mirror of https://git.ffmpeg.org/ffmpeg.git
320 lines
9.8 KiB
C
320 lines
9.8 KiB
C
/*
|
|
* Copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* miscellaneous math routines and tables
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
|
|
#include "avutil.h"
|
|
#include "mathematics.h"
|
|
#include "libavutil/intmath.h"
|
|
#include "libavutil/common.h"
|
|
#include "avassert.h"
|
|
|
|
/* Stein's binary GCD algorithm:
|
|
* https://en.wikipedia.org/wiki/Binary_GCD_algorithm */
|
|
int64_t av_gcd(int64_t a, int64_t b) {
|
|
int za, zb, k;
|
|
int64_t u, v;
|
|
if (a == 0)
|
|
return b;
|
|
if (b == 0)
|
|
return a;
|
|
za = ff_ctzll(a);
|
|
zb = ff_ctzll(b);
|
|
k = FFMIN(za, zb);
|
|
u = llabs(a >> za);
|
|
v = llabs(b >> zb);
|
|
while (u != v) {
|
|
if (u > v)
|
|
FFSWAP(int64_t, v, u);
|
|
v -= u;
|
|
v >>= ff_ctzll(v);
|
|
}
|
|
return (uint64_t)u << k;
|
|
}
|
|
|
|
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
|
|
{
|
|
int64_t r = 0;
|
|
av_assert2(c > 0);
|
|
av_assert2(b >=0);
|
|
av_assert2((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4);
|
|
|
|
if (c <= 0 || b < 0 || !((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4))
|
|
return INT64_MIN;
|
|
|
|
if (rnd & AV_ROUND_PASS_MINMAX) {
|
|
if (a == INT64_MIN || a == INT64_MAX)
|
|
return a;
|
|
rnd -= AV_ROUND_PASS_MINMAX;
|
|
}
|
|
|
|
if (a < 0)
|
|
return -(uint64_t)av_rescale_rnd(-FFMAX(a, -INT64_MAX), b, c, rnd ^ ((rnd >> 1) & 1));
|
|
|
|
if (rnd == AV_ROUND_NEAR_INF)
|
|
r = c / 2;
|
|
else if (rnd & 1)
|
|
r = c - 1;
|
|
|
|
if (b <= INT_MAX && c <= INT_MAX) {
|
|
if (a <= INT_MAX)
|
|
return (a * b + r) / c;
|
|
else {
|
|
int64_t ad = a / c;
|
|
int64_t a2 = (a % c * b + r) / c;
|
|
if (ad >= INT32_MAX && b && ad > (INT64_MAX - a2) / b)
|
|
return INT64_MIN;
|
|
return ad * b + a2;
|
|
}
|
|
} else {
|
|
#if 1
|
|
uint64_t a0 = a & 0xFFFFFFFF;
|
|
uint64_t a1 = a >> 32;
|
|
uint64_t b0 = b & 0xFFFFFFFF;
|
|
uint64_t b1 = b >> 32;
|
|
uint64_t t1 = a0 * b1 + a1 * b0;
|
|
uint64_t t1a = t1 << 32;
|
|
int i;
|
|
|
|
a0 = a0 * b0 + t1a;
|
|
a1 = a1 * b1 + (t1 >> 32) + (a0 < t1a);
|
|
a0 += r;
|
|
a1 += a0 < r;
|
|
|
|
for (i = 63; i >= 0; i--) {
|
|
a1 += a1 + ((a0 >> i) & 1);
|
|
t1 += t1;
|
|
if (c <= a1) {
|
|
a1 -= c;
|
|
t1++;
|
|
}
|
|
}
|
|
if (t1 > INT64_MAX)
|
|
return INT64_MIN;
|
|
return t1;
|
|
#else
|
|
/* reference code doing (a*b + r) / c, requires libavutil/integer.h */
|
|
AVInteger ai;
|
|
ai = av_mul_i(av_int2i(a), av_int2i(b));
|
|
ai = av_add_i(ai, av_int2i(r));
|
|
|
|
return av_i2int(av_div_i(ai, av_int2i(c)));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int64_t av_rescale(int64_t a, int64_t b, int64_t c)
|
|
{
|
|
return av_rescale_rnd(a, b, c, AV_ROUND_NEAR_INF);
|
|
}
|
|
|
|
int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
|
|
enum AVRounding rnd)
|
|
{
|
|
int64_t b = bq.num * (int64_t)cq.den;
|
|
int64_t c = cq.num * (int64_t)bq.den;
|
|
return av_rescale_rnd(a, b, c, rnd);
|
|
}
|
|
|
|
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
|
|
{
|
|
return av_rescale_q_rnd(a, bq, cq, AV_ROUND_NEAR_INF);
|
|
}
|
|
|
|
int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b)
|
|
{
|
|
int64_t a = tb_a.num * (int64_t)tb_b.den;
|
|
int64_t b = tb_b.num * (int64_t)tb_a.den;
|
|
if ((FFABS64U(ts_a)|a|FFABS64U(ts_b)|b) <= INT_MAX)
|
|
return (ts_a*a > ts_b*b) - (ts_a*a < ts_b*b);
|
|
if (av_rescale_rnd(ts_a, a, b, AV_ROUND_DOWN) < ts_b)
|
|
return -1;
|
|
if (av_rescale_rnd(ts_b, b, a, AV_ROUND_DOWN) < ts_a)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod)
|
|
{
|
|
int64_t c = (a - b) & (mod - 1);
|
|
if (c > (mod >> 1))
|
|
c -= mod;
|
|
return c;
|
|
}
|
|
|
|
int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb){
|
|
int64_t a, b, this;
|
|
|
|
av_assert0(in_ts != AV_NOPTS_VALUE);
|
|
av_assert0(duration >= 0);
|
|
|
|
if (*last == AV_NOPTS_VALUE || !duration || in_tb.num*(int64_t)out_tb.den <= out_tb.num*(int64_t)in_tb.den) {
|
|
simple_round:
|
|
*last = av_rescale_q(in_ts, in_tb, fs_tb) + duration;
|
|
return av_rescale_q(in_ts, in_tb, out_tb);
|
|
}
|
|
|
|
a = av_rescale_q_rnd(2*in_ts-1, in_tb, fs_tb, AV_ROUND_DOWN) >>1;
|
|
b = (av_rescale_q_rnd(2*in_ts+1, in_tb, fs_tb, AV_ROUND_UP )+1)>>1;
|
|
if (*last < 2*a - b || *last > 2*b - a)
|
|
goto simple_round;
|
|
|
|
this = av_clip64(*last, a, b);
|
|
*last = this + duration;
|
|
|
|
return av_rescale_q(this, fs_tb, out_tb);
|
|
}
|
|
|
|
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc)
|
|
{
|
|
int64_t m, d;
|
|
|
|
if (inc != 1)
|
|
inc_tb = av_mul_q(inc_tb, (AVRational) {inc, 1});
|
|
|
|
m = inc_tb.num * (int64_t)ts_tb.den;
|
|
d = inc_tb.den * (int64_t)ts_tb.num;
|
|
|
|
if (m % d == 0 && ts <= INT64_MAX - m / d)
|
|
return ts + m / d;
|
|
if (m < d)
|
|
return ts;
|
|
|
|
{
|
|
int64_t old = av_rescale_q(ts, ts_tb, inc_tb);
|
|
int64_t old_ts = av_rescale_q(old, inc_tb, ts_tb);
|
|
|
|
if (old == INT64_MAX || old == AV_NOPTS_VALUE || old_ts == AV_NOPTS_VALUE)
|
|
return ts;
|
|
|
|
return av_sat_add64(av_rescale_q(old + 1, inc_tb, ts_tb), ts - old_ts);
|
|
}
|
|
}
|
|
|
|
static inline double eval_poly(const double *coeff, int size, double x) {
|
|
double sum = coeff[size-1];
|
|
int i;
|
|
for (i = size-2; i >= 0; --i) {
|
|
sum *= x;
|
|
sum += coeff[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/**
|
|
* 0th order modified bessel function of the first kind.
|
|
* Algorithm taken from the Boost project, source:
|
|
* https://searchcode.com/codesearch/view/14918379/
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0 (see notice below).
|
|
* Boost Software License - Version 1.0 - August 17th, 2003
|
|
Permission is hereby granted, free of charge, to any person or organization
|
|
obtaining a copy of the software and accompanying documentation covered by
|
|
this license (the "Software") to use, reproduce, display, distribute,
|
|
execute, and transmit the Software, and to prepare derivative works of the
|
|
Software, and to permit third-parties to whom the Software is furnished to
|
|
do so, all subject to the following:
|
|
|
|
The copyright notices in the Software and this entire statement, including
|
|
the above license grant, this restriction and the following disclaimer,
|
|
must be included in all copies of the Software, in whole or in part, and
|
|
all derivative works of the Software, unless such copies or derivative
|
|
works are solely in the form of machine-executable object code generated by
|
|
a source language processor.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
double av_bessel_i0(double x) {
|
|
// Modified Bessel function of the first kind of order zero
|
|
// minimax rational approximations on intervals, see
|
|
// Blair and Edwards, Chalk River Report AECL-4928, 1974
|
|
static const double p1[] = {
|
|
-2.2335582639474375249e+15,
|
|
-5.5050369673018427753e+14,
|
|
-3.2940087627407749166e+13,
|
|
-8.4925101247114157499e+11,
|
|
-1.1912746104985237192e+10,
|
|
-1.0313066708737980747e+08,
|
|
-5.9545626019847898221e+05,
|
|
-2.4125195876041896775e+03,
|
|
-7.0935347449210549190e+00,
|
|
-1.5453977791786851041e-02,
|
|
-2.5172644670688975051e-05,
|
|
-3.0517226450451067446e-08,
|
|
-2.6843448573468483278e-11,
|
|
-1.5982226675653184646e-14,
|
|
-5.2487866627945699800e-18,
|
|
};
|
|
static const double q1[] = {
|
|
-2.2335582639474375245e+15,
|
|
7.8858692566751002988e+12,
|
|
-1.2207067397808979846e+10,
|
|
1.0377081058062166144e+07,
|
|
-4.8527560179962773045e+03,
|
|
1.0,
|
|
};
|
|
static const double p2[] = {
|
|
-2.2210262233306573296e-04,
|
|
1.3067392038106924055e-02,
|
|
-4.4700805721174453923e-01,
|
|
5.5674518371240761397e+00,
|
|
-2.3517945679239481621e+01,
|
|
3.1611322818701131207e+01,
|
|
-9.6090021968656180000e+00,
|
|
};
|
|
static const double q2[] = {
|
|
-5.5194330231005480228e-04,
|
|
3.2547697594819615062e-02,
|
|
-1.1151759188741312645e+00,
|
|
1.3982595353892851542e+01,
|
|
-6.0228002066743340583e+01,
|
|
8.5539563258012929600e+01,
|
|
-3.1446690275135491500e+01,
|
|
1.0,
|
|
};
|
|
double y, r, factor;
|
|
if (x == 0)
|
|
return 1.0;
|
|
x = fabs(x);
|
|
if (x <= 15) {
|
|
y = x * x;
|
|
return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
|
|
}
|
|
else {
|
|
y = 1 / x - 1.0 / 15;
|
|
r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
|
|
factor = exp(x) / sqrt(x);
|
|
return factor * r;
|
|
}
|
|
}
|