mirror of
https://github.com/gperftools/gperftools
synced 2025-01-02 20:52:03 +00:00
d57a9ea8bc
This commit replaces the "golang" moniker in the README file with the appropriate name of "Go" per https://golang.org/doc/faq#go_or_golang. In this context, no disambiguation is required.
280 lines
11 KiB
Plaintext
280 lines
11 KiB
Plaintext
gperftools
|
||
----------
|
||
(originally Google Performance Tools)
|
||
|
||
The fastest malloc we’ve seen; works particularly well with threads
|
||
and STL. Also: thread-friendly heap-checker, heap-profiler, and
|
||
cpu-profiler.
|
||
|
||
|
||
OVERVIEW
|
||
---------
|
||
|
||
gperftools is a collection of a high-performance multi-threaded
|
||
malloc() implementation, plus some pretty nifty performance analysis
|
||
tools.
|
||
|
||
gperftools is distributed under the terms of the BSD License. Join our
|
||
mailing list at gperftools@googlegroups.com for updates:
|
||
https://groups.google.com/forum/#!forum/gperftools
|
||
|
||
gperftools was original home for pprof program. But do note that
|
||
original pprof (which is still included with gperftools) is now
|
||
deprecated in favor of Go version at https://github.com/google/pprof
|
||
|
||
|
||
TCMALLOC
|
||
--------
|
||
Just link in -ltcmalloc or -ltcmalloc_minimal to get the advantages of
|
||
tcmalloc -- a replacement for malloc and new. See below for some
|
||
environment variables you can use with tcmalloc, as well.
|
||
|
||
tcmalloc functionality is available on all systems we've tested; see
|
||
INSTALL for more details. See README_windows.txt for instructions on
|
||
using tcmalloc on Windows.
|
||
|
||
when compiling. gcc makes some optimizations assuming it is using its
|
||
own, built-in malloc; that assumption obviously isn't true with
|
||
tcmalloc. In practice, we haven't seen any problems with this, but
|
||
the expected risk is highest for users who register their own malloc
|
||
hooks with tcmalloc (using gperftools/malloc_hook.h). The risk is
|
||
lowest for folks who use tcmalloc_minimal (or, of course, who pass in
|
||
the above flags :-) ).
|
||
|
||
|
||
HEAP PROFILER
|
||
-------------
|
||
See docs/heapprofile.html for information about how to use tcmalloc's
|
||
heap profiler and analyze its output.
|
||
|
||
As a quick-start, do the following after installing this package:
|
||
|
||
1) Link your executable with -ltcmalloc
|
||
2) Run your executable with the HEAPPROFILE environment var set:
|
||
$ HEAPPROFILE=/tmp/heapprof <path/to/binary> [binary args]
|
||
3) Run pprof to analyze the heap usage
|
||
$ pprof <path/to/binary> /tmp/heapprof.0045.heap # run 'ls' to see options
|
||
$ pprof --gv <path/to/binary> /tmp/heapprof.0045.heap
|
||
|
||
You can also use LD_PRELOAD to heap-profile an executable that you
|
||
didn't compile.
|
||
|
||
There are other environment variables, besides HEAPPROFILE, you can
|
||
set to adjust the heap-profiler behavior; c.f. "ENVIRONMENT VARIABLES"
|
||
below.
|
||
|
||
The heap profiler is available on all unix-based systems we've tested;
|
||
see INSTALL for more details. It is not currently available on Windows.
|
||
|
||
|
||
HEAP CHECKER
|
||
------------
|
||
See docs/heap_checker.html for information about how to use tcmalloc's
|
||
heap checker.
|
||
|
||
In order to catch all heap leaks, tcmalloc must be linked *last* into
|
||
your executable. The heap checker may mischaracterize some memory
|
||
accesses in libraries listed after it on the link line. For instance,
|
||
it may report these libraries as leaking memory when they're not.
|
||
(See the source code for more details.)
|
||
|
||
Here's a quick-start for how to use:
|
||
|
||
As a quick-start, do the following after installing this package:
|
||
|
||
1) Link your executable with -ltcmalloc
|
||
2) Run your executable with the HEAPCHECK environment var set:
|
||
$ HEAPCHECK=1 <path/to/binary> [binary args]
|
||
|
||
Other values for HEAPCHECK: normal (equivalent to "1"), strict, draconian
|
||
|
||
You can also use LD_PRELOAD to heap-check an executable that you
|
||
didn't compile.
|
||
|
||
The heap checker is only available on Linux at this time; see INSTALL
|
||
for more details.
|
||
|
||
|
||
CPU PROFILER
|
||
------------
|
||
See docs/cpuprofile.html for information about how to use the CPU
|
||
profiler and analyze its output.
|
||
|
||
As a quick-start, do the following after installing this package:
|
||
|
||
1) Link your executable with -lprofiler
|
||
2) Run your executable with the CPUPROFILE environment var set:
|
||
$ CPUPROFILE=/tmp/prof.out <path/to/binary> [binary args]
|
||
3) Run pprof to analyze the CPU usage
|
||
$ pprof <path/to/binary> /tmp/prof.out # -pg-like text output
|
||
$ pprof --gv <path/to/binary> /tmp/prof.out # really cool graphical output
|
||
|
||
There are other environment variables, besides CPUPROFILE, you can set
|
||
to adjust the cpu-profiler behavior; cf "ENVIRONMENT VARIABLES" below.
|
||
|
||
The CPU profiler is available on all unix-based systems we've tested;
|
||
see INSTALL for more details. It is not currently available on Windows.
|
||
|
||
NOTE: CPU profiling doesn't work after fork (unless you immediately
|
||
do an exec()-like call afterwards). Furthermore, if you do
|
||
fork, and the child calls exit(), it may corrupt the profile
|
||
data. You can use _exit() to work around this. We hope to have
|
||
a fix for both problems in the next release of perftools
|
||
(hopefully perftools 1.2).
|
||
|
||
|
||
EVERYTHING IN ONE
|
||
-----------------
|
||
If you want the CPU profiler, heap profiler, and heap leak-checker to
|
||
all be available for your application, you can do:
|
||
gcc -o myapp ... -lprofiler -ltcmalloc
|
||
|
||
However, if you have a reason to use the static versions of the
|
||
library, this two-library linking won't work:
|
||
gcc -o myapp ... /usr/lib/libprofiler.a /usr/lib/libtcmalloc.a # errors!
|
||
|
||
Instead, use the special libtcmalloc_and_profiler library, which we
|
||
make for just this purpose:
|
||
gcc -o myapp ... /usr/lib/libtcmalloc_and_profiler.a
|
||
|
||
|
||
CONFIGURATION OPTIONS
|
||
---------------------
|
||
For advanced users, there are several flags you can pass to
|
||
'./configure' that tweak tcmalloc performance. (These are in addition
|
||
to the environment variables you can set at runtime to affect
|
||
tcmalloc, described below.) See the INSTALL file for details.
|
||
|
||
|
||
ENVIRONMENT VARIABLES
|
||
---------------------
|
||
The cpu profiler, heap checker, and heap profiler will lie dormant,
|
||
using no memory or CPU, until you turn them on. (Thus, there's no
|
||
harm in linking -lprofiler into every application, and also -ltcmalloc
|
||
assuming you're ok using the non-libc malloc library.)
|
||
|
||
The easiest way to turn them on is by setting the appropriate
|
||
environment variables. We have several variables that let you
|
||
enable/disable features as well as tweak parameters.
|
||
|
||
Here are some of the most important variables:
|
||
|
||
HEAPPROFILE=<pre> -- turns on heap profiling and dumps data using this prefix
|
||
HEAPCHECK=<type> -- turns on heap checking with strictness 'type'
|
||
CPUPROFILE=<file> -- turns on cpu profiling and dumps data to this file.
|
||
PROFILESELECTED=1 -- if set, cpu-profiler will only profile regions of code
|
||
surrounded with ProfilerEnable()/ProfilerDisable().
|
||
CPUPROFILE_FREQUENCY=x-- how many interrupts/second the cpu-profiler samples.
|
||
|
||
PERFTOOLS_VERBOSE=<level> -- the higher level, the more messages malloc emits
|
||
MALLOCSTATS=<level> -- prints memory-use stats at program-exit
|
||
|
||
For a full list of variables, see the documentation pages:
|
||
docs/cpuprofile.html
|
||
docs/heapprofile.html
|
||
docs/heap_checker.html
|
||
|
||
|
||
COMPILING ON NON-LINUX SYSTEMS
|
||
------------------------------
|
||
|
||
Perftools was developed and tested on x86 Linux systems, and it works
|
||
in its full generality only on those systems. However, we've
|
||
successfully ported much of the tcmalloc library to FreeBSD, Solaris
|
||
x86, and Darwin (Mac OS X) x86 and ppc; and we've ported the basic
|
||
functionality in tcmalloc_minimal to Windows. See INSTALL for details.
|
||
See README_windows.txt for details on the Windows port.
|
||
|
||
|
||
PERFORMANCE
|
||
-----------
|
||
|
||
If you're interested in some third-party comparisons of tcmalloc to
|
||
other malloc libraries, here are a few web pages that have been
|
||
brought to our attention. The first discusses the effect of using
|
||
various malloc libraries on OpenLDAP. The second compares tcmalloc to
|
||
win32's malloc.
|
||
http://www.highlandsun.com/hyc/malloc/
|
||
http://gaiacrtn.free.fr/articles/win32perftools.html
|
||
|
||
It's possible to build tcmalloc in a way that trades off faster
|
||
performance (particularly for deletes) at the cost of more memory
|
||
fragmentation (that is, more unusable memory on your system). See the
|
||
INSTALL file for details.
|
||
|
||
|
||
OLD SYSTEM ISSUES
|
||
-----------------
|
||
|
||
When compiling perftools on some old systems, like RedHat 8, you may
|
||
get an error like this:
|
||
___tls_get_addr: symbol not found
|
||
|
||
This means that you have a system where some parts are updated enough
|
||
to support Thread Local Storage, but others are not. The perftools
|
||
configure script can't always detect this kind of case, leading to
|
||
that error. To fix it, just comment out (or delete) the line
|
||
#define HAVE_TLS 1
|
||
in your config.h file before building.
|
||
|
||
|
||
64-BIT ISSUES
|
||
-------------
|
||
|
||
There are two issues that can cause program hangs or crashes on x86_64
|
||
64-bit systems, which use the libunwind library to get stack-traces.
|
||
Neither issue should affect the core tcmalloc library; they both
|
||
affect the perftools tools such as cpu-profiler, heap-checker, and
|
||
heap-profiler.
|
||
|
||
1) Some libc's -- at least glibc 2.4 on x86_64 -- have a bug where the
|
||
libc function dl_iterate_phdr() acquires its locks in the wrong
|
||
order. This bug should not affect tcmalloc, but may cause occasional
|
||
deadlock with the cpu-profiler, heap-profiler, and heap-checker.
|
||
Its likeliness increases the more dlopen() commands an executable has.
|
||
Most executables don't have any, though several library routines like
|
||
getgrgid() call dlopen() behind the scenes.
|
||
|
||
2) On x86-64 64-bit systems, while tcmalloc itself works fine, the
|
||
cpu-profiler tool is unreliable: it will sometimes work, but sometimes
|
||
cause a segfault. I'll explain the problem first, and then some
|
||
workarounds.
|
||
|
||
Note that this only affects the cpu-profiler, which is a
|
||
gperftools feature you must turn on manually by setting the
|
||
CPUPROFILE environment variable. If you do not turn on cpu-profiling,
|
||
you shouldn't see any crashes due to perftools.
|
||
|
||
The gory details: The underlying problem is in the backtrace()
|
||
function, which is a built-in function in libc.
|
||
Backtracing is fairly straightforward in the normal case, but can run
|
||
into problems when having to backtrace across a signal frame.
|
||
Unfortunately, the cpu-profiler uses signals in order to register a
|
||
profiling event, so every backtrace that the profiler does crosses a
|
||
signal frame.
|
||
|
||
In our experience, the only time there is trouble is when the signal
|
||
fires in the middle of pthread_mutex_lock. pthread_mutex_lock is
|
||
called quite a bit from system libraries, particularly at program
|
||
startup and when creating a new thread.
|
||
|
||
The solution: The dwarf debugging format has support for 'cfi
|
||
annotations', which make it easy to recognize a signal frame. Some OS
|
||
distributions, such as Fedora and gentoo 2007.0, already have added
|
||
cfi annotations to their libc. A future version of libunwind should
|
||
recognize these annotations; these systems should not see any
|
||
crashes.
|
||
|
||
Workarounds: If you see problems with crashes when running the
|
||
cpu-profiler, consider inserting ProfilerStart()/ProfilerStop() into
|
||
your code, rather than setting CPUPROFILE. This will profile only
|
||
those sections of the codebase. Though we haven't done much testing,
|
||
in theory this should reduce the chance of crashes by limiting the
|
||
signal generation to only a small part of the codebase. Ideally, you
|
||
would not use ProfilerStart()/ProfilerStop() around code that spawns
|
||
new threads, or is otherwise likely to cause a call to
|
||
pthread_mutex_lock!
|
||
|
||
---
|
||
17 May 2011
|