ffmpeg/libavutil/tx.c
Lynne e8f054b095 lavu/tx: implement 32 bit fixed point FFT and MDCT
Required minimal changes to the code so made sense to implement.
FFT and MDCT tested, the output of both was properly rounded.
Fun fact: the non-power-of-two fixed-point FFT and MDCT are the fastest ever
non-power-of-two fixed-point FFT and MDCT written.
This can replace the power of two integer MDCTs in aac and ac3 if the
MIPS optimizations are ported across.
Unfortunately the ac3 encoder uses a 16-bit fixed point forward transform,
unlike the encoder which uses a 32bit inverse transform, so some modifications
might be required there.

The 3-point FFT is somewhat less accurate than it otherwise could be,
having minor rounding errors with bigger transforms. However, this
could be improved later, and the way its currently written is the way one
would write assembly for it.
Similar rounding errors can also be found throughout the power of two FFTs
as well, though those are more difficult to correct.
Despite this, the integer transforms are more than accurate enough.
2020-02-13 17:10:34 +00:00

161 lines
4.2 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "tx_priv.h"
int ff_tx_type_is_mdct(enum AVTXType type)
{
switch (type) {
case AV_TX_FLOAT_MDCT:
case AV_TX_DOUBLE_MDCT:
case AV_TX_INT32_MDCT:
return 1;
default:
return 0;
}
}
/* Calculates the modular multiplicative inverse, not fast, replace */
static av_always_inline int mulinv(int n, int m)
{
n = n % m;
for (int x = 1; x < m; x++)
if (((n * x) % m) == 1)
return x;
av_assert0(0); /* Never reached */
}
/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s)
{
int *in_map, *out_map;
const int n = s->n;
const int m = s->m;
const int inv = s->inv;
const int len = n*m;
const int m_inv = mulinv(m, n);
const int n_inv = mulinv(n, m);
const int mdct = ff_tx_type_is_mdct(s->type);
if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab))))
return AVERROR(ENOMEM);
in_map = s->pfatab;
out_map = s->pfatab + n*m;
/* Ruritanian map for input, CRT map for output, can be swapped */
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
/* Shifted by 1 to simplify MDCTs */
in_map[j*n + i] = ((i*m + j*n) % len) << mdct;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
/* Change transform direction by reversing all ACs */
if (inv) {
for (int i = 0; i < m; i++) {
int *in = &in_map[i*n + 1]; /* Skip the DC */
for (int j = 0; j < ((n - 1) >> 1); j++)
FFSWAP(int, in[j], in[n - j - 2]);
}
}
/* Our 15-point transform is also a compound one, so embed its input map */
if (n == 15) {
for (int k = 0; k < m; k++) {
int tmp[15];
memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp));
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 3; j++)
in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15];
}
}
}
return 0;
}
int ff_tx_gen_ptwo_revtab(AVTXContext *s)
{
const int m = s->m, inv = s->inv;
if (!(s->revtab = av_malloc(m*sizeof(*s->revtab))))
return AVERROR(ENOMEM);
/* Default */
for (int i = 0; i < m; i++) {
int k = -split_radix_permutation(i, m, inv) & (m - 1);
s->revtab[k] = i;
}
return 0;
}
av_cold void av_tx_uninit(AVTXContext **ctx)
{
if (!(*ctx))
return;
av_free((*ctx)->pfatab);
av_free((*ctx)->exptab);
av_free((*ctx)->revtab);
av_free((*ctx)->tmp);
av_freep(ctx);
}
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
int inv, int len, const void *scale, uint64_t flags)
{
int err;
AVTXContext *s = av_mallocz(sizeof(*s));
if (!s)
return AVERROR(ENOMEM);
switch (type) {
case AV_TX_FLOAT_FFT:
case AV_TX_FLOAT_MDCT:
if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
case AV_TX_DOUBLE_FFT:
case AV_TX_DOUBLE_MDCT:
if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
case AV_TX_INT32_FFT:
case AV_TX_INT32_MDCT:
if ((err = ff_tx_init_mdct_fft_int32(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
default:
err = AVERROR(EINVAL);
goto fail;
}
*ctx = s;
return 0;
fail:
av_tx_uninit(&s);
*tx = NULL;
return err;
}