mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-12 10:29:39 +00:00
cdf4a13f86
This is the matrix that will be used for up/downmixing.
524 lines
20 KiB
C
524 lines
20 KiB
C
/*
|
|
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
|
|
*
|
|
* This file is part of libswresample
|
|
*
|
|
* libswresample is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* libswresample is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with libswresample; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "swresample_internal.h"
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/channel_layout.h"
|
|
|
|
#define TEMPLATE_REMATRIX_FLT
|
|
#include "rematrix_template.c"
|
|
#undef TEMPLATE_REMATRIX_FLT
|
|
|
|
#define TEMPLATE_REMATRIX_DBL
|
|
#include "rematrix_template.c"
|
|
#undef TEMPLATE_REMATRIX_DBL
|
|
|
|
#define TEMPLATE_REMATRIX_S16
|
|
#include "rematrix_template.c"
|
|
#undef TEMPLATE_REMATRIX_S16
|
|
|
|
#define TEMPLATE_REMATRIX_S32
|
|
#include "rematrix_template.c"
|
|
#undef TEMPLATE_REMATRIX_S32
|
|
|
|
#define FRONT_LEFT 0
|
|
#define FRONT_RIGHT 1
|
|
#define FRONT_CENTER 2
|
|
#define LOW_FREQUENCY 3
|
|
#define BACK_LEFT 4
|
|
#define BACK_RIGHT 5
|
|
#define FRONT_LEFT_OF_CENTER 6
|
|
#define FRONT_RIGHT_OF_CENTER 7
|
|
#define BACK_CENTER 8
|
|
#define SIDE_LEFT 9
|
|
#define SIDE_RIGHT 10
|
|
#define TOP_CENTER 11
|
|
#define TOP_FRONT_LEFT 12
|
|
#define TOP_FRONT_CENTER 13
|
|
#define TOP_FRONT_RIGHT 14
|
|
#define TOP_BACK_LEFT 15
|
|
#define TOP_BACK_CENTER 16
|
|
#define TOP_BACK_RIGHT 17
|
|
#define NUM_NAMED_CHANNELS 18
|
|
|
|
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
|
|
{
|
|
int nb_in, nb_out, in, out;
|
|
|
|
if (!s || s->in_convert) // s needs to be allocated but not initialized
|
|
return AVERROR(EINVAL);
|
|
memset(s->matrix, 0, sizeof(s->matrix));
|
|
nb_in = av_get_channel_layout_nb_channels(s->user_in_ch_layout);
|
|
nb_out = av_get_channel_layout_nb_channels(s->user_out_ch_layout);
|
|
for (out = 0; out < nb_out; out++) {
|
|
for (in = 0; in < nb_in; in++)
|
|
s->matrix[out][in] = matrix[in];
|
|
matrix += stride;
|
|
}
|
|
s->rematrix_custom = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int even(int64_t layout){
|
|
if(!layout) return 1;
|
|
if(layout&(layout-1)) return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int clean_layout(SwrContext *s, int64_t layout){
|
|
if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
|
|
char buf[128];
|
|
av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
|
|
av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
|
|
return AV_CH_FRONT_CENTER;
|
|
}
|
|
|
|
return layout;
|
|
}
|
|
|
|
static int sane_layout(int64_t layout){
|
|
if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
|
|
return 0;
|
|
if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
|
|
return 0;
|
|
if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
|
|
return 0;
|
|
if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
|
|
return 0;
|
|
if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
|
|
return 0;
|
|
if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
av_cold static int auto_matrix(SwrContext *s)
|
|
{
|
|
int i, j, out_i;
|
|
double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
|
|
int64_t unaccounted, in_ch_layout, out_ch_layout;
|
|
double maxcoef=0;
|
|
char buf[128];
|
|
const int matrix_encoding = s->matrix_encoding;
|
|
float maxval;
|
|
|
|
in_ch_layout = clean_layout(s, s->in_ch_layout);
|
|
out_ch_layout = clean_layout(s, s->out_ch_layout);
|
|
|
|
if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
|
|
&& (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
|
|
)
|
|
out_ch_layout = AV_CH_LAYOUT_STEREO;
|
|
|
|
if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
|
|
&& (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
|
|
)
|
|
in_ch_layout = AV_CH_LAYOUT_STEREO;
|
|
|
|
if(!sane_layout(in_ch_layout)){
|
|
av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
|
|
av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
if(!sane_layout(out_ch_layout)){
|
|
av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
|
|
av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
memset(s->matrix, 0, sizeof(s->matrix));
|
|
for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
|
|
if(in_ch_layout & out_ch_layout & (1ULL<<i))
|
|
matrix[i][i]= 1.0;
|
|
}
|
|
|
|
unaccounted= in_ch_layout & ~out_ch_layout;
|
|
|
|
//FIXME implement dolby surround
|
|
//FIXME implement full ac3
|
|
|
|
|
|
if(unaccounted & AV_CH_FRONT_CENTER){
|
|
if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
|
|
if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
|
|
matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
|
|
matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
|
|
} else {
|
|
matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
|
|
}
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
if(unaccounted & AV_CH_LAYOUT_STEREO){
|
|
if(out_ch_layout & AV_CH_FRONT_CENTER){
|
|
matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
|
|
matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
|
|
if(in_ch_layout & AV_CH_FRONT_CENTER)
|
|
matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
|
|
if(unaccounted & AV_CH_BACK_CENTER){
|
|
if(out_ch_layout & AV_CH_BACK_LEFT){
|
|
matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
|
|
matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
|
|
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
|
|
matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
|
|
matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
|
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
|
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
|
|
matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
|
|
if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
|
|
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
|
|
} else {
|
|
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
|
|
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
|
|
}
|
|
} else {
|
|
matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
|
|
}
|
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
|
|
matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
if(unaccounted & AV_CH_BACK_LEFT){
|
|
if(out_ch_layout & AV_CH_BACK_CENTER){
|
|
matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
|
|
matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
|
|
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
|
|
if(in_ch_layout & AV_CH_SIDE_LEFT){
|
|
matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
|
|
matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
|
|
}else{
|
|
matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
|
|
matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
|
|
}
|
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
|
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
|
|
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
|
|
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
|
|
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
|
|
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
|
|
} else {
|
|
matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
|
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
|
|
}
|
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
|
|
matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
|
|
matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
|
|
if(unaccounted & AV_CH_SIDE_LEFT){
|
|
if(out_ch_layout & AV_CH_BACK_LEFT){
|
|
/* if back channels do not exist in the input, just copy side
|
|
channels to back channels, otherwise mix side into back */
|
|
if (in_ch_layout & AV_CH_BACK_LEFT) {
|
|
matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
|
|
matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
|
|
} else {
|
|
matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
|
|
matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
|
|
}
|
|
}else if(out_ch_layout & AV_CH_BACK_CENTER){
|
|
matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
|
|
matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
|
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
|
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
|
|
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
|
|
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
|
|
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
|
|
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
|
|
} else {
|
|
matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
|
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
|
|
}
|
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
|
|
matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
|
|
matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
|
|
if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
|
|
if(out_ch_layout & AV_CH_FRONT_LEFT){
|
|
matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
|
|
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
|
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
|
|
matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
|
|
matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
|
|
}else
|
|
av_assert0(0);
|
|
}
|
|
/* mix LFE into front left/right or center */
|
|
if (unaccounted & AV_CH_LOW_FREQUENCY) {
|
|
if (out_ch_layout & AV_CH_FRONT_CENTER) {
|
|
matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
|
|
} else if (out_ch_layout & AV_CH_FRONT_LEFT) {
|
|
matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
|
|
matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
|
|
} else
|
|
av_assert0(0);
|
|
}
|
|
|
|
for(out_i=i=0; i<64; i++){
|
|
double sum=0;
|
|
int in_i=0;
|
|
if((out_ch_layout & (1ULL<<i)) == 0)
|
|
continue;
|
|
for(j=0; j<64; j++){
|
|
if((in_ch_layout & (1ULL<<j)) == 0)
|
|
continue;
|
|
if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
|
|
s->matrix[out_i][in_i]= matrix[i][j];
|
|
else
|
|
s->matrix[out_i][in_i]= i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
|
|
sum += fabs(s->matrix[out_i][in_i]);
|
|
in_i++;
|
|
}
|
|
maxcoef= FFMAX(maxcoef, sum);
|
|
out_i++;
|
|
}
|
|
if(s->rematrix_volume < 0)
|
|
maxcoef = -s->rematrix_volume;
|
|
|
|
if (s->rematrix_maxval > 0) {
|
|
maxval = s->rematrix_maxval;
|
|
} else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
|
|
|| av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
|
|
maxval = 1.0;
|
|
} else
|
|
maxval = INT_MAX;
|
|
|
|
if(maxcoef > maxval || s->rematrix_volume < 0){
|
|
maxcoef /= maxval;
|
|
for(i=0; i<SWR_CH_MAX; i++)
|
|
for(j=0; j<SWR_CH_MAX; j++){
|
|
s->matrix[i][j] /= maxcoef;
|
|
}
|
|
}
|
|
|
|
if(s->rematrix_volume > 0){
|
|
for(i=0; i<SWR_CH_MAX; i++)
|
|
for(j=0; j<SWR_CH_MAX; j++){
|
|
s->matrix[i][j] *= s->rematrix_volume;
|
|
}
|
|
}
|
|
|
|
av_log(s, AV_LOG_DEBUG, "Matrix coefficients:\n");
|
|
for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
|
|
const char *c =
|
|
av_get_channel_name(av_channel_layout_extract_channel(out_ch_layout, i));
|
|
av_log(s, AV_LOG_DEBUG, "%s: ", c ? c : "?");
|
|
for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
|
|
c = av_get_channel_name(av_channel_layout_extract_channel(in_ch_layout, j));
|
|
av_log(s, AV_LOG_DEBUG, "%s:%f ", c ? c : "?", s->matrix[i][j]);
|
|
}
|
|
av_log(s, AV_LOG_DEBUG, "\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
av_cold int swri_rematrix_init(SwrContext *s){
|
|
int i, j;
|
|
int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
|
|
int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
|
|
|
|
s->mix_any_f = NULL;
|
|
|
|
if (!s->rematrix_custom) {
|
|
int r = auto_matrix(s);
|
|
if (r)
|
|
return r;
|
|
}
|
|
if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
|
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
|
|
s->native_one = av_mallocz(sizeof(int));
|
|
if (!s->native_matrix || !s->native_one)
|
|
return AVERROR(ENOMEM);
|
|
for (i = 0; i < nb_out; i++)
|
|
for (j = 0; j < nb_in; j++)
|
|
((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
|
|
*((int*)s->native_one) = 32768;
|
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
|
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
|
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
|
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
|
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
|
|
s->native_one = av_mallocz(sizeof(float));
|
|
if (!s->native_matrix || !s->native_one)
|
|
return AVERROR(ENOMEM);
|
|
for (i = 0; i < nb_out; i++)
|
|
for (j = 0; j < nb_in; j++)
|
|
((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
|
|
*((float*)s->native_one) = 1.0;
|
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
|
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
|
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
|
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
|
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
|
|
s->native_one = av_mallocz(sizeof(double));
|
|
if (!s->native_matrix || !s->native_one)
|
|
return AVERROR(ENOMEM);
|
|
for (i = 0; i < nb_out; i++)
|
|
for (j = 0; j < nb_in; j++)
|
|
((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
|
|
*((double*)s->native_one) = 1.0;
|
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
|
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
|
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
|
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
|
|
// Only for dithering currently
|
|
// s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
|
|
s->native_one = av_mallocz(sizeof(int));
|
|
if (!s->native_one)
|
|
return AVERROR(ENOMEM);
|
|
// for (i = 0; i < nb_out; i++)
|
|
// for (j = 0; j < nb_in; j++)
|
|
// ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
|
|
*((int*)s->native_one) = 32768;
|
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
|
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
|
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
|
|
}else
|
|
av_assert0(0);
|
|
//FIXME quantize for integeres
|
|
for (i = 0; i < SWR_CH_MAX; i++) {
|
|
int ch_in=0;
|
|
for (j = 0; j < SWR_CH_MAX; j++) {
|
|
s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
|
|
if(s->matrix[i][j])
|
|
s->matrix_ch[i][++ch_in]= j;
|
|
}
|
|
s->matrix_ch[i][0]= ch_in;
|
|
}
|
|
|
|
if(HAVE_YASM && HAVE_MMX)
|
|
return swri_rematrix_init_x86(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
av_cold void swri_rematrix_free(SwrContext *s){
|
|
av_freep(&s->native_matrix);
|
|
av_freep(&s->native_one);
|
|
av_freep(&s->native_simd_matrix);
|
|
av_freep(&s->native_simd_one);
|
|
}
|
|
|
|
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
|
|
int out_i, in_i, i, j;
|
|
int len1 = 0;
|
|
int off = 0;
|
|
|
|
if(s->mix_any_f) {
|
|
s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
|
|
return 0;
|
|
}
|
|
|
|
if(s->mix_2_1_simd || s->mix_1_1_simd){
|
|
len1= len&~15;
|
|
off = len1 * out->bps;
|
|
}
|
|
|
|
av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
|
|
av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
|
|
|
|
for(out_i=0; out_i<out->ch_count; out_i++){
|
|
switch(s->matrix_ch[out_i][0]){
|
|
case 0:
|
|
if(mustcopy)
|
|
memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
|
|
break;
|
|
case 1:
|
|
in_i= s->matrix_ch[out_i][1];
|
|
if(s->matrix[out_i][in_i]!=1.0){
|
|
if(s->mix_1_1_simd && len1)
|
|
s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
|
|
if(len != len1)
|
|
s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
|
|
}else if(mustcopy){
|
|
memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
|
|
}else{
|
|
out->ch[out_i]= in->ch[in_i];
|
|
}
|
|
break;
|
|
case 2: {
|
|
int in_i1 = s->matrix_ch[out_i][1];
|
|
int in_i2 = s->matrix_ch[out_i][2];
|
|
if(s->mix_2_1_simd && len1)
|
|
s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
|
|
else
|
|
s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
|
|
if(len != len1)
|
|
s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
|
|
break;}
|
|
default:
|
|
if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
|
|
for(i=0; i<len; i++){
|
|
float v=0;
|
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){
|
|
in_i= s->matrix_ch[out_i][1+j];
|
|
v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
|
|
}
|
|
((float*)out->ch[out_i])[i]= v;
|
|
}
|
|
}else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
|
|
for(i=0; i<len; i++){
|
|
double v=0;
|
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){
|
|
in_i= s->matrix_ch[out_i][1+j];
|
|
v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
|
|
}
|
|
((double*)out->ch[out_i])[i]= v;
|
|
}
|
|
}else{
|
|
for(i=0; i<len; i++){
|
|
int v=0;
|
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){
|
|
in_i= s->matrix_ch[out_i][1+j];
|
|
v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
|
|
}
|
|
((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|