ffmpeg/libavcodec/flacenc.c

1360 lines
40 KiB
C

/**
* FLAC audio encoder
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/crc.h"
#include "libavutil/lls.h"
#include "libavutil/md5.h"
#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"
#include "golomb.h"
#include "lpc.h"
#define FLAC_MAX_CH 8
#define FLAC_MIN_BLOCKSIZE 16
#define FLAC_MAX_BLOCKSIZE 65535
#define FLAC_SUBFRAME_CONSTANT 0
#define FLAC_SUBFRAME_VERBATIM 1
#define FLAC_SUBFRAME_FIXED 8
#define FLAC_SUBFRAME_LPC 32
#define FLAC_CHMODE_NOT_STEREO 0
#define FLAC_CHMODE_LEFT_RIGHT 1
#define FLAC_CHMODE_LEFT_SIDE 8
#define FLAC_CHMODE_RIGHT_SIDE 9
#define FLAC_CHMODE_MID_SIDE 10
#define FLAC_STREAMINFO_SIZE 34
#define MAX_FIXED_ORDER 4
#define MAX_PARTITION_ORDER 8
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
#define MAX_LPC_PRECISION 15
#define MAX_LPC_SHIFT 15
#define MAX_RICE_PARAM 14
typedef struct CompressionOptions {
int compression_level;
int block_time_ms;
int use_lpc;
int lpc_coeff_precision;
int min_prediction_order;
int max_prediction_order;
int prediction_order_method;
int min_partition_order;
int max_partition_order;
} CompressionOptions;
typedef struct RiceContext {
int porder;
int params[MAX_PARTITIONS];
} RiceContext;
typedef struct FlacSubframe {
int type;
int type_code;
int obits;
int order;
int32_t coefs[MAX_LPC_ORDER];
int shift;
RiceContext rc;
int32_t samples[FLAC_MAX_BLOCKSIZE];
int32_t residual[FLAC_MAX_BLOCKSIZE+1];
} FlacSubframe;
typedef struct FlacFrame {
FlacSubframe subframes[FLAC_MAX_CH];
int blocksize;
int bs_code[2];
uint8_t crc8;
int ch_mode;
} FlacFrame;
typedef struct FlacEncodeContext {
PutBitContext pb;
int channels;
int ch_code;
int samplerate;
int sr_code[2];
int min_framesize;
int min_encoded_framesize;
int max_framesize;
int max_encoded_framesize;
uint32_t frame_count;
uint64_t sample_count;
uint8_t md5sum[16];
FlacFrame frame;
CompressionOptions options;
AVCodecContext *avctx;
DSPContext dsp;
struct AVMD5 *md5ctx;
} FlacEncodeContext;
static const int flac_samplerates[16] = {
0, 0, 0, 0,
8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
0, 0, 0, 0
};
static const int flac_blocksizes[16] = {
0,
192,
576, 1152, 2304, 4608,
0, 0,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768
};
/**
* Writes streaminfo metadata block to byte array
*/
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
{
PutBitContext pb;
memset(header, 0, FLAC_STREAMINFO_SIZE);
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
/* streaminfo metadata block */
put_bits(&pb, 16, s->avctx->frame_size);
put_bits(&pb, 16, s->avctx->frame_size);
put_bits(&pb, 24, s->min_framesize);
put_bits(&pb, 24, s->max_framesize);
put_bits(&pb, 20, s->samplerate);
put_bits(&pb, 3, s->channels-1);
put_bits(&pb, 5, 15); /* bits per sample - 1 */
/* write 36-bit sample count in 2 put_bits() calls */
put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
put_bits(&pb, 12, s->sample_count & 0x000000FFFLL);
flush_put_bits(&pb);
memcpy(&header[18], s->md5sum, 16);
}
/**
* Sets blocksize based on samplerate
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
*/
static int select_blocksize(int samplerate, int block_time_ms)
{
int i;
int target;
int blocksize;
assert(samplerate > 0);
blocksize = flac_blocksizes[1];
target = (samplerate * block_time_ms) / 1000;
for(i=0; i<16; i++) {
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
blocksize = flac_blocksizes[i];
}
}
return blocksize;
}
static av_cold int flac_encode_init(AVCodecContext *avctx)
{
int freq = avctx->sample_rate;
int channels = avctx->channels;
FlacEncodeContext *s = avctx->priv_data;
int i, level;
uint8_t *streaminfo;
s->avctx = avctx;
dsputil_init(&s->dsp, avctx);
if(avctx->sample_fmt != SAMPLE_FMT_S16) {
return -1;
}
if(channels < 1 || channels > FLAC_MAX_CH) {
return -1;
}
s->channels = channels;
s->ch_code = s->channels-1;
/* find samplerate in table */
if(freq < 1)
return -1;
for(i=4; i<12; i++) {
if(freq == flac_samplerates[i]) {
s->samplerate = flac_samplerates[i];
s->sr_code[0] = i;
s->sr_code[1] = 0;
break;
}
}
/* if not in table, samplerate is non-standard */
if(i == 12) {
if(freq % 1000 == 0 && freq < 255000) {
s->sr_code[0] = 12;
s->sr_code[1] = freq / 1000;
} else if(freq % 10 == 0 && freq < 655350) {
s->sr_code[0] = 14;
s->sr_code[1] = freq / 10;
} else if(freq < 65535) {
s->sr_code[0] = 13;
s->sr_code[1] = freq;
} else {
return -1;
}
s->samplerate = freq;
}
/* set compression option defaults based on avctx->compression_level */
if(avctx->compression_level < 0) {
s->options.compression_level = 5;
} else {
s->options.compression_level = avctx->compression_level;
}
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
level= s->options.compression_level;
if(level > 12) {
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
s->options.compression_level);
return -1;
}
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
ORDER_METHOD_SEARCH})[level];
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
/* set compression option overrides from AVCodecContext */
if(avctx->use_lpc >= 0) {
s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
}
if(s->options.use_lpc == 1)
av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
else if(s->options.use_lpc > 1)
av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
if(avctx->min_prediction_order >= 0) {
if(s->options.use_lpc) {
if(avctx->min_prediction_order < MIN_LPC_ORDER ||
avctx->min_prediction_order > MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
return -1;
}
} else {
if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
return -1;
}
}
s->options.min_prediction_order = avctx->min_prediction_order;
}
if(avctx->max_prediction_order >= 0) {
if(s->options.use_lpc) {
if(avctx->max_prediction_order < MIN_LPC_ORDER ||
avctx->max_prediction_order > MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
return -1;
}
} else {
if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
return -1;
}
}
s->options.max_prediction_order = avctx->max_prediction_order;
}
if(s->options.max_prediction_order < s->options.min_prediction_order) {
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
s->options.min_prediction_order, s->options.max_prediction_order);
return -1;
}
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
s->options.min_prediction_order, s->options.max_prediction_order);
if(avctx->prediction_order_method >= 0) {
if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
avctx->prediction_order_method);
return -1;
}
s->options.prediction_order_method = avctx->prediction_order_method;
}
switch(s->options.prediction_order_method) {
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"estimate"); break;
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"2-level"); break;
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"4-level"); break;
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"8-level"); break;
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"full search"); break;
case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"log search"); break;
}
if(avctx->min_partition_order >= 0) {
if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
avctx->min_partition_order);
return -1;
}
s->options.min_partition_order = avctx->min_partition_order;
}
if(avctx->max_partition_order >= 0) {
if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
avctx->max_partition_order);
return -1;
}
s->options.max_partition_order = avctx->max_partition_order;
}
if(s->options.max_partition_order < s->options.min_partition_order) {
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
s->options.min_partition_order, s->options.max_partition_order);
return -1;
}
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
s->options.min_partition_order, s->options.max_partition_order);
if(avctx->frame_size > 0) {
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
avctx->frame_size);
return -1;
}
} else {
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
}
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
/* set LPC precision */
if(avctx->lpc_coeff_precision > 0) {
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
avctx->lpc_coeff_precision);
return -1;
}
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
} else {
/* default LPC precision */
s->options.lpc_coeff_precision = 15;
}
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
s->options.lpc_coeff_precision);
/* set maximum encoded frame size in verbatim mode */
if(s->channels == 2) {
s->max_framesize = 14 + ((s->avctx->frame_size * 33 + 7) >> 3);
} else {
s->max_framesize = 14 + (s->avctx->frame_size * s->channels * 2);
}
s->min_encoded_framesize = 0xFFFFFF;
/* initialize MD5 context */
s->md5ctx = av_malloc(av_md5_size);
if(!s->md5ctx)
return AVERROR_NOMEM;
av_md5_init(s->md5ctx);
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
write_streaminfo(s, streaminfo);
avctx->extradata = streaminfo;
avctx->extradata_size = FLAC_STREAMINFO_SIZE;
s->frame_count = 0;
avctx->coded_frame = avcodec_alloc_frame();
avctx->coded_frame->key_frame = 1;
return 0;
}
static void init_frame(FlacEncodeContext *s)
{
int i, ch;
FlacFrame *frame;
frame = &s->frame;
for(i=0; i<16; i++) {
if(s->avctx->frame_size == flac_blocksizes[i]) {
frame->blocksize = flac_blocksizes[i];
frame->bs_code[0] = i;
frame->bs_code[1] = 0;
break;
}
}
if(i == 16) {
frame->blocksize = s->avctx->frame_size;
if(frame->blocksize <= 256) {
frame->bs_code[0] = 6;
frame->bs_code[1] = frame->blocksize-1;
} else {
frame->bs_code[0] = 7;
frame->bs_code[1] = frame->blocksize-1;
}
}
for(ch=0; ch<s->channels; ch++) {
frame->subframes[ch].obits = 16;
}
}
/**
* Copy channel-interleaved input samples into separate subframes
*/
static void copy_samples(FlacEncodeContext *s, int16_t *samples)
{
int i, j, ch;
FlacFrame *frame;
frame = &s->frame;
for(i=0,j=0; i<frame->blocksize; i++) {
for(ch=0; ch<s->channels; ch++,j++) {
frame->subframes[ch].samples[i] = samples[j];
}
}
}
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
/**
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
*/
static int find_optimal_param(uint32_t sum, int n)
{
int k;
uint32_t sum2;
if(sum <= n>>1)
return 0;
sum2 = sum-(n>>1);
k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
return FFMIN(k, MAX_RICE_PARAM);
}
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
uint32_t *sums, int n, int pred_order)
{
int i;
int k, cnt, part;
uint32_t all_bits;
part = (1 << porder);
all_bits = 4 * part;
cnt = (n >> porder) - pred_order;
for(i=0; i<part; i++) {
k = find_optimal_param(sums[i], cnt);
rc->params[i] = k;
all_bits += rice_encode_count(sums[i], cnt, k);
cnt = n >> porder;
}
rc->porder = porder;
return all_bits;
}
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
uint32_t sums[][MAX_PARTITIONS])
{
int i, j;
int parts;
uint32_t *res, *res_end;
/* sums for highest level */
parts = (1 << pmax);
res = &data[pred_order];
res_end = &data[n >> pmax];
for(i=0; i<parts; i++) {
uint32_t sum = 0;
while(res < res_end){
sum += *(res++);
}
sums[pmax][i] = sum;
res_end+= n >> pmax;
}
/* sums for lower levels */
for(i=pmax-1; i>=pmin; i--) {
parts = (1 << i);
for(j=0; j<parts; j++) {
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
}
}
}
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order)
{
int i;
uint32_t bits[MAX_PARTITION_ORDER+1];
int opt_porder;
RiceContext tmp_rc;
uint32_t *udata;
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
assert(pmin <= pmax);
udata = av_malloc(n * sizeof(uint32_t));
for(i=0; i<n; i++) {
udata[i] = (2*data[i]) ^ (data[i]>>31);
}
calc_sums(pmin, pmax, udata, n, pred_order, sums);
opt_porder = pmin;
bits[pmin] = UINT32_MAX;
for(i=pmin; i<=pmax; i++) {
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
if(bits[i] <= bits[opt_porder]) {
opt_porder = i;
*rc= tmp_rc;
}
}
av_freep(&udata);
return bits[opt_porder];
}
static int get_max_p_order(int max_porder, int n, int order)
{
int porder = FFMIN(max_porder, av_log2(n^(n-1)));
if(order > 0)
porder = FFMIN(porder, av_log2(n/order));
return porder;
}
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order,
int bps)
{
uint32_t bits;
pmin = get_max_p_order(pmin, n, pred_order);
pmax = get_max_p_order(pmax, n, pred_order);
bits = pred_order*bps + 6;
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
return bits;
}
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order,
int bps, int precision)
{
uint32_t bits;
pmin = get_max_p_order(pmin, n, pred_order);
pmax = get_max_p_order(pmax, n, pred_order);
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
return bits;
}
/**
* Apply Welch window function to audio block
*/
static void apply_welch_window(const int32_t *data, int len, double *w_data)
{
int i, n2;
double w;
double c;
assert(!(len&1)); //the optimization in r11881 does not support odd len
//if someone wants odd len extend the change in r11881
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
w_data+=n2;
data+=n2;
for(i=0; i<n2; i++) {
w = c - n2 + i;
w = 1.0 - (w * w);
w_data[-i-1] = data[-i-1] * w;
w_data[+i ] = data[+i ] * w;
}
}
/**
* Calculates autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
double *autoc)
{
int i, j;
double tmp[len + lag + 1];
double *data1= tmp + lag;
apply_welch_window(data, len, data1);
for(j=0; j<lag; j++)
data1[j-lag]= 0.0;
data1[len] = 0.0;
for(j=0; j<lag; j+=2){
double sum0 = 1.0, sum1 = 1.0;
for(i=0; i<len; i++){
sum0 += data1[i] * data1[i-j];
sum1 += data1[i] * data1[i-j-1];
}
autoc[j ] = sum0;
autoc[j+1] = sum1;
}
if(j==lag){
double sum = 1.0;
for(i=0; i<len; i+=2){
sum += data1[i ] * data1[i-j ]
+ data1[i+1] * data1[i-j+1];
}
autoc[j] = sum;
}
}
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
{
assert(n > 0);
memcpy(res, smp, n * sizeof(int32_t));
}
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
int order)
{
int i;
for(i=0; i<order; i++) {
res[i] = smp[i];
}
if(order==0){
for(i=order; i<n; i++)
res[i]= smp[i];
}else if(order==1){
for(i=order; i<n; i++)
res[i]= smp[i] - smp[i-1];
}else if(order==2){
int a = smp[order-1] - smp[order-2];
for(i=order; i<n; i+=2) {
int b = smp[i] - smp[i-1];
res[i]= b - a;
a = smp[i+1] - smp[i];
res[i+1]= a - b;
}
}else if(order==3){
int a = smp[order-1] - smp[order-2];
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
for(i=order; i<n; i+=2) {
int b = smp[i] - smp[i-1];
int d = b - a;
res[i]= d - c;
a = smp[i+1] - smp[i];
c = a - b;
res[i+1]= c - d;
}
}else{
int a = smp[order-1] - smp[order-2];
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
for(i=order; i<n; i+=2) {
int b = smp[i] - smp[i-1];
int d = b - a;
int f = d - c;
res[i]= f - e;
a = smp[i+1] - smp[i];
c = a - b;
e = c - d;
res[i+1]= e - f;
}
}
}
#define LPC1(x) {\
int c = coefs[(x)-1];\
p0 += c*s;\
s = smp[i-(x)+1];\
p1 += c*s;\
}
static av_always_inline void encode_residual_lpc_unrolled(
int32_t *res, const int32_t *smp, int n,
int order, const int32_t *coefs, int shift, int big)
{
int i;
for(i=order; i<n; i+=2) {
int s = smp[i-order];
int p0 = 0, p1 = 0;
if(big) {
switch(order) {
case 32: LPC1(32)
case 31: LPC1(31)
case 30: LPC1(30)
case 29: LPC1(29)
case 28: LPC1(28)
case 27: LPC1(27)
case 26: LPC1(26)
case 25: LPC1(25)
case 24: LPC1(24)
case 23: LPC1(23)
case 22: LPC1(22)
case 21: LPC1(21)
case 20: LPC1(20)
case 19: LPC1(19)
case 18: LPC1(18)
case 17: LPC1(17)
case 16: LPC1(16)
case 15: LPC1(15)
case 14: LPC1(14)
case 13: LPC1(13)
case 12: LPC1(12)
case 11: LPC1(11)
case 10: LPC1(10)
case 9: LPC1( 9)
LPC1( 8)
LPC1( 7)
LPC1( 6)
LPC1( 5)
LPC1( 4)
LPC1( 3)
LPC1( 2)
LPC1( 1)
}
} else {
switch(order) {
case 8: LPC1( 8)
case 7: LPC1( 7)
case 6: LPC1( 6)
case 5: LPC1( 5)
case 4: LPC1( 4)
case 3: LPC1( 3)
case 2: LPC1( 2)
case 1: LPC1( 1)
}
}
res[i ] = smp[i ] - (p0 >> shift);
res[i+1] = smp[i+1] - (p1 >> shift);
}
}
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
int order, const int32_t *coefs, int shift)
{
int i;
for(i=0; i<order; i++) {
res[i] = smp[i];
}
#if CONFIG_SMALL
for(i=order; i<n; i+=2) {
int j;
int s = smp[i];
int p0 = 0, p1 = 0;
for(j=0; j<order; j++) {
int c = coefs[j];
p1 += c*s;
s = smp[i-j-1];
p0 += c*s;
}
res[i ] = smp[i ] - (p0 >> shift);
res[i+1] = smp[i+1] - (p1 >> shift);
}
#else
switch(order) {
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
}
#endif
}
static int encode_residual(FlacEncodeContext *ctx, int ch)
{
int i, n;
int min_order, max_order, opt_order, precision, omethod;
int min_porder, max_porder;
FlacFrame *frame;
FlacSubframe *sub;
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int shift[MAX_LPC_ORDER];
int32_t *res, *smp;
frame = &ctx->frame;
sub = &frame->subframes[ch];
res = sub->residual;
smp = sub->samples;
n = frame->blocksize;
/* CONSTANT */
for(i=1; i<n; i++) {
if(smp[i] != smp[0]) break;
}
if(i == n) {
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
res[0] = smp[0];
return sub->obits;
}
/* VERBATIM */
if(n < 5) {
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
encode_residual_verbatim(res, smp, n);
return sub->obits * n;
}
min_order = ctx->options.min_prediction_order;
max_order = ctx->options.max_prediction_order;
min_porder = ctx->options.min_partition_order;
max_porder = ctx->options.max_partition_order;
precision = ctx->options.lpc_coeff_precision;
omethod = ctx->options.prediction_order_method;
/* FIXED */
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
uint32_t bits[MAX_FIXED_ORDER+1];
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
opt_order = 0;
bits[0] = UINT32_MAX;
for(i=min_order; i<=max_order; i++) {
encode_residual_fixed(res, smp, n, i);
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
n, i, sub->obits);
if(bits[i] < bits[opt_order]) {
opt_order = i;
}
}
sub->order = opt_order;
sub->type = FLAC_SUBFRAME_FIXED;
sub->type_code = sub->type | sub->order;
if(sub->order != max_order) {
encode_residual_fixed(res, smp, n, sub->order);
return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
sub->order, sub->obits);
}
return bits[sub->order];
}
/* LPC */
opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order,
precision, coefs, shift, ctx->options.use_lpc,
omethod, MAX_LPC_SHIFT, 0);
if(omethod == ORDER_METHOD_2LEVEL ||
omethod == ORDER_METHOD_4LEVEL ||
omethod == ORDER_METHOD_8LEVEL) {
int levels = 1 << omethod;
uint32_t bits[levels];
int order;
int opt_index = levels-1;
opt_order = max_order-1;
bits[opt_index] = UINT32_MAX;
for(i=levels-1; i>=0; i--) {
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
if(order < 0) order = 0;
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
res, n, order+1, sub->obits, precision);
if(bits[i] < bits[opt_index]) {
opt_index = i;
opt_order = order;
}
}
opt_order++;
} else if(omethod == ORDER_METHOD_SEARCH) {
// brute-force optimal order search
uint32_t bits[MAX_LPC_ORDER];
opt_order = 0;
bits[0] = UINT32_MAX;
for(i=min_order-1; i<max_order; i++) {
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
res, n, i+1, sub->obits, precision);
if(bits[i] < bits[opt_order]) {
opt_order = i;
}
}
opt_order++;
} else if(omethod == ORDER_METHOD_LOG) {
uint32_t bits[MAX_LPC_ORDER];
int step;
opt_order= min_order - 1 + (max_order-min_order)/3;
memset(bits, -1, sizeof(bits));
for(step=16 ;step; step>>=1){
int last= opt_order;
for(i=last-step; i<=last+step; i+= step){
if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
continue;
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
res, n, i+1, sub->obits, precision);
if(bits[i] < bits[opt_order])
opt_order= i;
}
}
opt_order++;
}
sub->order = opt_order;
sub->type = FLAC_SUBFRAME_LPC;
sub->type_code = sub->type | (sub->order-1);
sub->shift = shift[sub->order-1];
for(i=0; i<sub->order; i++) {
sub->coefs[i] = coefs[sub->order-1][i];
}
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
sub->obits, precision);
}
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
{
int i, n;
FlacFrame *frame;
FlacSubframe *sub;
int32_t *res, *smp;
frame = &ctx->frame;
sub = &frame->subframes[ch];
res = sub->residual;
smp = sub->samples;
n = frame->blocksize;
/* CONSTANT */
for(i=1; i<n; i++) {
if(smp[i] != smp[0]) break;
}
if(i == n) {
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
res[0] = smp[0];
return sub->obits;
}
/* VERBATIM */
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
encode_residual_verbatim(res, smp, n);
return sub->obits * n;
}
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
{
int i, best;
int32_t lt, rt;
uint64_t sum[4];
uint64_t score[4];
int k;
/* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for(i=2; i<n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
sum[2] += FFABS((lt + rt) >> 1);
sum[3] += FFABS(lt - rt);
sum[0] += FFABS(lt);
sum[1] += FFABS(rt);
}
/* estimate bit counts */
for(i=0; i<4; i++) {
k = find_optimal_param(2*sum[i], n);
sum[i] = rice_encode_count(2*sum[i], n, k);
}
/* calculate score for each mode */
score[0] = sum[0] + sum[1];
score[1] = sum[0] + sum[3];
score[2] = sum[1] + sum[3];
score[3] = sum[2] + sum[3];
/* return mode with lowest score */
best = 0;
for(i=1; i<4; i++) {
if(score[i] < score[best]) {
best = i;
}
}
if(best == 0) {
return FLAC_CHMODE_LEFT_RIGHT;
} else if(best == 1) {
return FLAC_CHMODE_LEFT_SIDE;
} else if(best == 2) {
return FLAC_CHMODE_RIGHT_SIDE;
} else {
return FLAC_CHMODE_MID_SIDE;
}
}
/**
* Perform stereo channel decorrelation
*/
static void channel_decorrelation(FlacEncodeContext *ctx)
{
FlacFrame *frame;
int32_t *left, *right;
int i, n;
frame = &ctx->frame;
n = frame->blocksize;
left = frame->subframes[0].samples;
right = frame->subframes[1].samples;
if(ctx->channels != 2) {
frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
return;
}
frame->ch_mode = estimate_stereo_mode(left, right, n);
/* perform decorrelation and adjust bits-per-sample */
if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
return;
}
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
int32_t tmp;
for(i=0; i<n; i++) {
tmp = left[i];
left[i] = (tmp + right[i]) >> 1;
right[i] = tmp - right[i];
}
frame->subframes[1].obits++;
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
for(i=0; i<n; i++) {
right[i] = left[i] - right[i];
}
frame->subframes[1].obits++;
} else {
for(i=0; i<n; i++) {
left[i] -= right[i];
}
frame->subframes[0].obits++;
}
}
static void write_utf8(PutBitContext *pb, uint32_t val)
{
uint8_t tmp;
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
}
static void output_frame_header(FlacEncodeContext *s)
{
FlacFrame *frame;
int crc;
frame = &s->frame;
put_bits(&s->pb, 16, 0xFFF8);
put_bits(&s->pb, 4, frame->bs_code[0]);
put_bits(&s->pb, 4, s->sr_code[0]);
if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
put_bits(&s->pb, 4, s->ch_code);
} else {
put_bits(&s->pb, 4, frame->ch_mode);
}
put_bits(&s->pb, 3, 4); /* bits-per-sample code */
put_bits(&s->pb, 1, 0);
write_utf8(&s->pb, s->frame_count);
if(frame->bs_code[0] == 6) {
put_bits(&s->pb, 8, frame->bs_code[1]);
} else if(frame->bs_code[0] == 7) {
put_bits(&s->pb, 16, frame->bs_code[1]);
}
if(s->sr_code[0] == 12) {
put_bits(&s->pb, 8, s->sr_code[1]);
} else if(s->sr_code[0] > 12) {
put_bits(&s->pb, 16, s->sr_code[1]);
}
flush_put_bits(&s->pb);
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
s->pb.buf, put_bits_count(&s->pb)>>3);
put_bits(&s->pb, 8, crc);
}
static void output_subframe_constant(FlacEncodeContext *s, int ch)
{
FlacSubframe *sub;
int32_t res;
sub = &s->frame.subframes[ch];
res = sub->residual[0];
put_sbits(&s->pb, sub->obits, res);
}
static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
{
int i;
FlacFrame *frame;
FlacSubframe *sub;
int32_t res;
frame = &s->frame;
sub = &frame->subframes[ch];
for(i=0; i<frame->blocksize; i++) {
res = sub->residual[i];
put_sbits(&s->pb, sub->obits, res);
}
}
static void output_residual(FlacEncodeContext *ctx, int ch)
{
int i, j, p, n, parts;
int k, porder, psize, res_cnt;
FlacFrame *frame;
FlacSubframe *sub;
int32_t *res;
frame = &ctx->frame;
sub = &frame->subframes[ch];
res = sub->residual;
n = frame->blocksize;
/* rice-encoded block */
put_bits(&ctx->pb, 2, 0);
/* partition order */
porder = sub->rc.porder;
psize = n >> porder;
parts = (1 << porder);
put_bits(&ctx->pb, 4, porder);
res_cnt = psize - sub->order;
/* residual */
j = sub->order;
for(p=0; p<parts; p++) {
k = sub->rc.params[p];
put_bits(&ctx->pb, 4, k);
if(p == 1) res_cnt = psize;
for(i=0; i<res_cnt && j<n; i++, j++) {
set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
}
}
}
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
{
int i;
FlacFrame *frame;
FlacSubframe *sub;
frame = &ctx->frame;
sub = &frame->subframes[ch];
/* warm-up samples */
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
}
/* residual */
output_residual(ctx, ch);
}
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
{
int i, cbits;
FlacFrame *frame;
FlacSubframe *sub;
frame = &ctx->frame;
sub = &frame->subframes[ch];
/* warm-up samples */
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
}
/* LPC coefficients */
cbits = ctx->options.lpc_coeff_precision;
put_bits(&ctx->pb, 4, cbits-1);
put_sbits(&ctx->pb, 5, sub->shift);
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, cbits, sub->coefs[i]);
}
/* residual */
output_residual(ctx, ch);
}
static void output_subframes(FlacEncodeContext *s)
{
FlacFrame *frame;
FlacSubframe *sub;
int ch;
frame = &s->frame;
for(ch=0; ch<s->channels; ch++) {
sub = &frame->subframes[ch];
/* subframe header */
put_bits(&s->pb, 1, 0);
put_bits(&s->pb, 6, sub->type_code);
put_bits(&s->pb, 1, 0); /* no wasted bits */
/* subframe */
if(sub->type == FLAC_SUBFRAME_CONSTANT) {
output_subframe_constant(s, ch);
} else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
output_subframe_verbatim(s, ch);
} else if(sub->type == FLAC_SUBFRAME_FIXED) {
output_subframe_fixed(s, ch);
} else if(sub->type == FLAC_SUBFRAME_LPC) {
output_subframe_lpc(s, ch);
}
}
}
static void output_frame_footer(FlacEncodeContext *s)
{
int crc;
flush_put_bits(&s->pb);
crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
s->pb.buf, put_bits_count(&s->pb)>>3));
put_bits(&s->pb, 16, crc);
flush_put_bits(&s->pb);
}
static void update_md5_sum(FlacEncodeContext *s, int16_t *samples)
{
#ifdef WORDS_BIGENDIAN
int i;
for(i = 0; i < s->frame.blocksize*s->channels; i++) {
int16_t smp = le2me_16(samples[i]);
av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
}
#else
av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2);
#endif
}
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
int buf_size, void *data)
{
int ch;
FlacEncodeContext *s;
int16_t *samples = data;
int out_bytes;
int reencoded=0;
s = avctx->priv_data;
if(buf_size < s->max_framesize*2) {
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
return 0;
}
/* when the last block is reached, update the header in extradata */
if (!data) {
s->min_framesize = s->min_encoded_framesize;
s->max_framesize = s->max_encoded_framesize;
av_md5_final(s->md5ctx, s->md5sum);
write_streaminfo(s, avctx->extradata);
return 0;
}
init_frame(s);
copy_samples(s, samples);
channel_decorrelation(s);
for(ch=0; ch<s->channels; ch++) {
encode_residual(s, ch);
}
write_frame:
init_put_bits(&s->pb, frame, buf_size);
output_frame_header(s);
output_subframes(s);
output_frame_footer(s);
out_bytes = put_bits_count(&s->pb) >> 3;
if(out_bytes > s->max_framesize) {
if(reencoded) {
/* still too large. must be an error. */
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
return -1;
}
/* frame too large. use verbatim mode */
for(ch=0; ch<s->channels; ch++) {
encode_residual_v(s, ch);
}
reencoded = 1;
goto write_frame;
}
s->frame_count++;
s->sample_count += avctx->frame_size;
update_md5_sum(s, samples);
if (out_bytes > s->max_encoded_framesize)
s->max_encoded_framesize = out_bytes;
if (out_bytes < s->min_encoded_framesize)
s->min_encoded_framesize = out_bytes;
return out_bytes;
}
static av_cold int flac_encode_close(AVCodecContext *avctx)
{
if (avctx->priv_data) {
FlacEncodeContext *s = avctx->priv_data;
av_freep(&s->md5ctx);
}
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
av_freep(&avctx->coded_frame);
return 0;
}
AVCodec flac_encoder = {
"flac",
CODEC_TYPE_AUDIO,
CODEC_ID_FLAC,
sizeof(FlacEncodeContext),
flac_encode_init,
flac_encode_frame,
flac_encode_close,
NULL,
.capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
};