool->failed, 1);
if (failed)
return NULL;
failed++;
pool_gc(pool);
continue;
}
if (++allocated > avail)
break;
free_list = pool->free_list;
do {
*POOL_LINK(pool, ptr) = free_list;
__ha_barrier_store();
} while (HA_ATOMIC_CAS(&pool->free_list, &free_list, ptr) == 0);
}
HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig);
HA_ATOMIC_ADD(&pool->used, 1);
#ifdef DEBUG_MEMORY_POOLS
/* keep track of where the element was allocated from */
*POOL_LINK(pool, ptr) = (void *)pool;
#endif
return ptr;
}
void *pool_refill_alloc(struct pool_head *pool, unsigned int avail)
{
void *ptr;
ptr = __pool_refill_alloc(pool, avail);
return ptr;
}
/*
* This function frees whatever can be freed in pool <pool>.
*/
void pool_flush(struct pool_head *pool)
{
void **next, *temp;
int removed = 0;
if (!pool)
return;
do {
next = pool->free_list;
} while (!HA_ATOMIC_CAS(&pool->free_list, &next, NULL));
while (next) {
temp = next;
next = *POOL_LINK(pool, temp);
removed++;
free(temp);
}
pool->free_list = next;
HA_ATOMIC_SUB(&pool->allocated, removed);
/* here, we should have pool->allocate == pool->used */
}
/*
* This function frees whatever can be freed in all pools, but respecting
* the minimum thresholds imposed by owners. It takes care of avoiding
* recursion because it may be called from a signal handler.
*
* <pool_ctx> is unused
*/
void pool_gc(struct pool_head *pool_ctx)
{
static int recurse;
int cur_recurse = 0;
struct pool_head *entry;
if (recurse || !HA_ATOMIC_CAS(&recurse, &cur_recurse, 1))
return;
list_for_each_entry(entry, &pools, list) {
while ((int)((volatile int)entry->allocated - (volatile int)entry->used) > (int)entry->minavail) {
struct pool_free_list cmp, new;
cmp.seq = entry->seq;
__ha_barrier_load();
cmp.free_list = entry->free_list;
__ha_barrier_load();
if (cmp.free_list == NULL)
break;
new.free_list = *POOL_LINK(entry, cmp.free_list);
new.seq = cmp.seq + 1;
if (__ha_cas_dw(&entry->free_list, &cmp, &new) == 0)
continue;
free(cmp.free_list);
HA_ATOMIC_SUB(&entry->allocated, 1);
}
}
HA_ATOMIC_STORE(&recurse, 0);
}
/* frees an object to the local cache, possibly pushing oldest objects to the
* global pool. Must not be called directly.
*/
void __pool_put_to_cache(struct pool_head *pool, void *ptr, ssize_t idx)
{
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
struct pool_cache_head *ph = &pool_cache[idx];
/* never allocated or empty */
if (unlikely(ph->list.n == NULL)) {
LIST_INIT(&ph->list);
ph->size = pool->size;
if (pool_lru_head.n == NULL)
LIST_INIT(&pool_lru_head);
}
LIST_ADD(&ph->list, &item->by_pool);
LIST_ADD(&pool_lru_head, &item->by_lru);
ph->count++;
pool_cache_count++;
pool_cache_bytes += ph->size;
if (pool_cache_bytes <= CONFIG_HAP_POOL_CACHE_SIZE)
return;
do {
item = LIST_PREV(&pool_lru_head, struct pool_cache_item *, by_lru);
/* note: by definition we remove oldest objects so they also are the
* oldest in their own pools, thus their next is the pool's head.
*/
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
LIST_DEL(&item->by_pool);
LIST_DEL(&item->by_lru);
ph->count--;
pool_cache_count--;
pool_cache_bytes -= ph->size;
__pool_free(pool_base_start + (ph - pool_cache), item);
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
}
#else /* CONFIG_HAP_LOCKLESS_POOLS */
/* Allocates new entries for pool <pool> until there are at least <avail> + 1
* available, then returns the last one for immediate use, so that at least
* <avail> are left available in the pool upon return. NULL is returned if the
* last entry could not be allocated. It's important to note that at least one
* allocation is always performed even if there are enough entries in the pool.
* A call to the garbage collector is performed at most once in case malloc()
* returns an error, before returning NULL.
*/
void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail)
{
void *ptr = NULL;
int failed = 0;
/* stop point */
avail += pool->used;
while (1) {
if (pool->limit && pool->allocated >= pool->limit)
return NULL;
ptr = pool_alloc_area(pool->size + POOL_EXTRA);
if (!ptr) {
pool->failed++;
if (failed)
return NULL;
failed++;
pool_gc(pool);
continue;
}
if (++pool->allocated > avail)
break;
*POOL_LINK(pool, ptr) = (void *)pool->free_list;
pool->free_list = ptr;
}
pool->used++;
#ifdef DEBUG_MEMORY_POOLS
/* keep track of where the element was allocated from */
*POOL_LINK(pool, ptr) = (void *)pool;
#endif
return ptr;
}
void *pool_refill_alloc(struct pool_head *pool, unsigned int avail)
{
void *ptr;
HA_SPIN_LOCK(POOL_LOCK, &pool->lock);
ptr = __pool_refill_alloc(pool, avail);
HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock);
return ptr;
}
/*
* This function frees whatever can be freed in pool <pool>.
*/
void pool_flush(struct pool_head *pool)
{
void *temp, *next;
if (!pool)
return;
HA_SPIN_LOCK(POOL_LOCK, &pool->lock);
next = pool->free_list;
while (next) {
temp = next;
next = *POOL_LINK(pool, temp);
pool->allocated--;
pool_free_area(temp, pool->size + POOL_EXTRA);
}
pool->free_list = next;
HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock);
/* here, we should have pool->allocate == pool->used */
}
/*
* This function frees whatever can be freed in all pools, but respecting
* the minimum thresholds imposed by owners. It takes care of avoiding
* recursion because it may be called from a signal handler.
*
* <pool_ctx> is used when pool_gc is called to release resources to allocate
* an element in __pool_refill_alloc. It is important because <pool_ctx> is
* already locked, so we need to skip the lock here.
*/
void pool_gc(struct pool_head *pool_ctx)
{
static int recurse;
int cur_recurse = 0;
struct pool_head *entry;
if (recurse || !HA_ATOMIC_CAS(&recurse, &cur_recurse, 1))
return;
list_for_each_entry(entry, &pools, list) {
void *temp, *next;
//qfprintf(stderr, "Flushing pool %s\n", entry->name);
if (entry != pool_ctx)
HA_SPIN_LOCK(POOL_LOCK, &entry->lock);
next = entry->free_list;
while (next &&
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
temp = next;
next = *POOL_LINK(entry, temp);
entry->allocated--;
pool_free_area(temp, entry->size + POOL_EXTRA);
}
entry->free_list = next;
if (entry != pool_ctx)
HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock);
}
HA_ATOMIC_STORE(&recurse, 0);
}
#endif
/*
* This function destroys a pool by freeing it completely, unless it's still
* in use. This should be called only under extreme circumstances. It always
* returns NULL if the resulting pool is empty, easing the clearing of the old
* pointer, otherwise it returns the pool.
* .
*/
void *pool_destroy(struct pool_head *pool)
{
if (pool) {
pool_flush(pool);
if (pool->used)
return pool;
pool->users--;
if (!pool->users) {
LIST_DEL(&pool->list);
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_DESTROY(&pool->lock);
#endif
if ((pool - pool_base_start) < MAX_BASE_POOLS)
memset(pool, 0, sizeof(*pool));
else
free(pool);
}
}
return NULL;
}
/* This function dumps memory usage information into the trash buffer. */
void dump_pools_to_trash()
{
struct pool_head *entry;
unsigned long allocated, used;
int nbpools;
allocated = used = nbpools = 0;
chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
list_for_each_entry(entry, &pools, list) {
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_LOCK(POOL_LOCK, &entry->lock);
#endif
chunk_appendf(&trash, " - Pool %s (%d bytes) : %d allocated (%u bytes), %d used, %d failures, %d users, @%p=%02d%s\n",
entry->name, entry->size, entry->allocated,
entry->size * entry->allocated, entry->used, entry->failed,
entry->users, entry, (int)pool_get_index(entry),
(entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
allocated += entry->allocated * entry->size;
used += entry->used * entry->size;
nbpools++;
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock);
#endif
}
chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used.\n",
nbpools, allocated, used);
}
/* Dump statistics on pools usage. */
void dump_pools(void)
{
dump_pools_to_trash();
qfprintf(stderr, "%s", trash.area);
}
/* This function returns the total number of failed pool allocations */
int pool_total_failures()
{
struct pool_head *entry;
int failed = 0;
list_for_each_entry(entry, &pools, list)
failed += entry->failed;
return failed;
}
/* This function returns the total amount of memory allocated in pools (in bytes) */
unsigned long pool_total_allocated()
{
struct pool_head *entry;
unsigned long allocated = 0;
list_for_each_entry(entry, &pools, list)
allocated += entry->allocated * entry->size;
return allocated;
}
/* This function returns the total amount of memory used in pools (in bytes) */
unsigned long pool_total_used()
{
struct pool_head *entry;
unsigned long used = 0;
list_for_each_entry(entry, &pools, list)
used += entry->used * entry->size;
return used;
}
/* This function dumps memory usage information onto the stream interface's
* read buffer. It returns 0 as long as it does not complete, non-zero upon
* completion. No state is used.
*/
static int cli_io_handler_dump_pools(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
dump_pools_to_trash();
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
return 1;
}
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
{{},}
}};
__attribute__((constructor))
static void __memory_init(void)
{
cli_register_kw(&cli_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/