ffmpeg/libavcodec/i386/vp3dsp_mmx.c

653 lines
16 KiB
C

/*
* Copyright (C) 2004 the ffmpeg project
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file vp3dsp_mmx.c
* MMX-optimized functions cribbed from the original VP3 source code.
*/
#include "../dsputil.h"
#include "mmx.h"
#define IdctAdjustBeforeShift 8
/* (12 * 4) 2-byte memory locations ( = 96 bytes total)
* idct_constants[0..15] = Mask table (M(I))
* idct_constants[16..43] = Cosine table (C(I))
* idct_constants[44..47] = 8
*/
static uint16_t idct_constants[(4 + 7 + 1) * 4];
static uint16_t idct_cosine_table[7] = {
64277, 60547, 54491, 46341, 36410, 25080, 12785
};
#define r0 mm0
#define r1 mm1
#define r2 mm2
#define r3 mm3
#define r4 mm4
#define r5 mm5
#define r6 mm6
#define r7 mm7
/* from original comments: The Macro does IDct on 4 1-D Dcts */
#define BeginIDCT() \
movq_m2r(*I(3), r2); \
movq_m2r(*C(3), r6); \
movq_r2r(r2, r4); \
movq_m2r(*J(5), r7); \
pmulhw_r2r(r6, r4); \
movq_m2r(*C(5), r1); \
pmulhw_r2r(r7, r6); \
movq_r2r(r1, r5); \
pmulhw_r2r(r2, r1); \
movq_m2r(*I(1), r3); \
pmulhw_r2r(r7, r5); \
movq_m2r(*C(1), r0); \
paddw_r2r(r2, r4); \
paddw_r2r(r7, r6); \
paddw_r2r(r1, r2); \
movq_m2r(*J(7), r1); \
paddw_r2r(r5, r7); \
movq_r2r(r0, r5); \
pmulhw_r2r(r3, r0); \
paddsw_r2r(r7, r4); \
pmulhw_r2r(r1, r5); \
movq_m2r(*C(7), r7); \
psubsw_r2r(r2, r6); \
paddw_r2r(r3, r0); \
pmulhw_r2r(r7, r3); \
movq_m2r(*I(2), r2); \
pmulhw_r2r(r1, r7); \
paddw_r2r(r1, r5); \
movq_r2r(r2, r1); \
pmulhw_m2r(*C(2), r2); \
psubsw_r2r(r5, r3); \
movq_m2r(*J(6), r5); \
paddsw_r2r(r7, r0); \
movq_r2r(r5, r7); \
psubsw_r2r(r4, r0); \
pmulhw_m2r(*C(2), r5); \
paddw_r2r(r1, r2); \
pmulhw_m2r(*C(6), r1); \
paddsw_r2r(r4, r4); \
paddsw_r2r(r0, r4); \
psubsw_r2r(r6, r3); \
paddw_r2r(r7, r5); \
paddsw_r2r(r6, r6); \
pmulhw_m2r(*C(6), r7); \
paddsw_r2r(r3, r6); \
movq_r2m(r4, *I(1)); \
psubsw_r2r(r5, r1); \
movq_m2r(*C(4), r4); \
movq_r2r(r3, r5); \
pmulhw_r2r(r4, r3); \
paddsw_r2r(r2, r7); \
movq_r2m(r6, *I(2)); \
movq_r2r(r0, r2); \
movq_m2r(*I(0), r6); \
pmulhw_r2r(r4, r0); \
paddw_r2r(r3, r5); \
movq_m2r(*J(4), r3); \
psubsw_r2r(r1, r5); \
paddw_r2r(r0, r2); \
psubsw_r2r(r3, r6); \
movq_r2r(r6, r0); \
pmulhw_r2r(r4, r6); \
paddsw_r2r(r3, r3); \
paddsw_r2r(r1, r1); \
paddsw_r2r(r0, r3); \
paddsw_r2r(r5, r1); \
pmulhw_r2r(r3, r4); \
paddsw_r2r(r0, r6); \
psubsw_r2r(r2, r6); \
paddsw_r2r(r2, r2); \
movq_m2r(*I(1), r0); \
paddsw_r2r(r6, r2); \
paddw_r2r(r3, r4); \
psubsw_r2r(r1, r2);
/* RowIDCT gets ready to transpose */
#define RowIDCT() \
\
BeginIDCT() \
\
movq_m2r(*I(2), r3); \
psubsw_r2r(r7, r4); \
paddsw_r2r(r1, r1); \
paddsw_r2r(r7, r7); \
paddsw_r2r(r2, r1); \
paddsw_r2r(r4, r7); \
psubsw_r2r(r3, r4); \
psubsw_r2r(r5, r6); \
paddsw_r2r(r5, r5); \
paddsw_r2r(r4, r3); \
paddsw_r2r(r6, r5); \
psubsw_r2r(r0, r7); \
paddsw_r2r(r0, r0); \
movq_r2m(r1, *I(1)); \
paddsw_r2r(r7, r0);
/* Column IDCT normalizes and stores final results */
#define ColumnIDCT() \
\
BeginIDCT() \
\
paddsw_m2r(*Eight, r2); \
paddsw_r2r(r1, r1); \
paddsw_r2r(r2, r1); \
psraw_i2r(4, r2); \
psubsw_r2r(r7, r4); \
psraw_i2r(4, r1); \
movq_m2r(*I(2), r3); \
paddsw_r2r(r7, r7); \
movq_r2m(r2, *I(2)); \
paddsw_r2r(r4, r7); \
movq_r2m(r1, *I(1)); \
psubsw_r2r(r3, r4); \
paddsw_m2r(*Eight, r4); \
paddsw_r2r(r3, r3); \
paddsw_r2r(r4, r3); \
psraw_i2r(4, r4); \
psubsw_r2r(r5, r6); \
psraw_i2r(4, r3); \
paddsw_m2r(*Eight, r6); \
paddsw_r2r(r5, r5); \
paddsw_r2r(r6, r5); \
psraw_i2r(4, r6); \
movq_r2m(r4, *J(4)); \
psraw_i2r(4, r5); \
movq_r2m(r3, *I(3)); \
psubsw_r2r(r0, r7); \
paddsw_m2r(*Eight, r7); \
paddsw_r2r(r0, r0); \
paddsw_r2r(r7, r0); \
psraw_i2r(4, r7); \
movq_r2m(r6, *J(6)); \
psraw_i2r(4, r0); \
movq_r2m(r5, *J(5)); \
movq_r2m(r7, *J(7)); \
movq_r2m(r0, *I(0));
/* Following macro does two 4x4 transposes in place.
At entry (we assume):
r0 = a3 a2 a1 a0
I(1) = b3 b2 b1 b0
r2 = c3 c2 c1 c0
r3 = d3 d2 d1 d0
r4 = e3 e2 e1 e0
r5 = f3 f2 f1 f0
r6 = g3 g2 g1 g0
r7 = h3 h2 h1 h0
At exit, we have:
I(0) = d0 c0 b0 a0
I(1) = d1 c1 b1 a1
I(2) = d2 c2 b2 a2
I(3) = d3 c3 b3 a3
J(4) = h0 g0 f0 e0
J(5) = h1 g1 f1 e1
J(6) = h2 g2 f2 e2
J(7) = h3 g3 f3 e3
I(0) I(1) I(2) I(3) is the transpose of r0 I(1) r2 r3.
J(4) J(5) J(6) J(7) is the transpose of r4 r5 r6 r7.
Since r1 is free at entry, we calculate the Js first. */
#define Transpose() \
movq_r2r(r4, r1); \
punpcklwd_r2r(r5, r4); \
movq_r2m(r0, *I(0)); \
punpckhwd_r2r(r5, r1); \
movq_r2r(r6, r0); \
punpcklwd_r2r(r7, r6); \
movq_r2r(r4, r5); \
punpckldq_r2r(r6, r4); \
punpckhdq_r2r(r6, r5); \
movq_r2r(r1, r6); \
movq_r2m(r4, *J(4)); \
punpckhwd_r2r(r7, r0); \
movq_r2m(r5, *J(5)); \
punpckhdq_r2r(r0, r6); \
movq_m2r(*I(0), r4); \
punpckldq_r2r(r0, r1); \
movq_m2r(*I(1), r5); \
movq_r2r(r4, r0); \
movq_r2m(r6, *J(7)); \
punpcklwd_r2r(r5, r0); \
movq_r2m(r1, *J(6)); \
punpckhwd_r2r(r5, r4); \
movq_r2r(r2, r5); \
punpcklwd_r2r(r3, r2); \
movq_r2r(r0, r1); \
punpckldq_r2r(r2, r0); \
punpckhdq_r2r(r2, r1); \
movq_r2r(r4, r2); \
movq_r2m(r0, *I(0)); \
punpckhwd_r2r(r3, r5); \
movq_r2m(r1, *I(1)); \
punpckhdq_r2r(r5, r4); \
punpckldq_r2r(r5, r2); \
movq_r2m(r4, *I(3)); \
movq_r2m(r2, *I(2));
void vp3_dsp_init_mmx(void)
{
int j = 16;
uint16_t *p;
do {
idct_constants[--j] = 0;
} while (j);
idct_constants[0] = idct_constants[5] =
idct_constants[10] = idct_constants[15] = 65535;
j = 1;
do {
p = idct_constants + ((j + 3) << 2);
p[0] = p[1] = p[2] = p[3] = idct_cosine_table[j - 1];
} while (++j <= 7);
idct_constants[44] = idct_constants[45] =
idct_constants[46] = idct_constants[47] = IdctAdjustBeforeShift;
}
static void vp3_idct_mmx(int16_t *input_data, int16_t *dequant_matrix,
int16_t *output_data)
{
/* eax = quantized input
* ebx = dequantizer matrix
* ecx = IDCT constants
* M(I) = ecx + MaskOffset(0) + I * 8
* C(I) = ecx + CosineOffset(32) + (I-1) * 8
* edx = output
* r0..r7 = mm0..mm7
*/
#define M(x) (idct_constants + x * 4)
#define C(x) (idct_constants + 16 + (x - 1) * 4)
#define Eight (idct_constants + 44)
movq_m2r(*input_data, r0);
pmullw_m2r(*dequant_matrix, r0);
movq_m2r(*(input_data + 8), r1);
pmullw_m2r(*(dequant_matrix + 8), r1);
movq_m2r(*M(0), r2);
movq_r2r(r0, r3);
movq_m2r(*(input_data + 4), r4);
psrlq_i2r(16, r0);
pmullw_m2r(*(dequant_matrix + 4), r4);
pand_r2r(r2, r3);
movq_r2r(r0, r5);
movq_r2r(r1, r6);
pand_r2r(r2, r5);
psllq_i2r(32, r6);
movq_m2r(*M(3), r7);
pxor_r2r(r5, r0);
pand_r2r(r6, r7);
por_r2r(r3, r0);
pxor_r2r(r7, r6);
por_r2r(r7, r0);
movq_m2r(*M(3), r7);
movq_r2r(r4, r3);
movq_r2m(r0, *output_data);
pand_r2r(r2, r3);
movq_m2r(*(input_data + 16), r0);
psllq_i2r(16, r3);
pmullw_m2r(*(dequant_matrix + 16), r0);
pand_r2r(r1, r7);
por_r2r(r3, r5);
por_r2r(r6, r7);
movq_m2r(*(input_data + 12), r3);
por_r2r(r5, r7);
pmullw_m2r(*(dequant_matrix + 12), r3);
psrlq_i2r(16, r4);
movq_r2m(r7, *(output_data + 8));
movq_r2r(r4, r5);
movq_r2r(r0, r7);
psrlq_i2r(16, r4);
psrlq_i2r(48, r7);
movq_r2r(r2, r6);
pand_r2r(r2, r5);
pand_r2r(r4, r6);
movq_r2m(r7, *(output_data + 40));
pxor_r2r(r6, r4);
psrlq_i2r(32, r1);
por_r2r(r5, r4);
movq_m2r(*M(3), r7);
pand_r2r(r2, r1);
movq_m2r(*(input_data + 24), r5);
psllq_i2r(16, r0);
pmullw_m2r(*(dequant_matrix + 24), r5);
pand_r2r(r0, r7);
movq_r2m(r1, *(output_data + 32));
por_r2r(r4, r7);
movq_r2r(r3, r4);
pand_r2r(r2, r3);
movq_m2r(*M(2), r1);
psllq_i2r(32, r3);
por_r2r(r3, r7);
movq_r2r(r5, r3);
psllq_i2r(48, r3);
pand_r2r(r0, r1);
movq_r2m(r7, *(output_data + 16));
por_r2r(r3, r6);
movq_m2r(*M(1), r7);
por_r2r(r1, r6);
movq_m2r(*(input_data + 28), r1);
pand_r2r(r4, r7);
pmullw_m2r(*(dequant_matrix + 28), r1);
por_r2r(r6, r7);
pand_m2r(*M(1), r0);
psrlq_i2r(32, r4);
movq_r2m(r7, *(output_data + 24));
movq_r2r(r4, r6);
movq_m2r(*M(3), r7);
pand_r2r(r2, r4);
movq_m2r(*M(1), r3);
pand_r2r(r1, r7);
pand_r2r(r5, r3);
por_r2r(r4, r0);
psllq_i2r(16, r3);
por_r2r(r0, r7);
movq_m2r(*M(2), r4);
por_r2r(r3, r7);
movq_m2r(*(input_data + 40), r0);
movq_r2r(r4, r3);
pmullw_m2r(*(dequant_matrix + 40), r0);
pand_r2r(r5, r4);
movq_r2m(r7, *(output_data + 4));
por_r2r(r4, r6);
movq_r2r(r3, r4);
psrlq_i2r(16, r6);
movq_r2r(r0, r7);
pand_r2r(r1, r4);
psllq_i2r(48, r7);
por_r2r(r4, r6);
movq_m2r(*(input_data + 44), r4);
por_r2r(r6, r7);
pmullw_m2r(*(dequant_matrix + 44), r4);
psrlq_i2r(16, r3);
movq_r2m(r7, *(output_data + 12));
pand_r2r(r1, r3);
psrlq_i2r(48, r5);
pand_r2r(r2, r1);
movq_m2r(*(input_data + 52), r6);
por_r2r(r3, r5);
pmullw_m2r(*(input_data + 52), r6);
psrlq_i2r(16, r0);
movq_r2r(r4, r7);
movq_r2r(r2, r3);
psllq_i2r(48, r7);
pand_r2r(r0, r3);
pxor_r2r(r3, r0);
psllq_i2r(32, r3);
por_r2r(r5, r7);
movq_r2r(r6, r5);
pand_m2r(*M(1), r6);
por_r2r(r3, r7);
psllq_i2r(32, r6);
por_r2r(r1, r0);
movq_r2m(r7, *(output_data + 20));
por_r2r(r6, r0);
movq_m2r(*(input_data + 60), r7);
movq_r2r(r5, r6);
pmullw_m2r(*(input_data + 60), r7);
psrlq_i2r(32, r5);
pand_r2r(r2, r6);
movq_r2r(r5, r1);
movq_r2m(r0, *(output_data + 28));
pand_r2r(r2, r1);
movq_m2r(*(input_data + 56), r0);
movq_r2r(r7, r3);
pmullw_m2r(*(dequant_matrix + 56), r0);
psllq_i2r(16, r3);
pand_m2r(*M(3), r7);
pxor_r2r(r1, r5);
por_r2r(r5, r6);
movq_r2r(r3, r5);
pand_m2r(*M(3), r5);
por_r2r(r1, r7);
movq_m2r(*(input_data + 48), r1);
pxor_r2r(r5, r3);
pmullw_m2r(*(dequant_matrix + 48), r1);
por_r2r(r3, r7);
por_r2r(r5, r6);
movq_r2r(r0, r5);
movq_r2m(r7, *(output_data + 60));
psrlq_i2r(16, r5);
pand_m2r(*M(2), r5);
movq_r2r(r0, r7);
por_r2r(r5, r6);
pand_r2r(r2, r0);
pxor_r2r(r0, r7);
psllq_i2r(32, r0);
movq_r2m(r6, *(output_data + 52));
psrlq_i2r(16, r4);
movq_m2r(*(input_data + 36), r5);
psllq_i2r(16, r7);
pmullw_m2r(*(dequant_matrix + 36), r5);
movq_r2r(r7, r6);
movq_m2r(*M(2), r3);
psllq_i2r(16, r6);
pand_m2r(*M(3), r7);
pand_r2r(r1, r3);
por_r2r(r0, r7);
movq_r2r(r1, r0);
pand_m2r(*M(3), r1);
por_r2r(r3, r6);
movq_r2r(r4, r3);
psrlq_i2r(32, r1);
pand_r2r(r2, r3);
por_r2r(r1, r7);
por_r2r(r3, r7);
movq_r2r(r4, r3);
pand_m2r(*M(1), r3);
movq_r2r(r5, r1);
movq_r2m(r7, *(output_data + 44));
psrlq_i2r(48, r5);
movq_m2r(*(input_data + 32), r7);
por_r2r(r3, r6);
pmullw_m2r(*(dequant_matrix + 32), r7);
por_r2r(r5, r6);
pand_m2r(*M(2), r4);
psllq_i2r(32, r0);
movq_r2m(r6, *(output_data + 36));
movq_r2r(r0, r6);
pand_m2r(*M(3), r0);
psllq_i2r(16, r6);
movq_m2r(*(input_data + 20), r5);
movq_r2r(r1, r3);
pmullw_m2r(*(dequant_matrix + 40), r5);
psrlq_i2r(16, r1);
pand_m2r(*M(1), r1);
por_r2r(r4, r0);
pand_r2r(r7, r2);
por_r2r(r1, r0);
por_r2r(r2, r0);
psllq_i2r(16, r3);
movq_r2r(r3, r4);
movq_r2r(r5, r2);
movq_r2m(r0, *(output_data + 56));
psrlq_i2r(48, r2);
pand_m2r(*M(2), r4);
por_r2r(r2, r6);
movq_m2r(*M(1), r2);
por_r2r(r4, r6);
pand_r2r(r7, r2);
psllq_i2r(32, r3);
por_m2r(*(output_data + 40), r3);
por_r2r(r2, r6);
movq_m2r(*M(3), r2);
psllq_i2r(16, r5);
movq_r2m(r6, *(output_data + 48));
pand_r2r(r5, r2);
movq_m2r(*M(2), r6);
pxor_r2r(r2, r5);
pand_r2r(r7, r6);
psrlq_i2r(32, r2);
pand_m2r(*M(3), r7);
por_r2r(r2, r3);
por_m2r(*(output_data + 32), r7);
por_r2r(r3, r6);
por_r2r(r5, r7);
movq_r2m(r6, *(output_data + 40));
movq_r2m(r7, *(output_data + 32));
#undef M
/* at this point, function has completed dequantization + dezigzag +
* partial transposition; now do the idct itself */
#define I(K) (output_data + K * 8)
#define J(K) (output_data + ((K - 4) * 8) + 4)
RowIDCT();
Transpose();
#undef I
#undef J
#define I(K) (output_data + (K * 8) + 32)
#define J(K) (output_data + ((K - 4) * 8) + 36)
RowIDCT();
Transpose();
#undef I
#undef J
#define I(K) (output_data + K * 8)
#define J(K) (output_data + K * 8)
ColumnIDCT();
#undef I
#undef J
#define I(K) (output_data + (K * 8) + 4)
#define J(K) (output_data + (K * 8) + 4)
ColumnIDCT();
#undef I
#undef J
}
void vp3_idct_put_mmx(int16_t *input_data, int16_t *dequant_matrix,
int coeff_count, uint8_t *dest, int stride)
{
int16_t transformed_data[64];
int16_t *op;
int i, j;
uint8_t vector128[8] = { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 };
vp3_idct_mmx(input_data, dequant_matrix, transformed_data);
/* place in final output */
op = transformed_data;
movq_m2r(*vector128, mm0);
for (i = 0; i < 8; i++) {
#if 1
for (j = 0; j < 8; j++) {
if (*op < -128)
*dest = 0;
else if (*op > 127)
*dest = 255;
else
*dest = (uint8_t)(*op + 128);
op++;
dest++;
}
dest += (stride - 8);
#else
/* prototype optimization */
pxor_r2r(mm1, mm1);
packsswb_m2r(*(op + 4), mm1);
movq_r2r(mm1, mm2);
psrlq_i2r(32, mm2);
packsswb_m2r(*(op + 0), mm1);
op += 8;
por_r2r(mm2, mm1);
paddb_r2r(mm0, mm1);
movq_r2m(mm1, *dest);
dest += stride;
#endif
}
/* be a good MMX citizen */
emms();
}
void vp3_idct_add_mmx(int16_t *input_data, int16_t *dequant_matrix,
int coeff_count, uint8_t *dest, int stride)
{
int16_t transformed_data[64];
int16_t *op;
int i, j;
int16_t sample;
vp3_idct_mmx(input_data, dequant_matrix, transformed_data);
/* place in final output */
op = transformed_data;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
sample = *dest + *op;
if (sample < 0)
*dest = 0;
else if (sample > 255)
*dest = 255;
else
*dest = (uint8_t)(sample & 0xFF);
op++;
dest++;
}
dest += (stride - 8);
}
/* be a good MMX citizen */
emms();
}