ffmpeg/libavcodec/aacenc_tns.c

195 lines
7.3 KiB
C

/*
* AAC encoder TNS
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder temporal noise shaping
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aacenc.h"
#include "aacenc_tns.h"
#include "aactab.h"
#include "aacenc_utils.h"
#include "aacenc_quantization.h"
/**
* Encode TNS data.
* Coefficient compression saves a single bit per coefficient.
*/
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
{
uint8_t u_coef;
const uint8_t coef_res = TNS_Q_BITS == 4;
int i, w, filt, coef_len, coef_compress = 0;
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
TemporalNoiseShaping *tns = &sce->tns;
if (!sce->tns.present)
return;
for (i = 0; i < sce->ics.num_windows; i++) {
put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]);
if (tns->n_filt[i]) {
put_bits(&s->pb, 1, coef_res);
for (filt = 0; filt < tns->n_filt[i]; filt++) {
put_bits(&s->pb, 6 - 2 * is8, tns->length[i][filt]);
put_bits(&s->pb, 5 - 2 * is8, tns->order[i][filt]);
if (tns->order[i][filt]) {
put_bits(&s->pb, 1, !!tns->direction[i][filt]);
put_bits(&s->pb, 1, !!coef_compress);
coef_len = coef_res + 3 - coef_compress;
for (w = 0; w < tns->order[i][filt]; w++) {
u_coef = (tns->coef_idx[i][filt][w])&(~(~0<<coef_len));
put_bits(&s->pb, coef_len, u_coef);
}
}
}
}
}
}
static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order)
{
int i;
uint8_t u_coef;
const float *quant_arr = tns_tmp2_map[TNS_Q_BITS == 4];
const double iqfac_p = ((1 << (TNS_Q_BITS-1)) - 0.5)/(M_PI/2.0);
const double iqfac_m = ((1 << (TNS_Q_BITS-1)) + 0.5)/(M_PI/2.0);
for (i = 0; i < order; i++) {
idx[i] = ceilf(asin(coef[i])*((coef[i] >= 0) ? iqfac_p : iqfac_m));
u_coef = (idx[i])&(~(~0<<TNS_Q_BITS));
lpc[i] = quant_arr[u_coef];
}
}
/* Apply TNS filter */
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
{
TemporalNoiseShaping *tns = &sce->tns;
IndividualChannelStream *ics = &sce->ics;
int w, filt, m, i, top, order, bottom, start, end, size, inc;
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
float lpc[TNS_MAX_ORDER];
for (w = 0; w < ics->num_windows; w++) {
bottom = ics->num_swb;
for (filt = 0; filt < tns->n_filt[w]; filt++) {
top = bottom;
bottom = FFMAX(0, top - tns->length[w][filt]);
order = tns->order[w][filt];
if (order == 0)
continue;
// tns_decode_coef
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
start = ics->swb_offset[FFMIN(bottom, mmm)];
end = ics->swb_offset[FFMIN( top, mmm)];
if ((size = end - start) <= 0)
continue;
if (tns->direction[w][filt]) {
inc = -1;
start = end - 1;
} else {
inc = 1;
}
start += w * 128;
// ar filter
for (m = 0; m < size; m++, start += inc)
for (i = 1; i <= FFMIN(m, order); i++)
sce->coeffs[start] += lpc[i-1]*sce->pcoeffs[start - i*inc];
}
}
}
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
{
TemporalNoiseShaping *tns = &sce->tns;
int w, w2, g, count = 0;
const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb);
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
const int order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm);
int sfb_end = av_clip(sce->ics.num_swb, 0, mmm);
for (w = 0; w < sce->ics.num_windows; w++) {
float e_ratio = 0.0f, threshold = 0.0f, spread = 0.0f, en[2] = {0.0, 0.0f};
double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0};
int coef_start = w*sce->ics.num_swb + sce->ics.swb_offset[sfb_start];
int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start];
for (g = 0; g < sce->ics.num_swb; g++) {
if (w*16+g < sfb_start || w*16+g > sfb_end)
continue;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if ((w+w2)*16+g > sfb_start + ((sfb_end - sfb_start)/2))
en[1] += band->energy;
else
en[0] += band->energy;
threshold += band->threshold;
spread += band->spread;
}
}
if (coef_len <= 0 || (sfb_end - sfb_start) <= 0)
continue;
else
e_ratio = en[0]/en[1];
/* LPC */
gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[coef_start],
coef_len, order, coefs);
if (gain > TNS_GAIN_THRESHOLD_LOW && gain < TNS_GAIN_THRESHOLD_HIGH &&
(en[0]+en[1]) > TNS_GAIN_THRESHOLD_LOW*threshold &&
spread < TNS_SPREAD_THRESHOLD && order) {
if (is8 || order < 2 || (e_ratio > TNS_E_RATIO_LOW && e_ratio < TNS_E_RATIO_HIGH)) {
tns->n_filt[w] = 1;
for (g = 0; g < tns->n_filt[w]; g++) {
tns->length[w][g] = sfb_end - sfb_start;
tns->direction[w][g] = en[0] < en[1];
tns->order[w][g] = order;
quantize_coefs(coefs, tns->coef_idx[w][g], tns->coef[w][g],
order);
}
} else { /* 2 filters due to energy disbalance */
tns->n_filt[w] = 2;
for (g = 0; g < tns->n_filt[w]; g++) {
tns->direction[w][g] = en[g] < en[!g];
tns->order[w][g] = !g ? order/2 : order - tns->order[w][g-1];
tns->length[w][g] = !g ? (sfb_end - sfb_start)/2 : \
(sfb_end - sfb_start) - tns->length[w][g-1];
quantize_coefs(&coefs[!g ? 0 : order - tns->order[w][g-1]],
tns->coef_idx[w][g], tns->coef[w][g],
tns->order[w][g]);
}
}
count++;
}
}
sce->tns.present = !!count;
}