gperftools/doc/tcmalloc.html

380 lines
16 KiB
HTML

<!doctype html public "-//w3c//dtd html 4.01 transitional//en">
<!-- $Id: $ -->
<html>
<head>
<title>TCMalloc : Thread-Caching Malloc</title>
<link rel="stylesheet" href="designstyle.css">
<style type="text/css">
em {
color: red;
font-style: normal;
}
</style>
</head>
<body>
<h1>TCMalloc : Thread-Caching Malloc</h1>
<address>Sanjay Ghemawat</address>
<h2>Motivation</h2>
<p>TCMalloc is faster than the glibc 2.3 malloc (available as a
separate library called ptmalloc2) and other mallocs that I have
tested. ptmalloc2 takes approximately 300 nanoseconds to execute a
malloc/free pair on a 2.8 GHz P4 (for small objects). The TCMalloc
implementation takes approximately 50 nanoseconds for the same
operation pair. Speed is important for a malloc implementation
because if malloc is not fast enough, application writers are inclined
to write their own custom free lists on top of malloc. This can lead
to extra complexity, and more memory usage unless the application
writer is very careful to appropriately size the free lists and
scavenge idle objects out of the free list.</p>
<p>TCMalloc also reduces lock contention for multi-threaded programs.
For small objects, there is virtually zero contention. For large
objects, TCMalloc tries to use fine grained and efficient spinlocks.
ptmalloc2 also reduces lock contention by using per-thread arenas but
there is a big problem with ptmalloc2's use of per-thread arenas. In
ptmalloc2 memory can never move from one arena to another. This can
lead to huge amounts of wasted space. For example, in one Google
application, the first phase would allocate approximately 300MB of
memory for its URL canonicalization data structures. When the first
phase finished, a second phase would be started in the same address
space. If this second phase was assigned a different arena than the
one used by the first phase, this phase would not reuse any of the
memory left after the first phase and would add another 300MB to the
address space. Similar memory blowup problems were also noticed in
other applications.</p>
<p>Another benefit of TCMalloc is space-efficient representation of
small objects. For example, N 8-byte objects can be allocated while
using space approximately <code>8N * 1.01</code> bytes. I.e., a
one-percent space overhead. ptmalloc2 uses a four-byte header for
each object and (I think) rounds up the size to a multiple of 8 bytes
and ends up using <code>16N</code> bytes.</p>
<h2>Usage</h2>
<p>To use TCmalloc, just link tcmalloc into your application via the
"-ltcmalloc" linker flag.</p>
<p>You can use tcmalloc in applications you didn't compile yourself,
by using LD_PRELOAD:</p>
<pre>
$ LD_PRELOAD="/usr/lib/libtcmalloc.so" <binary>
</pre>
<p>LD_PRELOAD is tricky, and we don't necessarily recommend this mode
of usage.</p>
<p>TCMalloc includes a <A HREF="heap_checker.html">heap checker</A>
and <A HREF="heapprofile.html">heap profiler</A> as well.</p>
<p>If you'd rather link in a version of TCMalloc that does not include
the heap profiler and checker (perhaps to reduce binary size for a
static binary), you can link in <code>libtcmalloc_minimal</code>
instead.</p>
<h2>Overview</h2>
<p>TCMalloc assigns each thread a thread-local cache. Small
allocations are satisfied from the thread-local cache. Objects are
moved from central data structures into a thread-local cache as
needed, and periodic garbage collections are used to migrate memory
back from a thread-local cache into the central data structures.</p>
<center><img src="overview.gif"></center>
<p>TCMalloc treates objects with size &lt;= 32K ("small" objects)
differently from larger objects. Large objects are allocated directly
from the central heap using a page-level allocator (a page is a 4K
aligned region of memory). I.e., a large object is always
page-aligned and occupies an integral number of pages.</p>
<p>A run of pages can be carved up into a sequence of small objects,
each equally sized. For example a run of one page (4K) can be carved
up into 32 objects of size 128 bytes each.</p>
<h2>Small Object Allocation</h2>
<p>Each small object size maps to one of approximately 170 allocatable
size-classes. For example, all allocations in the range 961 to 1024
bytes are rounded up to 1024. The size-classes are spaced so that
small sizes are separated by 8 bytes, larger sizes by 16 bytes, even
larger sizes by 32 bytes, and so forth. The maximal spacing (for
sizes >= ~2K) is 256 bytes.</p>
<p>A thread cache contains a singly linked list of free objects per
size-class.</p>
<center><img src="threadheap.gif"></center>
<p>When allocating a small object: (1) We map its size to the
corresponding size-class. (2) Look in the corresponding free list in
the thread cache for the current thread. (3) If the free list is not
empty, we remove the first object from the list and return it. When
following this fast path, TCMalloc acquires no locks at all. This
helps speed-up allocation significantly because a lock/unlock pair
takes approximately 100 nanoseconds on a 2.8 GHz Xeon.</p>
<p>If the free list is empty: (1) We fetch a bunch of objects from a
central free list for this size-class (the central free list is shared
by all threads). (2) Place them in the thread-local free list. (3)
Return one of the newly fetched objects to the applications.</p>
<p>If the central free list is also empty: (1) We allocate a run of
pages from the central page allocator. (2) Split the run into a set
of objects of this size-class. (3) Place the new objects on the
central free list. (4) As before, move some of these objects to the
thread-local free list.</p>
<h2>Large Object Allocation</h2>
<p>A large object size (&gt; 32K) is rounded up to a page size (4K)
and is handled by a central page heap. The central page heap is again
an array of free lists. For <code>i &lt; 256</code>, the
<code>k</code>th entry is a free list of runs that consist of
<code>k</code> pages. The <code>256</code>th entry is a free list of
runs that have length <code>&gt;= 256</code> pages: </p>
<center><img src="pageheap.gif"></center>
<p>An allocation for <code>k</code> pages is satisfied by looking in
the <code>k</code>th free list. If that free list is empty, we look
in the next free list, and so forth. Eventually, we look in the last
free list if necessary. If that fails, we fetch memory from the
system (using <code>sbrk</code>, <code>mmap</code>, or by mapping in
portions of <code>/dev/mem</code>).</p>
<p>If an allocation for <code>k</code> pages is satisfied by a run
of pages of length &gt; <code>k</code>, the remainder of the
run is re-inserted back into the appropriate free list in the
page heap.</p>
<h2>Spans</h2>
<p>The heap managed by TCMalloc consists of a set of pages. A run of
contiguous pages is represented by a <code>Span</code> object. A span
can either be <em>allocated</em>, or <em>free</em>. If free, the span
is one of the entries in a page heap linked-list. If allocated, it is
either a large object that has been handed off to the application, or
a run of pages that have been split up into a sequence of small
objects. If split into small objects, the size-class of the objects
is recorded in the span.</p>
<p>A central array indexed by page number can be used to find the span to
which a page belongs. For example, span <em>a</em> below occupies 2
pages, span <em>b</em> occupies 1 page, span <em>c</em> occupies 5
pages and span <em>d</em> occupies 3 pages.</p>
<center><img src="spanmap.gif"></center>
<p>In a 32-bit address space, the central array is represented by a a
2-level radix tree where the root contains 32 entries and each leaf
contains 2^15 entries (a 32-bit address spave has 2^20 4K pages, and
the first level of tree divides the 2^20 pages by 2^5). This leads to
a starting memory usage of 128KB of space (2^15*4 bytes) for the
central array, which seems acceptable.</p>
<p>On 64-bit machines, we use a 3-level radix tree.</p>
<h2>Deallocation</h2>
<p>When an object is deallocated, we compute its page number and look
it up in the central array to find the corresponding span object. The
span tells us whether or not the object is small, and its size-class
if it is small. If the object is small, we insert it into the
appropriate free list in the current thread's thread cache. If the
thread cache now exceeds a predetermined size (2MB by default), we run
a garbage collector that moves unused objects from the thread cache
into central free lists.</p>
<p>If the object is large, the span tells us the range of pages covered
by the object. Suppose this range is <code>[p,q]</code>. We also
lookup the spans for pages <code>p-1</code> and <code>q+1</code>. If
either of these neighboring spans are free, we coalesce them with the
<code>[p,q]</code> span. The resulting span is inserted into the
appropriate free list in the page heap.</p>
<h2>Central Free Lists for Small Objects</h2>
<p>As mentioned before, we keep a central free list for each
size-class. Each central free list is organized as a two-level data
structure: a set of spans, and a linked list of free objects per
span.</p>
<p>An object is allocated from a central free list by removing the
first entry from the linked list of some span. (If all spans have
empty linked lists, a suitably sized span is first allocated from the
central page heap.)</p>
<p>An object is returned to a central free list by adding it to the
linked list of its containing span. If the linked list length now
equals the total number of small objects in the span, this span is now
completely free and is returned to the page heap.</p>
<h2>Garbage Collection of Thread Caches</h2>
<p>A thread cache is garbage collected when the combined size of all
objects in the cache exceeds 2MB. The garbage collection threshold is
automatically decreased as the number of threads increases so that we
don't waste an inordinate amount of memory in a program with lots of
threads.</p>
<p>We walk over all free lists in the cache and move some number of
objects from the free list to the corresponding central list.</p>
<p>The number of objects to be moved from a free list is determined
using a per-list low-water-mark <code>L</code>. <code>L</code>
records the minimum length of the list since the last garbage
collection. Note that we could have shortened the list by
<code>L</code> objects at the last garbage collection without
requiring any extra accesses to the central list. We use this past
history as a predictor of future accesses and move <code>L/2</code>
objects from the thread cache free list to the corresponding central
free list. This algorithm has the nice property that if a thread
stops using a particular size, all objects of that size will quickly
move from the thread cache to the central free list where they can be
used by other threads.</p>
<h2>Performance Notes</h2>
<h3>PTMalloc2 unittest</h3>
<p>The PTMalloc2 package (now part of glibc) contains a unittest
program <code>t-test1.c</code>. This forks a number of threads and
performs a series of allocations and deallocations in each thread; the
threads do not communicate other than by synchronization in the memory
allocator.</p>
<p><code>t-test1</code> (included in
<code>tests/tcmalloc/</code>, and compiled as
<code>ptmalloc_unittest1</code>) was run with a varying numbers of
threads (1-20) and maximum allocation sizes (64 bytes -
32Kbytes). These tests were run on a 2.4GHz dual Xeon system with
hyper-threading enabled, using Linux glibc-2.3.2 from RedHat 9, with
one million operations per thread in each test. In each case, the test
was run once normally, and once with
<code>LD_PRELOAD=libtcmalloc.so</code>.
<p>The graphs below show the performance of TCMalloc vs PTMalloc2 for
several different metrics. Firstly, total operations (millions) per
elapsed second vs max allocation size, for varying numbers of
threads. The raw data used to generate these graphs (the output of the
<code>time</code> utility) is available in
<code>t-test1.times.txt</code>.</p>
<table>
<tr>
<td><img src="tcmalloc-opspersec.vs.size.1.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.2.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.3.threads.png"></td>
</tr>
<tr>
<td><img src="tcmalloc-opspersec.vs.size.4.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.5.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.8.threads.png"></td>
</tr>
<tr>
<td><img src="tcmalloc-opspersec.vs.size.12.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.16.threads.png"></td>
<td><img src="tcmalloc-opspersec.vs.size.20.threads.png"></td>
</tr>
</table>
<ul>
<li> TCMalloc is much more consistently scalable than PTMalloc2 - for
all thread counts >1 it achieves ~7-9 million ops/sec for small
allocations, falling to ~2 million ops/sec for larger
allocations. The single-thread case is an obvious outlier,
since it is only able to keep a single processor busy and hence
can achieve fewer ops/sec. PTMalloc2 has a much higher variance
on operations/sec - peaking somewhere around 4 million ops/sec
for small allocations and falling to <1 million ops/sec for
larger allocations.
<li> TCMalloc is faster than PTMalloc2 in the vast majority of
cases, and particularly for small allocations. Contention
between threads is less of a problem in TCMalloc.
<li> TCMalloc's performance drops off as the allocation size
increases. This is because the per-thread cache is
garbage-collected when it hits a threshold (defaulting to
2MB). With larger allocation sizes, fewer objects can be stored
in the cache before it is garbage-collected.
<li> There is a noticeably drop in the TCMalloc performance at ~32K
maximum allocation size; at larger sizes performance drops less
quickly. This is due to the 32K maximum size of objects in the
per-thread caches; for objects larger than this tcmalloc
allocates from the central page heap.
</ul>
<p>Next, operations (millions) per second of CPU time vs number of
threads, for max allocation size 64 bytes - 128 Kbytes.</p>
<table>
<tr>
<td><img src="tcmalloc-opspercpusec.vs.threads.64.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.256.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.1024.bytes.png"></td>
</tr>
<tr>
<td><img src="tcmalloc-opspercpusec.vs.threads.4096.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.8192.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.16384.bytes.png"></td>
</tr>
<tr>
<td><img src="tcmalloc-opspercpusec.vs.threads.32768.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.65536.bytes.png"></td>
<td><img src="tcmalloc-opspercpusec.vs.threads.131072.bytes.png"></td>
</tr>
</table>
<p>Here we see again that TCMalloc is both more consistent and more
efficient than PTMalloc2. For max allocation sizes &lt;32K, TCMalloc
typically achieves ~2-2.5 million ops per second of CPU time with a
large number of threads, whereas PTMalloc achieves generally 0.5-1
million ops per second of CPU time, with a lot of cases achieving much
less than this figure. Above 32K max allocation size, TCMalloc drops
to 1-1.5 million ops per second of CPU time, and PTMalloc drops almost
to zero for large numbers of threads (i.e. with PTMalloc, lots of CPU
time is being burned spinning waiting for locks in the heavily
multi-threaded case).</p>
<h2>Caveats</h2>
<p>For some systems, TCMalloc may not work correctly on with
applications that aren't linked against <code>libpthread.so</code> (or
the equivalent on your OS). It should work on Linux using glibc 2.3,
but other OS/libc combinations have not been tested.</p>
<p>TCMalloc may be somewhat more memory hungry than other mallocs,
(but tends not to have the huge blowups that can happen with other
mallocs). In particular, at startup TCMalloc allocates approximately
240KB of internal memory.</p>
<p>Don't try to load TCMalloc into a running binary (e.g., using JNI
in Java programs). The binary will have allocated some objects using
the system malloc, and may try to pass them to TCMalloc for
deallocation. TCMalloc will not be able to handle such objects.</p>
<hr>
<address>Sanjay Ghemawat, Paul Menage<br>
<!-- Created: Tue Dec 19 10:43:14 PST 2000 -->
<!-- hhmts start -->
Last modified: Sat Feb 24 13:11:38 PST 2007 (csilvers)
<!-- hhmts end -->
</address>
</body>
</html>