gperftools/src/tcmalloc.cc

1203 lines
42 KiB
C++
Raw Normal View History

// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// A malloc that uses a per-thread cache to satisfy small malloc requests.
// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
//
// See doc/tcmalloc.html for a high-level
// description of how this malloc works.
//
// SYNCHRONIZATION
// 1. The thread-specific lists are accessed without acquiring any locks.
// This is safe because each such list is only accessed by one thread.
// 2. We have a lock per central free-list, and hold it while manipulating
// the central free list for a particular size.
// 3. The central page allocator is protected by "pageheap_lock".
// 4. The pagemap (which maps from page-number to descriptor),
// can be read without holding any locks, and written while holding
// the "pageheap_lock".
// 5. To improve performance, a subset of the information one can get
// from the pagemap is cached in a data structure, pagemap_cache_,
// that atomically reads and writes its entries. This cache can be
// read and written without locking.
//
// This multi-threaded access to the pagemap is safe for fairly
// subtle reasons. We basically assume that when an object X is
// allocated by thread A and deallocated by thread B, there must
// have been appropriate synchronization in the handoff of object
// X from thread A to thread B. The same logic applies to pagemap_cache_.
//
// THE PAGEID-TO-SIZECLASS CACHE
// Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
// returns 0 for a particular PageID then that means "no information," not that
// the sizeclass is 0. The cache may have stale information for pages that do
// not hold the beginning of any free()'able object. Staleness is eliminated
// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
// do_memalign() for all other relevant pages.
//
// PAGEMAP
// -------
// Page map contains a mapping from page id to Span.
//
// If Span s occupies pages [p..q],
// pagemap[p] == s
// pagemap[q] == s
// pagemap[p+1..q-1] are undefined
// pagemap[p-1] and pagemap[q+1] are defined:
// NULL if the corresponding page is not yet in the address space.
// Otherwise it points to a Span. This span may be free
// or allocated. If free, it is in one of pageheap's freelist.
//
// TODO: Bias reclamation to larger addresses
// TODO: implement mallinfo/mallopt
// TODO: Better testing
//
// 9/28/2003 (new page-level allocator replaces ptmalloc2):
// * malloc/free of small objects goes from ~300 ns to ~50 ns.
// * allocation of a reasonably complicated struct
// goes from about 1100 ns to about 300 ns.
#include "config.h"
#include <new>
#include <stdio.h>
#include <stddef.h>
#if defined HAVE_STDINT_H
#include <stdint.h>
#elif defined HAVE_INTTYPES_H
#include <inttypes.h>
#else
#include <sys/types.h>
#endif
#if defined(HAVE_MALLOC_H) && defined(HAVE_STRUCT_MALLINFO)
#include <malloc.h> // for struct mallinfo
#endif
#include <string.h>
#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <errno.h>
#include <stdarg.h>
#include <algorithm>
#include "base/commandlineflags.h"
#include "base/basictypes.h" // gets us PRIu64
#include "base/sysinfo.h"
#include "base/spinlock.h"
#include "common.h"
#include "malloc_hook-inl.h"
#include <google/malloc_hook.h>
#include <google/malloc_extension.h>
#include "central_freelist.h"
#include "internal_logging.h"
#include "linked_list.h"
#include "maybe_threads.h"
#include "page_heap.h"
#include "page_heap_allocator.h"
#include "pagemap.h"
#include "span.h"
#include "static_vars.h"
#include "system-alloc.h"
#include "tcmalloc_guard.h"
#include "thread_cache.h"
using tcmalloc::PageHeap;
using tcmalloc::PageHeapAllocator;
using tcmalloc::SizeMap;
using tcmalloc::Span;
using tcmalloc::StackTrace;
using tcmalloc::Static;
using tcmalloc::ThreadCache;
// __THROW is defined in glibc systems. It means, counter-intuitively,
// "This function will never throw an exception." It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW // I guess we're not on a glibc system
# define __THROW // __THROW is just an optimization, so ok to make it ""
#endif
DECLARE_int64(tcmalloc_sample_parameter);
DECLARE_double(tcmalloc_release_rate);
// For windows, the printf we use to report large allocs is
// potentially dangerous: it could cause a malloc that would cause an
// infinite loop. So by default we set the threshold to a huge number
// on windows, so this bad situation will never trigger. You can
// always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
// want this functionality.
#ifdef _WIN32
const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
#else
const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
#endif
DEFINE_int64(tcmalloc_large_alloc_report_threshold,
EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
kDefaultLargeAllocReportThreshold),
"Allocations larger than this value cause a stack "
"trace to be dumped to stderr. The threshold for "
"dumping stack traces is increased by a factor of 1.125 "
"every time we print a message so that the threshold "
"automatically goes up by a factor of ~1000 every 60 "
"messages. This bounds the amount of extra logging "
"generated by this flag. Default value of this flag "
"is very large and therefore you should see no extra "
"logging unless the flag is overridden.");
// Extract interesting stats
struct TCMallocStats {
uint64_t system_bytes; // Bytes alloced from system
uint64_t thread_bytes; // Bytes in thread caches
uint64_t central_bytes; // Bytes in central cache
uint64_t transfer_bytes; // Bytes in central transfer cache
uint64_t pageheap_bytes; // Bytes in page heap
uint64_t metadata_bytes; // Bytes alloced for metadata
};
// Get stats into "r". Also get per-size-class counts if class_count != NULL
static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
r->central_bytes = 0;
r->transfer_bytes = 0;
for (int cl = 0; cl < kNumClasses; ++cl) {
const int length = Static::central_cache()[cl].length();
const int tc_length = Static::central_cache()[cl].tc_length();
const size_t size = static_cast<uint64_t>(
Static::sizemap()->ByteSizeForClass(cl));
r->central_bytes += (size * length);
r->transfer_bytes += (size * tc_length);
if (class_count) class_count[cl] = length + tc_length;
}
// Add stats from per-thread heaps
r->thread_bytes = 0;
{ // scope
SpinLockHolder h(Static::pageheap_lock());
ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
}
{ //scope
SpinLockHolder h(Static::pageheap_lock());
r->system_bytes = Static::pageheap()->SystemBytes();
r->metadata_bytes = tcmalloc::metadata_system_bytes();
r->pageheap_bytes = Static::pageheap()->FreeBytes();
}
}
// WRITE stats to "out"
static void DumpStats(TCMalloc_Printer* out, int level) {
TCMallocStats stats;
uint64_t class_count[kNumClasses];
ExtractStats(&stats, (level >= 2 ? class_count : NULL));
static const double MB = 1048576.0;
if (level >= 2) {
out->printf("------------------------------------------------\n");
uint64_t cumulative = 0;
for (int cl = 0; cl < kNumClasses; ++cl) {
if (class_count[cl] > 0) {
uint64_t class_bytes =
class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
cumulative += class_bytes;
out->printf("class %3d [ %8" PRIuS " bytes ] : "
"%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
cl, Static::sizemap()->ByteSizeForClass(cl),
class_count[cl],
class_bytes / MB,
cumulative / MB);
}
}
SpinLockHolder h(Static::pageheap_lock());
Static::pageheap()->Dump(out);
out->printf("------------------------------------------------\n");
DumpSystemAllocatorStats(out);
}
const uint64_t bytes_in_use = stats.system_bytes
- stats.pageheap_bytes
- stats.central_bytes
- stats.transfer_bytes
- stats.thread_bytes;
out->printf("------------------------------------------------\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Heap size\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Bytes in use by application\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in page heap\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in central cache\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in transfer cache\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in thread caches\n"
"MALLOC: %12" PRIu64 " Spans in use\n"
"MALLOC: %12" PRIu64 " Thread heaps in use\n"
"MALLOC: %12" PRIu64 " (%7.1f MB) Metadata allocated\n"
"------------------------------------------------\n",
stats.system_bytes, stats.system_bytes / MB,
bytes_in_use, bytes_in_use / MB,
stats.pageheap_bytes, stats.pageheap_bytes / MB,
stats.central_bytes, stats.central_bytes / MB,
stats.transfer_bytes, stats.transfer_bytes / MB,
stats.thread_bytes, stats.thread_bytes / MB,
uint64_t(Static::span_allocator()->inuse()),
uint64_t(ThreadCache::HeapsInUse()),
stats.metadata_bytes, stats.metadata_bytes / MB);
}
static void PrintStats(int level) {
const int kBufferSize = 16 << 10;
char* buffer = new char[kBufferSize];
TCMalloc_Printer printer(buffer, kBufferSize);
DumpStats(&printer, level);
write(STDERR_FILENO, buffer, strlen(buffer));
delete[] buffer;
}
static void** DumpStackTraces() {
// Count how much space we need
int needed_slots = 0;
{
SpinLockHolder h(Static::pageheap_lock());
Span* sampled = Static::sampled_objects();
for (Span* s = sampled->next; s != sampled; s = s->next) {
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
needed_slots += 3 + stack->depth;
}
needed_slots += 100; // Slop in case sample grows
needed_slots += needed_slots/8; // An extra 12.5% slop
}
void** result = new void*[needed_slots];
if (result == NULL) {
MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
needed_slots);
return NULL;
}
SpinLockHolder h(Static::pageheap_lock());
int used_slots = 0;
Span* sampled = Static::sampled_objects();
for (Span* s = sampled->next; s != sampled; s = s->next) {
ASSERT(used_slots < needed_slots); // Need to leave room for terminator
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
if (used_slots + 3 + stack->depth >= needed_slots) {
// No more room
break;
}
result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
result[used_slots+1] = reinterpret_cast<void*>(stack->size);
result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
for (int d = 0; d < stack->depth; d++) {
result[used_slots+3+d] = stack->stack[d];
}
used_slots += 3 + stack->depth;
}
result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
return result;
}
static void** DumpHeapGrowthStackTraces() {
// Count how much space we need
int needed_slots = 0;
{
SpinLockHolder h(Static::pageheap_lock());
for (StackTrace* t = Static::growth_stacks();
t != NULL;
t = reinterpret_cast<StackTrace*>(
t->stack[tcmalloc::kMaxStackDepth-1])) {
needed_slots += 3 + t->depth;
}
needed_slots += 100; // Slop in case list grows
needed_slots += needed_slots/8; // An extra 12.5% slop
}
void** result = new void*[needed_slots];
if (result == NULL) {
MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
needed_slots);
return NULL;
}
SpinLockHolder h(Static::pageheap_lock());
int used_slots = 0;
for (StackTrace* t = Static::growth_stacks();
t != NULL;
t = reinterpret_cast<StackTrace*>(
t->stack[tcmalloc::kMaxStackDepth-1])) {
ASSERT(used_slots < needed_slots); // Need to leave room for terminator
if (used_slots + 3 + t->depth >= needed_slots) {
// No more room
break;
}
result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
result[used_slots+1] = reinterpret_cast<void*>(t->size);
result[used_slots+2] = reinterpret_cast<void*>(t->depth);
for (int d = 0; d < t->depth; d++) {
result[used_slots+3+d] = t->stack[d];
}
used_slots += 3 + t->depth;
}
result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
return result;
}
// TCMalloc's support for extra malloc interfaces
class TCMallocImplementation : public MallocExtension {
public:
virtual void GetStats(char* buffer, int buffer_length) {
ASSERT(buffer_length > 0);
TCMalloc_Printer printer(buffer, buffer_length);
// Print level one stats unless lots of space is available
if (buffer_length < 10000) {
DumpStats(&printer, 1);
} else {
DumpStats(&printer, 2);
}
}
virtual void** ReadStackTraces() {
return DumpStackTraces();
}
virtual void** ReadHeapGrowthStackTraces() {
return DumpHeapGrowthStackTraces();
}
virtual bool GetNumericProperty(const char* name, size_t* value) {
ASSERT(name != NULL);
if (strcmp(name, "generic.current_allocated_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.transfer_bytes
- stats.pageheap_bytes;
return true;
}
if (strcmp(name, "generic.heap_size") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes;
return true;
}
if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
// We assume that bytes in the page heap are not fragmented too
// badly, and are therefore available for allocation.
SpinLockHolder l(Static::pageheap_lock());
*value = Static::pageheap()->FreeBytes();
return true;
}
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
SpinLockHolder l(Static::pageheap_lock());
*value = ThreadCache::overall_thread_cache_size();
return true;
}
if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.thread_bytes;
return true;
}
return false;
}
virtual bool SetNumericProperty(const char* name, size_t value) {
ASSERT(name != NULL);
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
SpinLockHolder l(Static::pageheap_lock());
ThreadCache::set_overall_thread_cache_size(value);
return true;
}
return false;
}
virtual void MarkThreadIdle() {
ThreadCache::BecomeIdle();
}
virtual void ReleaseFreeMemory() {
SpinLockHolder h(Static::pageheap_lock());
Static::pageheap()->ReleaseFreePages();
}
virtual void SetMemoryReleaseRate(double rate) {
FLAGS_tcmalloc_release_rate = rate;
}
virtual double GetMemoryReleaseRate() {
return FLAGS_tcmalloc_release_rate;
}
};
// The constructor allocates an object to ensure that initialization
// runs before main(), and therefore we do not have a chance to become
// multi-threaded before initialization. We also create the TSD key
// here. Presumably by the time this constructor runs, glibc is in
// good enough shape to handle pthread_key_create().
//
// The constructor also takes the opportunity to tell STL to use
// tcmalloc. We want to do this early, before construct time, so
// all user STL allocations go through tcmalloc (which works really
// well for STL).
//
// The destructor prints stats when the program exits.
static int tcmallocguard_refcount = 0; // no lock needed: runs before main()
TCMallocGuard::TCMallocGuard() {
if (tcmallocguard_refcount++ == 0) {
#ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
// Check whether the kernel also supports TLS (needs to happen at runtime)
tcmalloc::CheckIfKernelSupportsTLS();
#endif
#ifdef _WIN32 // patch the windows VirtualAlloc, etc.
PatchWindowsFunctions(); // defined in windows/patch_functions.cc
#endif
free(malloc(1));
ThreadCache::InitTSD();
free(malloc(1));
MallocExtension::Register(new TCMallocImplementation);
}
}
TCMallocGuard::~TCMallocGuard() {
if (--tcmallocguard_refcount == 0) {
const char* env = getenv("MALLOCSTATS");
if (env != NULL) {
int level = atoi(env);
if (level < 1) level = 1;
PrintStats(level);
}
}
}
static TCMallocGuard module_enter_exit_hook;
//-------------------------------------------------------------------
// Helpers for the exported routines below
//-------------------------------------------------------------------
static Span* DoSampledAllocation(size_t size) {
// Grab the stack trace outside the heap lock
StackTrace tmp;
tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
tmp.size = size;
SpinLockHolder h(Static::pageheap_lock());
// Allocate span
Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
if (span == NULL) {
return NULL;
}
// Allocate stack trace
StackTrace *stack = Static::stacktrace_allocator()->New();
if (stack == NULL) {
// Sampling failed because of lack of memory
return span;
}
*stack = tmp;
span->sample = 1;
span->objects = stack;
tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
return span;
}
static inline bool CheckCachedSizeClass(void *ptr) {
PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
return cached_value == 0 ||
cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
}
static inline void* CheckedMallocResult(void *result)
{
ASSERT(result == 0 || CheckCachedSizeClass(result));
return result;
}
static inline void* SpanToMallocResult(Span *span) {
Static::pageheap()->CacheSizeClass(span->start, 0);
return
CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
}
// Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
// automatic increases factored in.
static int64_t large_alloc_threshold =
(kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
static void ReportLargeAlloc(Length num_pages, void* result) {
StackTrace stack;
stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
static const int N = 1000;
char buffer[N];
TCMalloc_Printer printer(buffer, N);
printer.printf("tcmalloc: large alloc %lld bytes == %p @ ",
static_cast<long long>(num_pages) << kPageShift,
result);
for (int i = 0; i < stack.depth; i++) {
printer.printf(" %p", stack.stack[i]);
}
printer.printf("\n");
write(STDERR_FILENO, buffer, strlen(buffer));
}
// These routines are called by free() and realloc() if the pointer is
// invalid. This is a cheap (source-editing required) kind of exception
// handling for these routines.
namespace {
void InvalidFree(void* ptr) {
CRASH("Attempt to free invalid pointer: %p\n", ptr);
}
void* InvalidRealloc(void* old_ptr, size_t new_size) {
CRASH("Attempt to realloc invalid pointer: %p (realloc to %" PRIuS ")\n",
old_ptr, new_size);
return NULL;
}
// Helper for do_malloc().
inline void* do_malloc_pages(Length num_pages) {
Span *span;
bool report_large = false;
{
SpinLockHolder h(Static::pageheap_lock());
span = Static::pageheap()->New(num_pages);
const int64 threshold = large_alloc_threshold;
if (num_pages >= (threshold >> kPageShift)) {
// Increase the threshold by 1/8 every time we generate a report.
// We cap the threshold at 8GB to avoid overflow problems.
large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
? threshold + threshold/8 : 8ll<<30);
report_large = true;
}
}
void* result = (span == NULL ? NULL : SpanToMallocResult(span));
if (report_large) {
ReportLargeAlloc(num_pages, result);
}
return result;
}
inline void* do_malloc(size_t size) {
void* ret = NULL;
// The following call forces module initialization
ThreadCache* heap = ThreadCache::GetCache();
if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
Span* span = DoSampledAllocation(size);
if (span != NULL) {
ret = SpanToMallocResult(span);
}
} else if (size <= kMaxSize) {
// The common case, and also the simplest. This just pops the
// size-appropriate freelist, after replenishing it if it's empty.
ret = CheckedMallocResult(heap->Allocate(size));
} else {
ret = do_malloc_pages(tcmalloc::pages(size));
}
if (ret == NULL) errno = ENOMEM;
return ret;
}
inline void* do_calloc(size_t n, size_t elem_size) {
// Overflow check
const size_t size = n * elem_size;
if (elem_size != 0 && size / elem_size != n) return NULL;
void* result = do_malloc(size);
if (result != NULL) {
memset(result, 0, size);
}
return result;
}
static inline ThreadCache* GetCacheIfPresent() {
void* const p = ThreadCache::GetCacheIfPresent();
return reinterpret_cast<ThreadCache*>(p);
}
// This lets you call back to a given function pointer if ptr is invalid.
// It is used primarily by windows code which wants a specialized callback.
inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
if (ptr == NULL) return;
ASSERT(Static::pageheap() != NULL); // Should not call free() before malloc()
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
Span* span = NULL;
size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
if (cl == 0) {
span = Static::pageheap()->GetDescriptor(p);
if (!span) {
// span can be NULL because the pointer passed in is invalid
// (not something returned by malloc or friends), or because the
// pointer was allocated with some other allocator besides
// tcmalloc. The latter can happen if tcmalloc is linked in via
// a dynamic library, but is not listed last on the link line.
// In that case, libraries after it on the link line will
// allocate with libc malloc, but free with tcmalloc's free.
(*invalid_free_fn)(ptr); // Decide how to handle the bad free request
return;
}
cl = span->sizeclass;
Static::pageheap()->CacheSizeClass(p, cl);
}
if (cl != 0) {
ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
ThreadCache* heap = GetCacheIfPresent();
if (heap != NULL) {
heap->Deallocate(ptr, cl);
} else {
// Delete directly into central cache
tcmalloc::SLL_SetNext(ptr, NULL);
Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
}
} else {
SpinLockHolder h(Static::pageheap_lock());
ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
ASSERT(span != NULL && span->start == p);
if (span->sample) {
tcmalloc::DLL_Remove(span);
Static::stacktrace_allocator()->Delete(
reinterpret_cast<StackTrace*>(span->objects));
span->objects = NULL;
}
Static::pageheap()->Delete(span);
}
}
// The default "do_free" that uses the default callback.
inline void do_free(void* ptr) {
return do_free_with_callback(ptr, &InvalidFree);
}
// This lets you call back to a given function pointer if ptr is invalid.
// It is used primarily by windows code which wants a specialized callback.
inline void* do_realloc_with_callback(void* old_ptr, size_t new_size,
void* (*invalid_realloc_fn)(void*,
size_t)) {
// Get the size of the old entry
const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
Span *span = NULL;
size_t old_size;
if (cl == 0) {
span = Static::pageheap()->GetDescriptor(p);
if (!span) {
// span can be NULL because the pointer passed in is invalid
// (not something returned by malloc or friends), or because the
// pointer was allocated with some other allocator besides tcmalloc.
return InvalidRealloc(old_ptr, new_size);
}
cl = span->sizeclass;
Static::pageheap()->CacheSizeClass(p, cl);
}
if (cl != 0) {
old_size = Static::sizemap()->ByteSizeForClass(cl);
} else {
ASSERT(span != NULL);
old_size = span->length << kPageShift;
}
// Reallocate if the new size is larger than the old size,
// or if the new size is significantly smaller than the old size.
// We do hysteresis to avoid resizing ping-pongs:
// . If we need to grow, grow to max(new_size, old_size * 1.X)
// . Don't shrink unless new_size < old_size * 0.Y
// X and Y trade-off time for wasted space. For now we do 1.25 and 0.5.
const int lower_bound_to_grow = old_size + old_size / 4;
const int upper_bound_to_shrink = old_size / 2;
if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
// Need to reallocate.
void* new_ptr = NULL;
if (new_size > old_size && new_size < lower_bound_to_grow) {
new_ptr = do_malloc(lower_bound_to_grow);
}
if (new_ptr == NULL) {
// Either new_size is not a tiny increment, or last do_malloc failed.
new_ptr = do_malloc(new_size);
}
if (new_ptr == NULL) {
return NULL;
}
MallocHook::InvokeNewHook(new_ptr, new_size);
memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
MallocHook::InvokeDeleteHook(old_ptr);
// We could use a variant of do_free() that leverages the fact
// that we already know the sizeclass of old_ptr. The benefit
// would be small, so don't bother.
do_free(old_ptr);
return new_ptr;
} else {
// We still need to call hooks to report the updated size:
MallocHook::InvokeDeleteHook(old_ptr);
MallocHook::InvokeNewHook(old_ptr, new_size);
return old_ptr;
}
}
inline void* do_realloc(void* old_ptr, size_t new_size) {
return do_realloc_with_callback(old_ptr, new_size, &InvalidRealloc);
}
// For use by exported routines below that want specific alignments
//
// Note: this code can be slow, and can significantly fragment memory.
// The expectation is that memalign/posix_memalign/valloc/pvalloc will
// not be invoked very often. This requirement simplifies our
// implementation and allows us to tune for expected allocation
// patterns.
void* do_memalign(size_t align, size_t size) {
ASSERT((align & (align - 1)) == 0);
ASSERT(align > 0);
if (size + align < size) return NULL; // Overflow
if (Static::pageheap() == NULL) ThreadCache::InitModule();
// Allocate at least one byte to avoid boundary conditions below
if (size == 0) size = 1;
if (size <= kMaxSize && align < kPageSize) {
// Search through acceptable size classes looking for one with
// enough alignment. This depends on the fact that
// InitSizeClasses() currently produces several size classes that
// are aligned at powers of two. We will waste time and space if
// we miss in the size class array, but that is deemed acceptable
// since memalign() should be used rarely.
int cl = Static::sizemap()->SizeClass(size);
while (cl < kNumClasses &&
((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
cl++;
}
if (cl < kNumClasses) {
ThreadCache* heap = ThreadCache::GetCache();
return CheckedMallocResult(heap->Allocate(
Static::sizemap()->class_to_size(cl)));
}
}
// We will allocate directly from the page heap
SpinLockHolder h(Static::pageheap_lock());
if (align <= kPageSize) {
// Any page-level allocation will be fine
// TODO: We could put the rest of this page in the appropriate
// TODO: cache but it does not seem worth it.
Span* span = Static::pageheap()->New(tcmalloc::pages(size));
return span == NULL ? NULL : SpanToMallocResult(span);
}
// Allocate extra pages and carve off an aligned portion
const Length alloc = tcmalloc::pages(size + align);
Span* span = Static::pageheap()->New(alloc);
if (span == NULL) return NULL;
// Skip starting portion so that we end up aligned
Length skip = 0;
while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
skip++;
}
ASSERT(skip < alloc);
if (skip > 0) {
Span* rest = Static::pageheap()->Split(span, skip);
Static::pageheap()->Delete(span);
span = rest;
}
// Skip trailing portion that we do not need to return
const Length needed = tcmalloc::pages(size);
ASSERT(span->length >= needed);
if (span->length > needed) {
Span* trailer = Static::pageheap()->Split(span, needed);
Static::pageheap()->Delete(trailer);
}
return SpanToMallocResult(span);
}
// Helpers for use by exported routines below:
inline void do_malloc_stats() {
PrintStats(1);
}
inline int do_mallopt(int cmd, int value) {
return 1; // Indicates error
}
#ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
inline struct mallinfo do_mallinfo() {
TCMallocStats stats;
ExtractStats(&stats, NULL);
// Just some of the fields are filled in.
struct mallinfo info;
memset(&info, 0, sizeof(info));
// Unfortunately, the struct contains "int" field, so some of the
// size values will be truncated.
info.arena = static_cast<int>(stats.system_bytes);
info.fsmblks = static_cast<int>(stats.thread_bytes
+ stats.central_bytes
+ stats.transfer_bytes);
info.fordblks = static_cast<int>(stats.pageheap_bytes);
info.uordblks = static_cast<int>(stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.transfer_bytes
- stats.pageheap_bytes);
return info;
}
#endif // #ifndef HAVE_STRUCT_MALLINFO
static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
inline void* cpp_alloc(size_t size, bool nothrow) {
for (;;) {
void* p = do_malloc(size);
#ifdef PREANSINEW
return p;
#else
if (p == NULL) { // allocation failed
// Get the current new handler. NB: this function is not
// thread-safe. We make a feeble stab at making it so here, but
// this lock only protects against tcmalloc interfering with
// itself, not with other libraries calling set_new_handler.
std::new_handler nh;
{
SpinLockHolder h(&set_new_handler_lock);
nh = std::set_new_handler(0);
(void) std::set_new_handler(nh);
}
// If no new_handler is established, the allocation failed.
if (!nh) {
if (nothrow) return 0;
throw std::bad_alloc();
}
// Otherwise, try the new_handler. If it returns, retry the
// allocation. If it throws std::bad_alloc, fail the allocation.
// if it throws something else, don't interfere.
try {
(*nh)();
} catch (const std::bad_alloc&) {
if (!nothrow) throw;
return p;
}
} else { // allocation success
return p;
}
#endif
}
}
} // end unnamed namespace
//-------------------------------------------------------------------
// Exported routines
//-------------------------------------------------------------------
#ifndef _WIN32 // windows doesn't allow overriding; use the do_* fns instead
// CAVEAT: The code structure below ensures that MallocHook methods are always
// called from the stack frame of the invoked allocation function.
// heap-checker.cc depends on this to start a stack trace from
// the call to the (de)allocation function.
// Put all callers of MallocHook::Invoke* in this module into
// ATTRIBUTE_SECTION(google_malloc) section,
// so that MallocHook::GetCallerStackTrace can function accurately:
// NOTE: __THROW expands to 'throw()', which means 'never throws.' Urgh.
extern "C" {
void* malloc(size_t size)
__THROW ATTRIBUTE_SECTION(google_malloc);
void free(void* ptr)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* realloc(void* ptr, size_t size)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* calloc(size_t nmemb, size_t size)
__THROW ATTRIBUTE_SECTION(google_malloc);
void cfree(void* ptr)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* memalign(size_t __alignment, size_t __size)
__THROW ATTRIBUTE_SECTION(google_malloc);
int posix_memalign(void** ptr, size_t align, size_t size)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* valloc(size_t __size)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* pvalloc(size_t __size)
__THROW ATTRIBUTE_SECTION(google_malloc);
}
void* operator new(size_t size)
ATTRIBUTE_SECTION(google_malloc);
void operator delete(void* p)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* operator new[](size_t size)
ATTRIBUTE_SECTION(google_malloc);
void operator delete[](void* p)
__THROW ATTRIBUTE_SECTION(google_malloc);
// And the nothrow variants of these:
void* operator new(size_t size, const std::nothrow_t&)
__THROW ATTRIBUTE_SECTION(google_malloc);
void operator delete(void* p, const std::nothrow_t&)
__THROW ATTRIBUTE_SECTION(google_malloc);
void* operator new[](size_t size, const std::nothrow_t&)
__THROW ATTRIBUTE_SECTION(google_malloc);
void operator delete[](void* p, const std::nothrow_t&)
__THROW ATTRIBUTE_SECTION(google_malloc);
static void *MemalignOverride(size_t align, size_t size, const void *caller)
__THROW ATTRIBUTE_SECTION(google_malloc);
extern "C" void* malloc(size_t size) __THROW {
void* result = do_malloc(size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void free(void* ptr) __THROW {
MallocHook::InvokeDeleteHook(ptr);
do_free(ptr);
}
extern "C" void* calloc(size_t n, size_t elem_size) __THROW {
void* result = do_calloc(n, elem_size);
MallocHook::InvokeNewHook(result, n * elem_size);
return result;
}
extern "C" void cfree(void* ptr) __THROW {
MallocHook::InvokeDeleteHook(ptr);
do_free(ptr);
}
extern "C" void* realloc(void* old_ptr, size_t new_size) __THROW {
if (old_ptr == NULL) {
void* result = do_malloc(new_size);
MallocHook::InvokeNewHook(result, new_size);
return result;
}
if (new_size == 0) {
MallocHook::InvokeDeleteHook(old_ptr);
do_free(old_ptr);
return NULL;
}
return do_realloc(old_ptr, new_size);
}
void* operator new(size_t size) {
void* p = cpp_alloc(size, false);
// We keep this next instruction out of cpp_alloc for a reason: when
// it's in, and new just calls cpp_alloc, the optimizer may fold the
// new call into cpp_alloc, which messes up our whole section-based
// stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
// isn't the last thing this fn calls, and prevents the folding.
MallocHook::InvokeNewHook(p, size);
return p;
}
void* operator new(size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete(void* p) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void operator delete(void* p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void* operator new[](size_t size) {
void* p = cpp_alloc(size, false);
// We keep this next instruction out of cpp_alloc for a reason: when
// it's in, and new just calls cpp_alloc, the optimizer may fold the
// new call into cpp_alloc, which messes up our whole section-based
// stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
// isn't the last thing this fn calls, and prevents the folding.
MallocHook::InvokeNewHook(p, size);
return p;
}
void* operator new[](size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete[](void* p) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void operator delete[](void* p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
extern "C" void* memalign(size_t align, size_t size) __THROW {
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
__THROW {
if (((align % sizeof(void*)) != 0) ||
((align & (align - 1)) != 0) ||
(align == 0)) {
return EINVAL;
}
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
if (result == NULL) {
return ENOMEM;
} else {
*result_ptr = result;
return 0;
}
}
static size_t pagesize = 0;
extern "C" void* valloc(size_t size) __THROW {
// Allocate page-aligned object of length >= size bytes
if (pagesize == 0) pagesize = getpagesize();
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void* pvalloc(size_t size) __THROW {
// Round up size to a multiple of pagesize
if (pagesize == 0) pagesize = getpagesize();
size = (size + pagesize - 1) & ~(pagesize - 1);
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void malloc_stats(void) {
do_malloc_stats();
}
extern "C" int mallopt(int cmd, int value) {
return do_mallopt(cmd, value);
}
#ifdef HAVE_STRUCT_MALLINFO
extern "C" struct mallinfo mallinfo(void) {
return do_mallinfo();
}
#endif
//-------------------------------------------------------------------
// Some library routines on RedHat 9 allocate memory using malloc()
// and free it using __libc_free() (or vice-versa). Since we provide
// our own implementations of malloc/free, we need to make sure that
// the __libc_XXX variants (defined as part of glibc) also point to
// the same implementations.
//-------------------------------------------------------------------
#if defined(__GLIBC__)
extern "C" {
# if defined(__GNUC__) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
// Potentially faster variants that use the gcc alias extension.
// Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
# define ALIAS(x) __attribute__ ((weak, alias (x)))
void* __libc_malloc(size_t size) ALIAS("malloc");
void __libc_free(void* ptr) ALIAS("free");
void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
void __libc_cfree(void* ptr) ALIAS("cfree");
void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
void* __libc_valloc(size_t size) ALIAS("valloc");
void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
# undef ALIAS
# else /* not __GNUC__ */
// Portable wrappers
void* __libc_malloc(size_t size) { return malloc(size); }
void __libc_free(void* ptr) { free(ptr); }
void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
void __libc_cfree(void* ptr) { cfree(ptr); }
void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
void* __libc_valloc(size_t size) { return valloc(size); }
void* __libc_pvalloc(size_t size) { return pvalloc(size); }
int __posix_memalign(void** r, size_t a, size_t s) {
return posix_memalign(r, a, s);
}
# endif /* __GNUC__ */
}
#endif /* __GLIBC__ */
// Override __libc_memalign in libc on linux boxes specially.
// They have a bug in libc that causes them to (very rarely) allocate
// with __libc_memalign() yet deallocate with free() and the
// definitions above don't catch it.
// This function is an exception to the rule of calling MallocHook method
// from the stack frame of the allocation function;
// heap-checker handles this special case explicitly.
static void *MemalignOverride(size_t align, size_t size, const void *caller)
__THROW {
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
#endif // #ifndef _WIN32