package rados // #cgo LDFLAGS: -lrados // #include // #include // #include // // char* nextChunk(char **idx) { // char *copy; // copy = strdup(*idx); // *idx += strlen(*idx) + 1; // return copy; // } // // #if __APPLE__ // #define ceph_time_t __darwin_time_t // #define ceph_suseconds_t __darwin_suseconds_t // #elif __GLIBC__ // #define ceph_time_t __time_t // #define ceph_suseconds_t __suseconds_t // #else // #define ceph_time_t time_t // #define ceph_suseconds_t suseconds_t // #endif import "C" import ( "syscall" "time" "unsafe" ) // PoolStat represents Ceph pool statistics. type PoolStat struct { // space used in bytes Num_bytes uint64 // space used in KB Num_kb uint64 // number of objects in the pool Num_objects uint64 // number of clones of objects Num_object_clones uint64 // num_objects * num_replicas Num_object_copies uint64 Num_objects_missing_on_primary uint64 // number of objects found on no OSDs Num_objects_unfound uint64 // number of objects replicated fewer times than they should be // (but found on at least one OSD) Num_objects_degraded uint64 Num_rd uint64 Num_rd_kb uint64 Num_wr uint64 Num_wr_kb uint64 } // ObjectStat represents an object stat information type ObjectStat struct { // current length in bytes Size uint64 // last modification time ModTime time.Time } // LockInfo represents information on a current Ceph lock type LockInfo struct { NumLockers int Exclusive bool Tag string Clients []string Cookies []string Addrs []string } // IOContext represents a context for performing I/O within a pool. type IOContext struct { ioctx C.rados_ioctx_t } // Pointer returns a uintptr representation of the IOContext. func (ioctx *IOContext) Pointer() uintptr { return uintptr(ioctx.ioctx) } // SetNamespace sets the namespace for objects within this IO context (pool). // Setting namespace to a empty or zero length string sets the pool to the default namespace. func (ioctx *IOContext) SetNamespace(namespace string) { var c_ns *C.char if len(namespace) > 0 { c_ns = C.CString(namespace) defer C.free(unsafe.Pointer(c_ns)) } C.rados_ioctx_set_namespace(ioctx.ioctx, c_ns) } // Write writes len(data) bytes to the object with key oid starting at byte // offset offset. It returns an error, if any. func (ioctx *IOContext) Write(oid string, data []byte, offset uint64) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) dataPointer := unsafe.Pointer(nil) if len(data) > 0 { dataPointer = unsafe.Pointer(&data[0]) } ret := C.rados_write(ioctx.ioctx, c_oid, (*C.char)(dataPointer), (C.size_t)(len(data)), (C.uint64_t)(offset)) return GetRadosError(int(ret)) } // WriteFull writes len(data) bytes to the object with key oid. // The object is filled with the provided data. If the object exists, // it is atomically truncated and then written. It returns an error, if any. func (ioctx *IOContext) WriteFull(oid string, data []byte) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) ret := C.rados_write_full(ioctx.ioctx, c_oid, (*C.char)(unsafe.Pointer(&data[0])), (C.size_t)(len(data))) return GetRadosError(int(ret)) } // Append appends len(data) bytes to the object with key oid. // The object is appended with the provided data. If the object exists, // it is atomically appended to. It returns an error, if any. func (ioctx *IOContext) Append(oid string, data []byte) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) ret := C.rados_append(ioctx.ioctx, c_oid, (*C.char)(unsafe.Pointer(&data[0])), (C.size_t)(len(data))) return GetRadosError(int(ret)) } // Read reads up to len(data) bytes from the object with key oid starting at byte // offset offset. It returns the number of bytes read and an error, if any. func (ioctx *IOContext) Read(oid string, data []byte, offset uint64) (int, error) { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) var buf *C.char if len(data) > 0 { buf = (*C.char)(unsafe.Pointer(&data[0])) } ret := C.rados_read( ioctx.ioctx, c_oid, buf, (C.size_t)(len(data)), (C.uint64_t)(offset)) if ret >= 0 { return int(ret), nil } else { return 0, GetRadosError(int(ret)) } } // Delete deletes the object with key oid. It returns an error, if any. func (ioctx *IOContext) Delete(oid string) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) return GetRadosError(int(C.rados_remove(ioctx.ioctx, c_oid))) } // Truncate resizes the object with key oid to size size. If the operation // enlarges the object, the new area is logically filled with zeroes. If the // operation shrinks the object, the excess data is removed. It returns an // error, if any. func (ioctx *IOContext) Truncate(oid string, size uint64) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) return GetRadosError(int(C.rados_trunc(ioctx.ioctx, c_oid, (C.uint64_t)(size)))) } // Destroy informs librados that the I/O context is no longer in use. // Resources associated with the context may not be freed immediately, and the // context should not be used again after calling this method. func (ioctx *IOContext) Destroy() { C.rados_ioctx_destroy(ioctx.ioctx) } // Stat returns a set of statistics about the pool associated with this I/O // context. func (ioctx *IOContext) GetPoolStats() (stat PoolStat, err error) { c_stat := C.struct_rados_pool_stat_t{} ret := C.rados_ioctx_pool_stat(ioctx.ioctx, &c_stat) if ret < 0 { return PoolStat{}, GetRadosError(int(ret)) } else { return PoolStat{ Num_bytes: uint64(c_stat.num_bytes), Num_kb: uint64(c_stat.num_kb), Num_objects: uint64(c_stat.num_objects), Num_object_clones: uint64(c_stat.num_object_clones), Num_object_copies: uint64(c_stat.num_object_copies), Num_objects_missing_on_primary: uint64(c_stat.num_objects_missing_on_primary), Num_objects_unfound: uint64(c_stat.num_objects_unfound), Num_objects_degraded: uint64(c_stat.num_objects_degraded), Num_rd: uint64(c_stat.num_rd), Num_rd_kb: uint64(c_stat.num_rd_kb), Num_wr: uint64(c_stat.num_wr), Num_wr_kb: uint64(c_stat.num_wr_kb), }, nil } } // GetPoolName returns the name of the pool associated with the I/O context. func (ioctx *IOContext) GetPoolName() (name string, err error) { buf := make([]byte, 128) for { ret := C.rados_ioctx_get_pool_name(ioctx.ioctx, (*C.char)(unsafe.Pointer(&buf[0])), C.unsigned(len(buf))) if ret == -C.ERANGE { buf = make([]byte, len(buf)*2) continue } else if ret < 0 { return "", GetRadosError(int(ret)) } name = C.GoStringN((*C.char)(unsafe.Pointer(&buf[0])), ret) return name, nil } } // ObjectListFunc is the type of the function called for each object visited // by ListObjects. type ObjectListFunc func(oid string) // ListObjects lists all of the objects in the pool associated with the I/O // context, and called the provided listFn function for each object, passing // to the function the name of the object. Call SetNamespace with // RadosAllNamespaces before calling this function to return objects from all // namespaces func (ioctx *IOContext) ListObjects(listFn ObjectListFunc) error { var ctx C.rados_list_ctx_t ret := C.rados_nobjects_list_open(ioctx.ioctx, &ctx) if ret < 0 { return GetRadosError(int(ret)) } defer func() { C.rados_nobjects_list_close(ctx) }() for { var c_entry *C.char ret := C.rados_nobjects_list_next(ctx, &c_entry, nil, nil) if ret == -C.ENOENT { return nil } else if ret < 0 { return GetRadosError(int(ret)) } listFn(C.GoString(c_entry)) } } // Stat returns the size of the object and its last modification time func (ioctx *IOContext) Stat(object string) (stat ObjectStat, err error) { var c_psize C.uint64_t var c_pmtime C.time_t c_object := C.CString(object) defer C.free(unsafe.Pointer(c_object)) ret := C.rados_stat( ioctx.ioctx, c_object, &c_psize, &c_pmtime) if ret < 0 { return ObjectStat{}, GetRadosError(int(ret)) } else { return ObjectStat{ Size: uint64(c_psize), ModTime: time.Unix(int64(c_pmtime), 0), }, nil } } // GetXattr gets an xattr with key `name`, it returns the length of // the key read or an error if not successful func (ioctx *IOContext) GetXattr(object string, name string, data []byte) (int, error) { c_object := C.CString(object) c_name := C.CString(name) defer C.free(unsafe.Pointer(c_object)) defer C.free(unsafe.Pointer(c_name)) ret := C.rados_getxattr( ioctx.ioctx, c_object, c_name, (*C.char)(unsafe.Pointer(&data[0])), (C.size_t)(len(data))) if ret >= 0 { return int(ret), nil } else { return 0, GetRadosError(int(ret)) } } // Sets an xattr for an object with key `name` with value as `data` func (ioctx *IOContext) SetXattr(object string, name string, data []byte) error { c_object := C.CString(object) c_name := C.CString(name) defer C.free(unsafe.Pointer(c_object)) defer C.free(unsafe.Pointer(c_name)) ret := C.rados_setxattr( ioctx.ioctx, c_object, c_name, (*C.char)(unsafe.Pointer(&data[0])), (C.size_t)(len(data))) return GetRadosError(int(ret)) } // function that lists all the xattrs for an object, since xattrs are // a k-v pair, this function returns a map of k-v pairs on // success, error code on failure func (ioctx *IOContext) ListXattrs(oid string) (map[string][]byte, error) { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) var it C.rados_xattrs_iter_t ret := C.rados_getxattrs(ioctx.ioctx, c_oid, &it) if ret < 0 { return nil, GetRadosError(int(ret)) } defer func() { C.rados_getxattrs_end(it) }() m := make(map[string][]byte) for { var c_name, c_val *C.char var c_len C.size_t defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_val)) ret := C.rados_getxattrs_next(it, &c_name, &c_val, &c_len) if ret < 0 { return nil, GetRadosError(int(ret)) } // rados api returns a null name,val & 0-length upon // end of iteration if c_name == nil { return m, nil // stop iteration } m[C.GoString(c_name)] = C.GoBytes(unsafe.Pointer(c_val), (C.int)(c_len)) } } // Remove an xattr with key `name` from object `oid` func (ioctx *IOContext) RmXattr(oid string, name string) error { c_oid := C.CString(oid) c_name := C.CString(name) defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) ret := C.rados_rmxattr( ioctx.ioctx, c_oid, c_name) return GetRadosError(int(ret)) } // Append the map `pairs` to the omap `oid` func (ioctx *IOContext) SetOmap(oid string, pairs map[string][]byte) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) var s C.size_t var c *C.char ptrSize := unsafe.Sizeof(c) c_keys := C.malloc(C.size_t(len(pairs)) * C.size_t(ptrSize)) c_values := C.malloc(C.size_t(len(pairs)) * C.size_t(ptrSize)) c_lengths := C.malloc(C.size_t(len(pairs)) * C.size_t(unsafe.Sizeof(s))) defer C.free(unsafe.Pointer(c_keys)) defer C.free(unsafe.Pointer(c_values)) defer C.free(unsafe.Pointer(c_lengths)) i := 0 for key, value := range pairs { // key c_key_ptr := (**C.char)(unsafe.Pointer(uintptr(c_keys) + uintptr(i)*ptrSize)) *c_key_ptr = C.CString(key) defer C.free(unsafe.Pointer(*c_key_ptr)) // value and its length c_value_ptr := (**C.char)(unsafe.Pointer(uintptr(c_values) + uintptr(i)*ptrSize)) var c_length C.size_t if len(value) > 0 { *c_value_ptr = (*C.char)(unsafe.Pointer(&value[0])) c_length = C.size_t(len(value)) } else { *c_value_ptr = nil c_length = C.size_t(0) } c_length_ptr := (*C.size_t)(unsafe.Pointer(uintptr(c_lengths) + uintptr(i)*ptrSize)) *c_length_ptr = c_length i++ } op := C.rados_create_write_op() C.rados_write_op_omap_set( op, (**C.char)(c_keys), (**C.char)(c_values), (*C.size_t)(c_lengths), C.size_t(len(pairs))) ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0) C.rados_release_write_op(op) return GetRadosError(int(ret)) } // OmapListFunc is the type of the function called for each omap key // visited by ListOmapValues type OmapListFunc func(key string, value []byte) // Iterate on a set of keys and their values from an omap // `startAfter`: iterate only on the keys after this specified one // `filterPrefix`: iterate only on the keys beginning with this prefix // `maxReturn`: iterate no more than `maxReturn` key/value pairs // `listFn`: the function called at each iteration func (ioctx *IOContext) ListOmapValues(oid string, startAfter string, filterPrefix string, maxReturn int64, listFn OmapListFunc) error { c_oid := C.CString(oid) c_start_after := C.CString(startAfter) c_filter_prefix := C.CString(filterPrefix) c_max_return := C.uint64_t(maxReturn) defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_start_after)) defer C.free(unsafe.Pointer(c_filter_prefix)) op := C.rados_create_read_op() var c_iter C.rados_omap_iter_t var c_prval C.int C.rados_read_op_omap_get_vals2( op, c_start_after, c_filter_prefix, c_max_return, &c_iter, nil, &c_prval, ) ret := C.rados_read_op_operate(op, ioctx.ioctx, c_oid, 0) if int(ret) != 0 { return GetRadosError(int(ret)) } else if int(c_prval) != 0 { return RadosError(int(c_prval)) } for { var c_key *C.char var c_val *C.char var c_len C.size_t ret = C.rados_omap_get_next(c_iter, &c_key, &c_val, &c_len) if int(ret) != 0 { return GetRadosError(int(ret)) } if c_key == nil { break } listFn(C.GoString(c_key), C.GoBytes(unsafe.Pointer(c_val), C.int(c_len))) } C.rados_omap_get_end(c_iter) C.rados_release_read_op(op) return nil } // Fetch a set of keys and their values from an omap and returns then as a map // `startAfter`: retrieve only the keys after this specified one // `filterPrefix`: retrieve only the keys beginning with this prefix // `maxReturn`: retrieve no more than `maxReturn` key/value pairs func (ioctx *IOContext) GetOmapValues(oid string, startAfter string, filterPrefix string, maxReturn int64) (map[string][]byte, error) { omap := map[string][]byte{} err := ioctx.ListOmapValues( oid, startAfter, filterPrefix, maxReturn, func(key string, value []byte) { omap[key] = value }, ) return omap, err } // Fetch all the keys and their values from an omap and returns then as a map // `startAfter`: retrieve only the keys after this specified one // `filterPrefix`: retrieve only the keys beginning with this prefix // `iteratorSize`: internal number of keys to fetch during a read operation func (ioctx *IOContext) GetAllOmapValues(oid string, startAfter string, filterPrefix string, iteratorSize int64) (map[string][]byte, error) { omap := map[string][]byte{} omapSize := 0 for { err := ioctx.ListOmapValues( oid, startAfter, filterPrefix, iteratorSize, func(key string, value []byte) { omap[key] = value startAfter = key }, ) if err != nil { return omap, err } // End of omap if len(omap) == omapSize { break } omapSize = len(omap) } return omap, nil } // Remove the specified `keys` from the omap `oid` func (ioctx *IOContext) RmOmapKeys(oid string, keys []string) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) var c *C.char ptrSize := unsafe.Sizeof(c) c_keys := C.malloc(C.size_t(len(keys)) * C.size_t(ptrSize)) defer C.free(unsafe.Pointer(c_keys)) i := 0 for _, key := range keys { c_key_ptr := (**C.char)(unsafe.Pointer(uintptr(c_keys) + uintptr(i)*ptrSize)) *c_key_ptr = C.CString(key) defer C.free(unsafe.Pointer(*c_key_ptr)) i++ } op := C.rados_create_write_op() C.rados_write_op_omap_rm_keys( op, (**C.char)(c_keys), C.size_t(len(keys))) ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0) C.rados_release_write_op(op) return GetRadosError(int(ret)) } // Clear the omap `oid` func (ioctx *IOContext) CleanOmap(oid string) error { c_oid := C.CString(oid) defer C.free(unsafe.Pointer(c_oid)) op := C.rados_create_write_op() C.rados_write_op_omap_clear(op) ret := C.rados_write_op_operate(op, ioctx.ioctx, c_oid, nil, 0) C.rados_release_write_op(op) return GetRadosError(int(ret)) } type Iter struct { ctx C.rados_list_ctx_t err error entry string namespace string } type IterToken uint32 // Return a Iterator object that can be used to list the object names in the current pool func (ioctx *IOContext) Iter() (*Iter, error) { iter := Iter{} if cerr := C.rados_nobjects_list_open(ioctx.ioctx, &iter.ctx); cerr < 0 { return nil, GetRadosError(int(cerr)) } return &iter, nil } // Returns a token marking the current position of the iterator. To be used in combination with Iter.Seek() func (iter *Iter) Token() IterToken { return IterToken(C.rados_nobjects_list_get_pg_hash_position(iter.ctx)) } func (iter *Iter) Seek(token IterToken) { C.rados_nobjects_list_seek(iter.ctx, C.uint32_t(token)) } // Next retrieves the next object name in the pool/namespace iterator. // Upon a successful invocation (return value of true), the Value method should // be used to obtain the name of the retrieved object name. When the iterator is // exhausted, Next returns false. The Err method should used to verify whether the // end of the iterator was reached, or the iterator received an error. // // Example: // iter := pool.Iter() // defer iter.Close() // for iter.Next() { // fmt.Printf("%v\n", iter.Value()) // } // return iter.Err() // func (iter *Iter) Next() bool { var c_entry *C.char var c_namespace *C.char if cerr := C.rados_nobjects_list_next(iter.ctx, &c_entry, nil, &c_namespace); cerr < 0 { iter.err = GetRadosError(int(cerr)) return false } iter.entry = C.GoString(c_entry) iter.namespace = C.GoString(c_namespace) return true } // Returns the current value of the iterator (object name), after a successful call to Next. func (iter *Iter) Value() string { if iter.err != nil { return "" } return iter.entry } // Returns the namespace associated with the current value of the iterator (object name), after a successful call to Next. func (iter *Iter) Namespace() string { if iter.err != nil { return "" } return iter.namespace } // Checks whether the iterator has encountered an error. func (iter *Iter) Err() error { if iter.err == RadosErrorNotFound { return nil } return iter.err } // Closes the iterator cursor on the server. Be aware that iterators are not closed automatically // at the end of iteration. func (iter *Iter) Close() { C.rados_nobjects_list_close(iter.ctx) } // Take an exclusive lock on an object. func (ioctx *IOContext) LockExclusive(oid, name, cookie, desc string, duration time.Duration, flags *byte) (int, error) { c_oid := C.CString(oid) c_name := C.CString(name) c_cookie := C.CString(cookie) c_desc := C.CString(desc) var c_duration C.struct_timeval if duration != 0 { tv := syscall.NsecToTimeval(duration.Nanoseconds()) c_duration = C.struct_timeval{tv_sec: C.ceph_time_t(tv.Sec), tv_usec: C.ceph_suseconds_t(tv.Usec)} } var c_flags C.uint8_t if flags != nil { c_flags = C.uint8_t(*flags) } defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_cookie)) defer C.free(unsafe.Pointer(c_desc)) ret := C.rados_lock_exclusive( ioctx.ioctx, c_oid, c_name, c_cookie, c_desc, &c_duration, c_flags) // 0 on success, negative error code on failure // -EBUSY if the lock is already held by another (client, cookie) pair // -EEXIST if the lock is already held by the same (client, cookie) pair switch ret { case 0: return int(ret), nil case -C.EBUSY: return int(ret), nil case -C.EEXIST: return int(ret), nil default: return int(ret), RadosError(int(ret)) } } // Take a shared lock on an object. func (ioctx *IOContext) LockShared(oid, name, cookie, tag, desc string, duration time.Duration, flags *byte) (int, error) { c_oid := C.CString(oid) c_name := C.CString(name) c_cookie := C.CString(cookie) c_tag := C.CString(tag) c_desc := C.CString(desc) var c_duration C.struct_timeval if duration != 0 { tv := syscall.NsecToTimeval(duration.Nanoseconds()) c_duration = C.struct_timeval{tv_sec: C.ceph_time_t(tv.Sec), tv_usec: C.ceph_suseconds_t(tv.Usec)} } var c_flags C.uint8_t if flags != nil { c_flags = C.uint8_t(*flags) } defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_cookie)) defer C.free(unsafe.Pointer(c_tag)) defer C.free(unsafe.Pointer(c_desc)) ret := C.rados_lock_shared( ioctx.ioctx, c_oid, c_name, c_cookie, c_tag, c_desc, &c_duration, c_flags) // 0 on success, negative error code on failure // -EBUSY if the lock is already held by another (client, cookie) pair // -EEXIST if the lock is already held by the same (client, cookie) pair switch ret { case 0: return int(ret), nil case -C.EBUSY: return int(ret), nil case -C.EEXIST: return int(ret), nil default: return int(ret), RadosError(int(ret)) } } // Release a shared or exclusive lock on an object. func (ioctx *IOContext) Unlock(oid, name, cookie string) (int, error) { c_oid := C.CString(oid) c_name := C.CString(name) c_cookie := C.CString(cookie) defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_cookie)) // 0 on success, negative error code on failure // -ENOENT if the lock is not held by the specified (client, cookie) pair ret := C.rados_unlock( ioctx.ioctx, c_oid, c_name, c_cookie) switch ret { case 0: return int(ret), nil case -C.ENOENT: return int(ret), nil default: return int(ret), RadosError(int(ret)) } } // List clients that have locked the named object lock and information about the lock. // The number of bytes required in each buffer is put in the corresponding size out parameter. // If any of the provided buffers are too short, -ERANGE is returned after these sizes are filled in. func (ioctx *IOContext) ListLockers(oid, name string) (*LockInfo, error) { c_oid := C.CString(oid) c_name := C.CString(name) c_tag := (*C.char)(C.malloc(C.size_t(1024))) c_clients := (*C.char)(C.malloc(C.size_t(1024))) c_cookies := (*C.char)(C.malloc(C.size_t(1024))) c_addrs := (*C.char)(C.malloc(C.size_t(1024))) var c_exclusive C.int c_tag_len := C.size_t(1024) c_clients_len := C.size_t(1024) c_cookies_len := C.size_t(1024) c_addrs_len := C.size_t(1024) defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_tag)) defer C.free(unsafe.Pointer(c_clients)) defer C.free(unsafe.Pointer(c_cookies)) defer C.free(unsafe.Pointer(c_addrs)) ret := C.rados_list_lockers( ioctx.ioctx, c_oid, c_name, &c_exclusive, c_tag, &c_tag_len, c_clients, &c_clients_len, c_cookies, &c_cookies_len, c_addrs, &c_addrs_len) splitCString := func(items *C.char, itemsLen C.size_t) []string { currLen := 0 clients := []string{} for currLen < int(itemsLen) { client := C.GoString(C.nextChunk(&items)) clients = append(clients, client) currLen += len(client) + 1 } return clients } if ret < 0 { return nil, RadosError(int(ret)) } else { return &LockInfo{int(ret), c_exclusive == 1, C.GoString(c_tag), splitCString(c_clients, c_clients_len), splitCString(c_cookies, c_cookies_len), splitCString(c_addrs, c_addrs_len)}, nil } } // Releases a shared or exclusive lock on an object, which was taken by the specified client. func (ioctx *IOContext) BreakLock(oid, name, client, cookie string) (int, error) { c_oid := C.CString(oid) c_name := C.CString(name) c_client := C.CString(client) c_cookie := C.CString(cookie) defer C.free(unsafe.Pointer(c_oid)) defer C.free(unsafe.Pointer(c_name)) defer C.free(unsafe.Pointer(c_client)) defer C.free(unsafe.Pointer(c_cookie)) // 0 on success, negative error code on failure // -ENOENT if the lock is not held by the specified (client, cookie) pair // -EINVAL if the client cannot be parsed ret := C.rados_break_lock( ioctx.ioctx, c_oid, c_name, c_client, c_cookie) switch ret { case 0: return int(ret), nil case -C.ENOENT: return int(ret), nil case -C.EINVAL: // -EINVAL return int(ret), nil default: return int(ret), RadosError(int(ret)) } }