gperftools/src/page_heap.cc
Aliaksey Kandratsenka 41aca070e8 always set errno to ENOMEM on OOM condition and in single place
While standards do not require us to set errno to ENOMEM in certain
places (like posix_memalign), existing code may sometimes set it
(i.e. because mmap or sbrk couldn't get memory from kernel)
anyways. And from my reading of glibc, it's malloc is doing more or
less same by just always setting ENOMEM on OOM condition.

This commit also eliminates some functions (XXX_no_errno) that are not
needed anymore.
2015-08-02 19:06:21 -07:00

683 lines
24 KiB
C++

// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
#include <config.h>
#ifdef HAVE_INTTYPES_H
#include <inttypes.h> // for PRIuPTR
#endif
#include <errno.h> // for ENOMEM, errno
#include <gperftools/malloc_extension.h> // for MallocRange, etc
#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
#include "page_heap_allocator.h" // for PageHeapAllocator
#include "static_vars.h" // for Static
#include "system-alloc.h" // for TCMalloc_SystemAlloc, etc
DEFINE_double(tcmalloc_release_rate,
EnvToDouble("TCMALLOC_RELEASE_RATE", 1.0),
"Rate at which we release unused memory to the system. "
"Zero means we never release memory back to the system. "
"Increase this flag to return memory faster; decrease it "
"to return memory slower. Reasonable rates are in the "
"range [0,10]");
DEFINE_int64(tcmalloc_heap_limit_mb,
EnvToInt("TCMALLOC_HEAP_LIMIT_MB", 0),
"Limit total size of the process heap to the "
"specified number of MiB. "
"When we approach the limit the memory is released "
"to the system more aggressively (more minor page faults). "
"Zero means to allocate as long as system allows.");
namespace tcmalloc {
PageHeap::PageHeap()
: pagemap_(MetaDataAlloc),
pagemap_cache_(0),
scavenge_counter_(0),
// Start scavenging at kMaxPages list
release_index_(kMaxPages),
aggressive_decommit_(false) {
COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
DLL_Init(&large_.normal);
DLL_Init(&large_.returned);
for (int i = 0; i < kMaxPages; i++) {
DLL_Init(&free_[i].normal);
DLL_Init(&free_[i].returned);
}
}
Span* PageHeap::SearchFreeAndLargeLists(Length n) {
ASSERT(Check());
ASSERT(n > 0);
// Find first size >= n that has a non-empty list
for (Length s = n; s < kMaxPages; s++) {
Span* ll = &free_[s].normal;
// If we're lucky, ll is non-empty, meaning it has a suitable span.
if (!DLL_IsEmpty(ll)) {
ASSERT(ll->next->location == Span::ON_NORMAL_FREELIST);
return Carve(ll->next, n);
}
// Alternatively, maybe there's a usable returned span.
ll = &free_[s].returned;
if (!DLL_IsEmpty(ll)) {
// We did not call EnsureLimit before, to avoid releasing the span
// that will be taken immediately back.
// Calling EnsureLimit here is not very expensive, as it fails only if
// there is no more normal spans (and it fails efficiently)
// or SystemRelease does not work (there is probably no returned spans).
if (EnsureLimit(n)) {
// ll may have became empty due to coalescing
if (!DLL_IsEmpty(ll)) {
ASSERT(ll->next->location == Span::ON_RETURNED_FREELIST);
return Carve(ll->next, n);
}
}
}
}
// No luck in free lists, our last chance is in a larger class.
return AllocLarge(n); // May be NULL
}
static const size_t kForcedCoalesceInterval = 128*1024*1024;
Span* PageHeap::New(Length n) {
ASSERT(Check());
ASSERT(n > 0);
Span* result = SearchFreeAndLargeLists(n);
if (result != NULL)
return result;
if (stats_.free_bytes != 0 && stats_.unmapped_bytes != 0
&& stats_.free_bytes + stats_.unmapped_bytes >= stats_.system_bytes / 4
&& (stats_.system_bytes / kForcedCoalesceInterval
!= (stats_.system_bytes + (n << kPageShift)) / kForcedCoalesceInterval)) {
// We're about to grow heap, but there are lots of free pages.
// tcmalloc's design decision to keep unmapped and free spans
// separately and never coalesce them means that sometimes there
// can be free pages span of sufficient size, but it consists of
// "segments" of different type so page heap search cannot find
// it. In order to prevent growing heap and wasting memory in such
// case we're going to unmap all free pages. So that all free
// spans are maximally coalesced.
//
// We're also limiting 'rate' of going into this path to be at
// most once per 128 megs of heap growth. Otherwise programs that
// grow heap frequently (and that means by small amount) could be
// penalized with higher count of minor page faults.
//
// See also large_heap_fragmentation_unittest.cc and
// https://code.google.com/p/gperftools/issues/detail?id=368
ReleaseAtLeastNPages(static_cast<Length>(0x7fffffff));
// then try again. If we are forced to grow heap because of large
// spans fragmentation and not because of problem described above,
// then at the very least we've just unmapped free but
// insufficiently big large spans back to OS. So in case of really
// unlucky memory fragmentation we'll be consuming virtual address
// space, but not real memory
result = SearchFreeAndLargeLists(n);
if (result != NULL) return result;
}
// Grow the heap and try again.
if (!GrowHeap(n)) {
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
// underlying SysAllocator likely set ENOMEM but we can get here
// due to EnsureLimit so we set it here too.
//
// Setting errno to ENOMEM here allows us to avoid dealing with it
// in fast-path.
errno = ENOMEM;
return NULL;
}
return SearchFreeAndLargeLists(n);
}
Span* PageHeap::AllocLarge(Length n) {
// find the best span (closest to n in size).
// The following loops implements address-ordered best-fit.
Span *best = NULL;
// Search through normal list
for (Span* span = large_.normal.next;
span != &large_.normal;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
ASSERT(best->location == Span::ON_NORMAL_FREELIST);
}
}
}
Span *bestNormal = best;
// Search through released list in case it has a better fit
for (Span* span = large_.returned.next;
span != &large_.returned;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
ASSERT(best->location == Span::ON_RETURNED_FREELIST);
}
}
}
if (best == bestNormal) {
return best == NULL ? NULL : Carve(best, n);
}
// best comes from returned list.
if (EnsureLimit(n, false)) {
return Carve(best, n);
}
if (EnsureLimit(n, true)) {
// best could have been destroyed by coalescing.
// bestNormal is not a best-fit, and it could be destroyed as well.
// We retry, the limit is already ensured:
return AllocLarge(n);
}
// If bestNormal existed, EnsureLimit would succeeded:
ASSERT(bestNormal == NULL);
// We are not allowed to take best from returned list.
return NULL;
}
Span* PageHeap::Split(Span* span, Length n) {
ASSERT(0 < n);
ASSERT(n < span->length);
ASSERT(span->location == Span::IN_USE);
ASSERT(span->sizeclass == 0);
Event(span, 'T', n);
const int extra = span->length - n;
Span* leftover = NewSpan(span->start + n, extra);
ASSERT(leftover->location == Span::IN_USE);
Event(leftover, 'U', extra);
RecordSpan(leftover);
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
span->length = n;
return leftover;
}
void PageHeap::CommitSpan(Span* span) {
TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift),
static_cast<size_t>(span->length << kPageShift));
stats_.committed_bytes += span->length << kPageShift;
}
bool PageHeap::DecommitSpan(Span* span) {
bool rv = TCMalloc_SystemRelease(reinterpret_cast<void*>(span->start << kPageShift),
static_cast<size_t>(span->length << kPageShift));
if (rv) {
stats_.committed_bytes -= span->length << kPageShift;
}
return rv;
}
Span* PageHeap::Carve(Span* span, Length n) {
ASSERT(n > 0);
ASSERT(span->location != Span::IN_USE);
const int old_location = span->location;
RemoveFromFreeList(span);
span->location = Span::IN_USE;
Event(span, 'A', n);
const int extra = span->length - n;
ASSERT(extra >= 0);
if (extra > 0) {
Span* leftover = NewSpan(span->start + n, extra);
leftover->location = old_location;
Event(leftover, 'S', extra);
RecordSpan(leftover);
// The previous span of |leftover| was just splitted -- no need to
// coalesce them. The next span of |leftover| was not previously coalesced
// with |span|, i.e. is NULL or has got location other than |old_location|.
#ifndef NDEBUG
const PageID p = leftover->start;
const Length len = leftover->length;
Span* next = GetDescriptor(p+len);
ASSERT (next == NULL ||
next->location == Span::IN_USE ||
next->location != leftover->location);
#endif
PrependToFreeList(leftover); // Skip coalescing - no candidates possible
span->length = n;
pagemap_.set(span->start + n - 1, span);
}
ASSERT(Check());
if (old_location == Span::ON_RETURNED_FREELIST) {
// We need to recommit this address space.
CommitSpan(span);
}
ASSERT(span->location == Span::IN_USE);
ASSERT(span->length == n);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
return span;
}
void PageHeap::Delete(Span* span) {
ASSERT(Check());
ASSERT(span->location == Span::IN_USE);
ASSERT(span->length > 0);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
const Length n = span->length;
span->sizeclass = 0;
span->sample = 0;
span->location = Span::ON_NORMAL_FREELIST;
Event(span, 'D', span->length);
MergeIntoFreeList(span); // Coalesces if possible
IncrementalScavenge(n);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
}
bool PageHeap::MayMergeSpans(Span *span, Span *other) {
if (aggressive_decommit_) {
return other->location != Span::IN_USE;
}
return span->location == other->location;
}
void PageHeap::MergeIntoFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
// necessary. We do not bother resetting the stale pagemap
// entries for the pieces we are merging together because we only
// care about the pagemap entries for the boundaries.
//
// Note: depending on aggressive_decommit_ mode we allow only
// similar spans to be coalesced.
//
// The following applies if aggressive_decommit_ is enabled:
//
// Note that the adjacent spans we merge into "span" may come out of a
// "normal" (committed) list, and cleanly merge with our IN_USE span, which
// is implicitly committed. If the adjacents spans are on the "returned"
// (decommitted) list, then we must get both spans into the same state before
// or after we coalesce them. The current code always decomits. This is
// achieved by blindly decommitting the entire coalesced region, which may
// include any combination of committed and decommitted spans, at the end of
// the method.
// TODO(jar): "Always decommit" causes some extra calls to commit when we are
// called in GrowHeap() during an allocation :-/. We need to eval the cost of
// that oscillation, and possibly do something to reduce it.
// TODO(jar): We need a better strategy for deciding to commit, or decommit,
// based on memory usage and free heap sizes.
uint64_t temp_committed = 0;
const PageID p = span->start;
const Length n = span->length;
Span* prev = GetDescriptor(p-1);
if (prev != NULL && MayMergeSpans(span, prev)) {
// Merge preceding span into this span
ASSERT(prev->start + prev->length == p);
const Length len = prev->length;
if (aggressive_decommit_ && prev->location == Span::ON_RETURNED_FREELIST) {
// We're about to put the merge span into the returned freelist and call
// DecommitSpan() on it, which will mark the entire span including this
// one as released and decrease stats_.committed_bytes by the size of the
// merged span. To make the math work out we temporarily increase the
// stats_.committed_bytes amount.
temp_committed = prev->length << kPageShift;
}
RemoveFromFreeList(prev);
DeleteSpan(prev);
span->start -= len;
span->length += len;
pagemap_.set(span->start, span);
Event(span, 'L', len);
}
Span* next = GetDescriptor(p+n);
if (next != NULL && MayMergeSpans(span, next)) {
// Merge next span into this span
ASSERT(next->start == p+n);
const Length len = next->length;
if (aggressive_decommit_ && next->location == Span::ON_RETURNED_FREELIST) {
// See the comment below 'if (prev->location ...' for explanation.
temp_committed += next->length << kPageShift;
}
RemoveFromFreeList(next);
DeleteSpan(next);
span->length += len;
pagemap_.set(span->start + span->length - 1, span);
Event(span, 'R', len);
}
if (aggressive_decommit_) {
if (DecommitSpan(span)) {
span->location = Span::ON_RETURNED_FREELIST;
stats_.committed_bytes += temp_committed;
} else {
ASSERT(temp_committed == 0);
}
}
PrependToFreeList(span);
}
void PageHeap::PrependToFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
SpanList* list = (span->length < kMaxPages) ? &free_[span->length] : &large_;
if (span->location == Span::ON_NORMAL_FREELIST) {
stats_.free_bytes += (span->length << kPageShift);
DLL_Prepend(&list->normal, span);
} else {
stats_.unmapped_bytes += (span->length << kPageShift);
DLL_Prepend(&list->returned, span);
}
}
void PageHeap::RemoveFromFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
if (span->location == Span::ON_NORMAL_FREELIST) {
stats_.free_bytes -= (span->length << kPageShift);
} else {
stats_.unmapped_bytes -= (span->length << kPageShift);
}
DLL_Remove(span);
}
void PageHeap::IncrementalScavenge(Length n) {
// Fast path; not yet time to release memory
scavenge_counter_ -= n;
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
const double rate = FLAGS_tcmalloc_release_rate;
if (rate <= 1e-6) {
// Tiny release rate means that releasing is disabled.
scavenge_counter_ = kDefaultReleaseDelay;
return;
}
Length released_pages = ReleaseAtLeastNPages(1);
if (released_pages == 0) {
// Nothing to scavenge, delay for a while.
scavenge_counter_ = kDefaultReleaseDelay;
} else {
// Compute how long to wait until we return memory.
// FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
// after releasing one page.
const double mult = 1000.0 / rate;
double wait = mult * static_cast<double>(released_pages);
if (wait > kMaxReleaseDelay) {
// Avoid overflow and bound to reasonable range.
wait = kMaxReleaseDelay;
}
scavenge_counter_ = static_cast<int64_t>(wait);
}
}
Length PageHeap::ReleaseLastNormalSpan(SpanList* slist) {
Span* s = slist->normal.prev;
ASSERT(s->location == Span::ON_NORMAL_FREELIST);
if (DecommitSpan(s)) {
RemoveFromFreeList(s);
const Length n = s->length;
s->location = Span::ON_RETURNED_FREELIST;
MergeIntoFreeList(s); // Coalesces if possible.
return n;
}
return 0;
}
Length PageHeap::ReleaseAtLeastNPages(Length num_pages) {
Length released_pages = 0;
// Round robin through the lists of free spans, releasing the last
// span in each list. Stop after releasing at least num_pages
// or when there is nothing more to release.
while (released_pages < num_pages && stats_.free_bytes > 0) {
for (int i = 0; i < kMaxPages+1 && released_pages < num_pages;
i++, release_index_++) {
if (release_index_ > kMaxPages) release_index_ = 0;
SpanList* slist = (release_index_ == kMaxPages) ?
&large_ : &free_[release_index_];
if (!DLL_IsEmpty(&slist->normal)) {
Length released_len = ReleaseLastNormalSpan(slist);
// Some systems do not support release
if (released_len == 0) return released_pages;
released_pages += released_len;
}
}
}
return released_pages;
}
bool PageHeap::EnsureLimit(Length n, bool withRelease)
{
Length limit = (FLAGS_tcmalloc_heap_limit_mb*1024*1024) >> kPageShift;
if (limit == 0) return true; //there is no limit
// We do not use stats_.system_bytes because it does not take
// MetaDataAllocs into account.
Length takenPages = TCMalloc_SystemTaken >> kPageShift;
//XXX takenPages may be slightly bigger than limit for two reasons:
//* MetaDataAllocs ignore the limit (it is not easy to handle
// out of memory there)
//* sys_alloc may round allocation up to huge page size,
// although smaller limit was ensured
ASSERT(takenPages >= stats_.unmapped_bytes >> kPageShift);
takenPages -= stats_.unmapped_bytes >> kPageShift;
if (takenPages + n > limit && withRelease) {
takenPages -= ReleaseAtLeastNPages(takenPages + n - limit);
}
return takenPages + n <= limit;
}
void PageHeap::RegisterSizeClass(Span* span, size_t sc) {
// Associate span object with all interior pages as well
ASSERT(span->location == Span::IN_USE);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start+span->length-1) == span);
Event(span, 'C', sc);
span->sizeclass = sc;
for (Length i = 1; i < span->length-1; i++) {
pagemap_.set(span->start+i, span);
}
}
void PageHeap::GetSmallSpanStats(SmallSpanStats* result) {
for (int s = 0; s < kMaxPages; s++) {
result->normal_length[s] = DLL_Length(&free_[s].normal);
result->returned_length[s] = DLL_Length(&free_[s].returned);
}
}
void PageHeap::GetLargeSpanStats(LargeSpanStats* result) {
result->spans = 0;
result->normal_pages = 0;
result->returned_pages = 0;
for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
result->normal_pages += s->length;;
result->spans++;
}
for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
result->returned_pages += s->length;
result->spans++;
}
}
bool PageHeap::GetNextRange(PageID start, base::MallocRange* r) {
Span* span = reinterpret_cast<Span*>(pagemap_.Next(start));
if (span == NULL) {
return false;
}
r->address = span->start << kPageShift;
r->length = span->length << kPageShift;
r->fraction = 0;
switch (span->location) {
case Span::IN_USE:
r->type = base::MallocRange::INUSE;
r->fraction = 1;
if (span->sizeclass > 0) {
// Only some of the objects in this span may be in use.
const size_t osize = Static::sizemap()->class_to_size(span->sizeclass);
r->fraction = (1.0 * osize * span->refcount) / r->length;
}
break;
case Span::ON_NORMAL_FREELIST:
r->type = base::MallocRange::FREE;
break;
case Span::ON_RETURNED_FREELIST:
r->type = base::MallocRange::UNMAPPED;
break;
default:
r->type = base::MallocRange::UNKNOWN;
break;
}
return true;
}
static void RecordGrowth(size_t growth) {
StackTrace* t = Static::stacktrace_allocator()->New();
t->depth = GetStackTrace(t->stack, kMaxStackDepth-1, 3);
t->size = growth;
t->stack[kMaxStackDepth-1] = reinterpret_cast<void*>(Static::growth_stacks());
Static::set_growth_stacks(t);
}
bool PageHeap::GrowHeap(Length n) {
ASSERT(kMaxPages >= kMinSystemAlloc);
if (n > kMaxValidPages) return false;
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
size_t actual_size;
void* ptr = NULL;
if (EnsureLimit(ask)) {
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
if (ptr == NULL) {
if (n < ask) {
// Try growing just "n" pages
ask = n;
if (EnsureLimit(ask)) {
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
}
if (ptr == NULL) return false;
}
ask = actual_size >> kPageShift;
RecordGrowth(ask << kPageShift);
uint64_t old_system_bytes = stats_.system_bytes;
stats_.system_bytes += (ask << kPageShift);
stats_.committed_bytes += (ask << kPageShift);
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
ASSERT(p > 0);
// If we have already a lot of pages allocated, just pre allocate a bunch of
// memory for the page map. This prevents fragmentation by pagemap metadata
// when a program keeps allocating and freeing large blocks.
if (old_system_bytes < kPageMapBigAllocationThreshold
&& stats_.system_bytes >= kPageMapBigAllocationThreshold) {
pagemap_.PreallocateMoreMemory();
}
// Make sure pagemap_ has entries for all of the new pages.
// Plus ensure one before and one after so coalescing code
// does not need bounds-checking.
if (pagemap_.Ensure(p-1, ask+2)) {
// Pretend the new area is allocated and then Delete() it to cause
// any necessary coalescing to occur.
Span* span = NewSpan(p, ask);
RecordSpan(span);
Delete(span);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
return true;
} else {
// We could not allocate memory within "pagemap_"
// TODO: Once we can return memory to the system, return the new span
return false;
}
}
bool PageHeap::Check() {
ASSERT(free_[0].normal.next == &free_[0].normal);
ASSERT(free_[0].returned.next == &free_[0].returned);
return true;
}
bool PageHeap::CheckExpensive() {
bool result = Check();
CheckList(&large_.normal, kMaxPages, 1000000000, Span::ON_NORMAL_FREELIST);
CheckList(&large_.returned, kMaxPages, 1000000000, Span::ON_RETURNED_FREELIST);
for (Length s = 1; s < kMaxPages; s++) {
CheckList(&free_[s].normal, s, s, Span::ON_NORMAL_FREELIST);
CheckList(&free_[s].returned, s, s, Span::ON_RETURNED_FREELIST);
}
return result;
}
bool PageHeap::CheckList(Span* list, Length min_pages, Length max_pages,
int freelist) {
for (Span* s = list->next; s != list; s = s->next) {
CHECK_CONDITION(s->location == freelist); // NORMAL or RETURNED
CHECK_CONDITION(s->length >= min_pages);
CHECK_CONDITION(s->length <= max_pages);
CHECK_CONDITION(GetDescriptor(s->start) == s);
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
}
return true;
}
} // namespace tcmalloc