ffmpeg/libavcodec/h264dec.h

683 lines
19 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264DEC_H
#define AVCODEC_H264DEC_H
#include "libavutil/buffer.h"
#include "libavutil/mem_internal.h"
#include "cabac.h"
#include "error_resilience.h"
#include "h264_parse.h"
#include "h264_ps.h"
#include "h264_sei.h"
#include "h2645_parse.h"
#include "h264chroma.h"
#include "h264dsp.h"
#include "h264pred.h"
#include "h264qpel.h"
#include "h274.h"
#include "mpegutils.h"
#include "threadframe.h"
#include "videodsp.h"
#define H264_MAX_PICTURE_COUNT 36
/* Compiling in interlaced support reduces the speed
* of progressive decoding by about 2%. */
#define ALLOW_INTERLACE
#define FMO 0
/**
* The maximum number of slices supported by the decoder.
* must be a power of 2
*/
#define MAX_SLICES 32
#ifdef ALLOW_INTERLACE
#define MB_MBAFF(h) (h)->mb_mbaff
#define MB_FIELD(sl) (sl)->mb_field_decoding_flag
#define FRAME_MBAFF(h) (h)->mb_aff_frame
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
#define LEFT_MBS 2
#define LTOP 0
#define LBOT 1
#define LEFT(i) (i)
#else
#define MB_MBAFF(h) 0
#define MB_FIELD(sl) 0
#define FRAME_MBAFF(h) 0
#define FIELD_PICTURE(h) 0
#undef IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#define LEFT_MBS 1
#define LTOP 0
#define LBOT 0
#define LEFT(i) 0
#endif
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
#ifndef CABAC
#define CABAC(h) (h)->ps.pps->cabac
#endif
#define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
/**
* Memory management control operation.
*/
typedef struct MMCO {
MMCOOpcode opcode;
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
int long_arg; ///< index, pic_num, or num long refs depending on opcode
} MMCO;
typedef struct H264Picture {
AVFrame *f;
ThreadFrame tf;
AVFrame *f_grain;
int8_t *qscale_table_base; ///< RefStruct reference
int8_t *qscale_table;
int16_t (*motion_val_base[2])[2]; ///< RefStruct reference
int16_t (*motion_val[2])[2];
uint32_t *mb_type_base; ///< RefStruct reference
uint32_t *mb_type;
/// RefStruct reference for hardware accelerator private data
void *hwaccel_picture_private;
int8_t *ref_index[2]; ///< RefStruct reference
int field_poc[2]; ///< top/bottom POC
int poc; ///< frame POC
int frame_num; ///< frame_num (raw frame_num from slice header)
int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
not mix pictures before and after MMCO_RESET. */
int pic_id; /**< pic_num (short -> no wrap version of pic_num,
pic_num & max_pic_num; long -> long_pic_num) */
int long_ref; ///< 1->long term reference 0->short term reference
int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
int field_picture; ///< whether or not picture was encoded in separate fields
/**
* H264Picture.reference has this flag set,
* when the picture is held for delayed output.
*/
#define DELAYED_PIC_REF (1 << 2)
int reference;
int recovered; ///< picture at IDR or recovery point + recovery count
int invalid_gap;
int sei_recovery_frame_cnt;
int needs_fg; ///< whether picture needs film grain synthesis (see `f_grain`)
const PPS *pps;
int mb_width, mb_height;
int mb_stride;
/// RefStruct reference; its pointee is shared between decoding threads.
atomic_int *decode_error_flags;
} H264Picture;
typedef struct H264Ref {
uint8_t *data[3];
int linesize[3];
int reference;
int poc;
int pic_id;
const H264Picture *parent;
} H264Ref;
typedef struct H264SliceContext {
const struct H264Context *h264;
GetBitContext gb;
ERContext *er;
int slice_num;
int slice_type;
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
int slice_type_fixed;
int qscale;
int chroma_qp[2]; // QPc
int qp_thresh; ///< QP threshold to skip loopfilter
int last_qscale_diff;
// deblock
int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
int slice_alpha_c0_offset;
int slice_beta_offset;
H264PredWeightTable pwt;
int prev_mb_skipped;
int next_mb_skipped;
int chroma_pred_mode;
int intra16x16_pred_mode;
int8_t intra4x4_pred_mode_cache[5 * 8];
int8_t(*intra4x4_pred_mode);
int topleft_mb_xy;
int top_mb_xy;
int topright_mb_xy;
int left_mb_xy[LEFT_MBS];
int topleft_type;
int top_type;
int topright_type;
int left_type[LEFT_MBS];
const uint8_t *left_block;
int topleft_partition;
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
ptrdiff_t linesize, uvlinesize;
ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
ptrdiff_t mb_uvlinesize;
int mb_x, mb_y;
int mb_xy;
int resync_mb_x;
int resync_mb_y;
unsigned int first_mb_addr;
// index of the first MB of the next slice
int next_slice_idx;
int mb_skip_run;
int is_complex;
int picture_structure;
int mb_field_decoding_flag;
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
int redundant_pic_count;
/**
* number of neighbors (top and/or left) that used 8x8 dct
*/
int neighbor_transform_size;
int direct_spatial_mv_pred;
int col_parity;
int col_fieldoff;
int cbp;
int top_cbp;
int left_cbp;
int dist_scale_factor[32];
int dist_scale_factor_field[2][32];
int map_col_to_list0[2][16 + 32];
int map_col_to_list0_field[2][2][16 + 32];
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
* Reordered version of default_ref_list
* according to picture reordering in slice header */
struct {
uint8_t op;
uint32_t val;
} ref_modifications[2][32];
int nb_ref_modifications[2];
unsigned int pps_id;
const uint8_t *intra_pcm_ptr;
uint8_t *bipred_scratchpad;
uint8_t *edge_emu_buffer;
uint8_t (*top_borders[2])[(16 * 3) * 2];
int bipred_scratchpad_allocated;
int edge_emu_buffer_allocated;
int top_borders_allocated[2];
/**
* non zero coeff count cache.
* is 64 if not available.
*/
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
/**
* Motion vector cache.
*/
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
uint8_t direct_cache[5 * 8];
DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
///< check that i is not too large or ensure that there is some unused stuff after mb
int16_t mb_padding[256 * 2];
uint8_t (*mvd_table[2])[2];
/**
* Cabac
*/
CABACContext cabac;
uint8_t cabac_state[1024];
int cabac_init_idc;
MMCO mmco[H264_MAX_MMCO_COUNT];
int nb_mmco;
int explicit_ref_marking;
int frame_num;
int idr_pic_id;
int poc_lsb;
int delta_poc_bottom;
int delta_poc[2];
int curr_pic_num;
int max_pic_num;
} H264SliceContext;
/**
* H264Context
*/
typedef struct H264Context {
const AVClass *class;
AVCodecContext *avctx;
VideoDSPContext vdsp;
H264DSPContext h264dsp;
H264ChromaContext h264chroma;
H264QpelContext h264qpel;
H274FilmGrainDatabase h274db;
H264Picture DPB[H264_MAX_PICTURE_COUNT];
H264Picture *cur_pic_ptr;
H264Picture cur_pic;
H264Picture last_pic_for_ec;
H264SliceContext *slice_ctx;
int nb_slice_ctx;
int nb_slice_ctx_queued;
H2645Packet pkt;
int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
/* coded dimensions -- 16 * mb w/h */
int width, height;
int chroma_x_shift, chroma_y_shift;
int droppable;
int coded_picture_number;
int context_initialized;
int flags;
int workaround_bugs;
int x264_build;
/* Set when slice threading is used and at least one slice uses deblocking
* mode 1 (i.e. across slice boundaries). Then we disable the loop filter
* during normal MB decoding and execute it serially at the end.
*/
int postpone_filter;
/*
* Set to 1 when the current picture is IDR, 0 otherwise.
*/
int picture_idr;
/*
* Set to 1 when the current picture contains only I slices, 0 otherwise.
*/
int picture_intra_only;
int crop_left;
int crop_right;
int crop_top;
int crop_bottom;
int8_t(*intra4x4_pred_mode);
H264PredContext hpc;
uint8_t (*non_zero_count)[48];
#define LIST_NOT_USED -1 // FIXME rename?
/**
* block_offset[ 0..23] for frame macroblocks
* block_offset[24..47] for field macroblocks
*/
int block_offset[2 * (16 * 3)];
uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
uint32_t *mb2br_xy;
int b_stride; // FIXME use s->b4_stride
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
// interlacing specific flags
int mb_aff_frame;
int picture_structure;
int first_field;
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
uint16_t *cbp_table;
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
uint8_t *chroma_pred_mode_table;
uint8_t (*mvd_table[2])[2];
uint8_t *direct_table;
uint8_t scan_padding[16];
uint8_t zigzag_scan[16];
uint8_t zigzag_scan8x8[64];
uint8_t zigzag_scan8x8_cavlc[64];
uint8_t field_scan[16];
uint8_t field_scan8x8[64];
uint8_t field_scan8x8_cavlc[64];
uint8_t zigzag_scan_q0[16];
uint8_t zigzag_scan8x8_q0[64];
uint8_t zigzag_scan8x8_cavlc_q0[64];
uint8_t field_scan_q0[16];
uint8_t field_scan8x8_q0[64];
uint8_t field_scan8x8_cavlc_q0[64];
int mb_y;
int mb_height, mb_width;
int mb_stride;
int mb_num;
// =============================================================
// Things below are not used in the MB or more inner code
int nal_ref_idc;
int nal_unit_type;
int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
/**
* Used to parse AVC variant of H.264
*/
int is_avc; ///< this flag is != 0 if codec is avc1
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int bit_depth_luma; ///< luma bit depth from sps to detect changes
int chroma_format_idc; ///< chroma format from sps to detect changes
H264ParamSets ps;
uint16_t *slice_table_base;
H264POCContext poc;
H264Ref default_ref[2];
H264Picture *short_ref[32];
H264Picture *long_ref[32];
H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
int last_pocs[H264_MAX_DPB_FRAMES];
H264Picture *next_output_pic;
int next_outputed_poc;
int poc_offset; ///< PicOrderCnt_offset from SMPTE RDD-2006
/**
* memory management control operations buffer.
*/
MMCO mmco[H264_MAX_MMCO_COUNT];
int nb_mmco;
int mmco_reset;
int explicit_ref_marking;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
/**
* @name Members for slice based multithreading
* @{
*/
/**
* current slice number, used to initialize slice_num of each thread/context
*/
int current_slice;
/** @} */
/**
* Complement sei_pic_struct
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
* However, soft telecined frames may have these values.
* This is used in an attempt to flag soft telecine progressive.
*/
int prev_interlaced_frame;
/**
* Are the SEI recovery points looking valid.
*/
int valid_recovery_point;
/**
* recovery_frame is the frame_num at which the next frame should
* be fully constructed.
*
* Set to -1 when not expecting a recovery point.
*/
int recovery_frame;
/**
* We have seen an IDR, so all the following frames in coded order are correctly
* decodable.
*/
#define FRAME_RECOVERED_IDR (1 << 0)
/**
* Sufficient number of frames have been decoded since a SEI recovery point,
* so all the following frames in presentation order are correct.
*/
#define FRAME_RECOVERED_SEI (1 << 1)
int frame_recovered; ///< Initial frame has been completely recovered
int has_recovery_point;
int missing_fields;
/* for frame threading, this is set to 1
* after finish_setup() has been called, so we cannot modify
* some context properties (which are supposed to stay constant between
* slices) anymore */
int setup_finished;
int cur_chroma_format_idc;
int cur_bit_depth_luma;
int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
/* original AVCodecContext dimensions, used to handle container
* cropping */
int width_from_caller;
int height_from_caller;
int enable_er;
ERContext er;
int16_t *dc_val_base;
H264SEIContext sei;
struct FFRefStructPool *qscale_table_pool;
struct FFRefStructPool *mb_type_pool;
struct FFRefStructPool *motion_val_pool;
struct FFRefStructPool *ref_index_pool;
struct FFRefStructPool *decode_error_flags_pool;
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
} H264Context;
extern const uint16_t ff_h264_mb_sizes[4];
/**
* Reconstruct bitstream slice_type.
*/
int ff_h264_get_slice_type(const H264SliceContext *sl);
/**
* Allocate tables.
* needs width/height
*/
int ff_h264_alloc_tables(H264Context *h);
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
void ff_h264_remove_all_refs(H264Context *h);
/**
* Execute the reference picture marking (memory management control operations).
*/
int ff_h264_execute_ref_pic_marking(H264Context *h);
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
const H2645NAL *nal, void *logctx);
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
void ff_h264_decode_init_vlc(void);
/**
* Decode a macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
/**
* Decode a CABAC coded macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type);
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
/*
* o-o o-o
* / / /
* o-o o-o
* ,---'
* o-o o-o
* / / /
* o-o o-o
*/
/* Scan8 organization:
* 0 1 2 3 4 5 6 7
* 0 DY y y y y y
* 1 y Y Y Y Y
* 2 y Y Y Y Y
* 3 y Y Y Y Y
* 4 y Y Y Y Y
* 5 DU u u u u u
* 6 u U U U U
* 7 u U U U U
* 8 u U U U U
* 9 u U U U U
* 10 DV v v v v v
* 11 v V V V V
* 12 v V V V V
* 13 v V V V V
* 14 v V V V V
* DY/DU/DV are for luma/chroma DC.
*/
#define LUMA_DC_BLOCK_INDEX 48
#define CHROMA_DC_BLOCK_INDEX 49
/**
* Get the chroma qp.
*/
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
{
return pps->chroma_qp_table[t][qscale];
}
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
int ff_h264_ref_picture(H264Picture *dst, const H264Picture *src);
int ff_h264_replace_picture(H264Picture *dst, const H264Picture *src);
void ff_h264_unref_picture(H264Picture *pic);
void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
/**
* Submit a slice for decoding.
*
* Parse the slice header, starting a new field/frame if necessary. If any
* slices are queued for the previous field, they are decoded.
*/
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
int ff_h264_execute_decode_slices(H264Context *h);
int ff_h264_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src);
int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
const AVCodecContext *src);
void ff_h264_flush_change(H264Context *h);
void ff_h264_free_tables(H264Context *h);
void ff_h264_set_erpic(ERPicture *dst, const H264Picture *src);
#endif /* AVCODEC_H264DEC_H */