ffmpeg/libavfilter/internal.h
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

410 lines
14 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_INTERNAL_H
#define AVFILTER_INTERNAL_H
/**
* @file
* internal API functions
*/
#include "libavutil/internal.h"
#include "avfilter.h"
#include "formats.h"
#include "framequeue.h"
#include "version.h"
#include "video.h"
typedef struct AVFilterCommand {
double time; ///< time expressed in seconds
char *command; ///< command
char *arg; ///< optional argument for the command
int flags;
struct AVFilterCommand *next;
} AVFilterCommand;
/**
* Update the position of a link in the age heap.
*/
void ff_avfilter_graph_update_heap(AVFilterGraph *graph, AVFilterLink *link);
/**
* A filter pad used for either input or output.
*/
struct AVFilterPad {
/**
* Pad name. The name is unique among inputs and among outputs, but an
* input may have the same name as an output. This may be NULL if this
* pad has no need to ever be referenced by name.
*/
const char *name;
/**
* AVFilterPad type.
*/
enum AVMediaType type;
/**
* The filter expects writable frames from its input link,
* duplicating data buffers if needed.
*
* input pads only.
*/
#define AVFILTERPAD_FLAG_NEEDS_WRITABLE (1 << 0)
/**
* The pad's name is allocated and should be freed generically.
*/
#define AVFILTERPAD_FLAG_FREE_NAME (1 << 1)
/**
* A combination of AVFILTERPAD_FLAG_* flags.
*/
int flags;
/**
* Callback functions to get a video/audio buffers. If NULL,
* the filter system will use ff_default_get_video_buffer() for video
* and ff_default_get_audio_buffer() for audio.
*
* The state of the union is determined by type.
*
* Input pads only.
*/
union {
AVFrame *(*video)(AVFilterLink *link, int w, int h);
AVFrame *(*audio)(AVFilterLink *link, int nb_samples);
} get_buffer;
/**
* Filtering callback. This is where a filter receives a frame with
* audio/video data and should do its processing.
*
* Input pads only.
*
* @return >= 0 on success, a negative AVERROR on error. This function
* must ensure that frame is properly unreferenced on error if it
* hasn't been passed on to another filter.
*/
int (*filter_frame)(AVFilterLink *link, AVFrame *frame);
/**
* Frame request callback. A call to this should result in some progress
* towards producing output over the given link. This should return zero
* on success, and another value on error.
*
* Output pads only.
*/
int (*request_frame)(AVFilterLink *link);
/**
* Link configuration callback.
*
* For output pads, this should set the link properties such as
* width/height. This should NOT set the format property - that is
* negotiated between filters by the filter system using the
* query_formats() callback before this function is called.
*
* For input pads, this should check the properties of the link, and update
* the filter's internal state as necessary.
*
* For both input and output filters, this should return zero on success,
* and another value on error.
*/
int (*config_props)(AVFilterLink *link);
};
struct AVFilterGraphInternal {
void *thread;
avfilter_execute_func *thread_execute;
FFFrameQueueGlobal frame_queues;
};
struct AVFilterInternal {
avfilter_execute_func *execute;
};
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func,
void *arg, int *ret, int nb_jobs)
{
return ctx->internal->execute(ctx, func, arg, ret, nb_jobs);
}
enum FilterFormatsState {
/**
* The default value meaning that this filter supports all formats
* and (for audio) sample rates and channel layouts/counts as long
* as these properties agree for all inputs and outputs.
* This state is only allowed in case all inputs and outputs actually
* have the same type.
* The union is unused in this state.
*
* This value must always be zero (for default static initialization).
*/
FF_FILTER_FORMATS_PASSTHROUGH = 0,
FF_FILTER_FORMATS_QUERY_FUNC, ///< formats.query active.
FF_FILTER_FORMATS_PIXFMT_LIST, ///< formats.pixels_list active.
FF_FILTER_FORMATS_SAMPLEFMTS_LIST, ///< formats.samples_list active.
FF_FILTER_FORMATS_SINGLE_PIXFMT, ///< formats.pix_fmt active
FF_FILTER_FORMATS_SINGLE_SAMPLEFMT, ///< formats.sample_fmt active.
};
#define FILTER_QUERY_FUNC(func) \
.formats.query_func = func, \
.formats_state = FF_FILTER_FORMATS_QUERY_FUNC
#define FILTER_PIXFMTS_ARRAY(array) \
.formats.pixels_list = array, \
.formats_state = FF_FILTER_FORMATS_PIXFMT_LIST
#define FILTER_SAMPLEFMTS_ARRAY(array) \
.formats.samples_list = array, \
.formats_state = FF_FILTER_FORMATS_SAMPLEFMTS_LIST
#define FILTER_PIXFMTS(...) \
FILTER_PIXFMTS_ARRAY(((const enum AVPixelFormat []) { __VA_ARGS__, AV_PIX_FMT_NONE }))
#define FILTER_SAMPLEFMTS(...) \
FILTER_SAMPLEFMTS_ARRAY(((const enum AVSampleFormat[]) { __VA_ARGS__, AV_SAMPLE_FMT_NONE }))
#define FILTER_SINGLE_PIXFMT(pix_fmt_) \
.formats.pix_fmt = pix_fmt_, \
.formats_state = FF_FILTER_FORMATS_SINGLE_PIXFMT
#define FILTER_SINGLE_SAMPLEFMT(sample_fmt_) \
.formats.sample_fmt = sample_fmt_, \
.formats_state = FF_FILTER_FORMATS_SINGLE_SAMPLEFMT
#define FILTER_INOUTPADS(inout, array) \
.inout = array, \
.nb_ ## inout = FF_ARRAY_ELEMS(array)
#define FILTER_INPUTS(array) FILTER_INOUTPADS(inputs, (array))
#define FILTER_OUTPUTS(array) FILTER_INOUTPADS(outputs, (array))
/**
* Tell if an integer is contained in the provided -1-terminated list of integers.
* This is useful for determining (for instance) if an AVPixelFormat is in an
* array of supported formats.
*
* @param fmt provided format
* @param fmts -1-terminated list of formats
* @return 1 if present, 0 if absent
*/
int ff_fmt_is_in(int fmt, const int *fmts);
/* Functions to parse audio format arguments */
/**
* Parse a pixel format.
*
* @param ret pixel format pointer to where the value should be written
* @param arg string to parse
* @param log_ctx log context
* @return >= 0 in case of success, a negative AVERROR code on error
*/
av_warn_unused_result
int ff_parse_pixel_format(enum AVPixelFormat *ret, const char *arg, void *log_ctx);
/**
* Parse a sample rate.
*
* @param ret unsigned integer pointer to where the value should be written
* @param arg string to parse
* @param log_ctx log context
* @return >= 0 in case of success, a negative AVERROR code on error
*/
av_warn_unused_result
int ff_parse_sample_rate(int *ret, const char *arg, void *log_ctx);
/**
* Parse a channel layout or a corresponding integer representation.
*
* @param ret 64bit integer pointer to where the value should be written.
* @param nret integer pointer to the number of channels;
* if not NULL, then unknown channel layouts are accepted
* @param arg string to parse
* @param log_ctx log context
* @return >= 0 in case of success, a negative AVERROR code on error
*/
av_warn_unused_result
int ff_parse_channel_layout(int64_t *ret, int *nret, const char *arg,
void *log_ctx);
void ff_update_link_current_pts(AVFilterLink *link, int64_t pts);
/**
* Set the status field of a link from the source filter.
* The pts should reflect the timestamp of the status change,
* in link time base and relative to the frames timeline.
* In particular, for AVERROR_EOF, it should reflect the
* end time of the last frame.
*/
void ff_avfilter_link_set_in_status(AVFilterLink *link, int status, int64_t pts);
/**
* Set the status field of a link from the destination filter.
* The pts should probably be left unset (AV_NOPTS_VALUE).
*/
void ff_avfilter_link_set_out_status(AVFilterLink *link, int status, int64_t pts);
void ff_command_queue_pop(AVFilterContext *filter);
#define D2TS(d) (isnan(d) ? AV_NOPTS_VALUE : (int64_t)(d))
#define TS2D(ts) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts))
#define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts) * av_q2d(tb))
/* misc trace functions */
#define FF_TPRINTF_START(ctx, func) ff_tlog(NULL, "%-16s: ", #func)
char *ff_get_ref_perms_string(char *buf, size_t buf_size, int perms);
void ff_tlog_link(void *ctx, AVFilterLink *link, int end);
/**
* Append a new input/output pad to the filter's list of such pads.
*
* The *_free_name versions will set the AVFILTERPAD_FLAG_FREE_NAME flag
* ensuring that the name will be freed generically (even on insertion error).
*/
int ff_append_inpad (AVFilterContext *f, AVFilterPad *p);
int ff_append_outpad(AVFilterContext *f, AVFilterPad *p);
int ff_append_inpad_free_name (AVFilterContext *f, AVFilterPad *p);
int ff_append_outpad_free_name(AVFilterContext *f, AVFilterPad *p);
/**
* Request an input frame from the filter at the other end of the link.
*
* This function must not be used by filters using the activate callback,
* use ff_link_set_frame_wanted() instead.
*
* The input filter may pass the request on to its inputs, fulfill the
* request from an internal buffer or any other means specific to its function.
*
* When the end of a stream is reached AVERROR_EOF is returned and no further
* frames are returned after that.
*
* When a filter is unable to output a frame for example due to its sources
* being unable to do so or because it depends on external means pushing data
* into it then AVERROR(EAGAIN) is returned.
* It is important that a AVERROR(EAGAIN) return is returned all the way to the
* caller (generally eventually a user application) as this step may (but does
* not have to be) necessary to provide the input with the next frame.
*
* If a request is successful then some progress has been made towards
* providing a frame on the link (through ff_filter_frame()). A filter that
* needs several frames to produce one is allowed to return success if one
* more frame has been processed but no output has been produced yet. A
* filter is also allowed to simply forward a success return value.
*
* @param link the input link
* @return zero on success
* AVERROR_EOF on end of file
* AVERROR(EAGAIN) if the previous filter cannot output a frame
* currently and can neither guarantee that EOF has been reached.
*/
int ff_request_frame(AVFilterLink *link);
#define AVFILTER_DEFINE_CLASS_EXT(name, desc, options) \
static const AVClass name##_class = { \
.class_name = desc, \
.item_name = av_default_item_name, \
.option = options, \
.version = LIBAVUTIL_VERSION_INT, \
.category = AV_CLASS_CATEGORY_FILTER, \
}
#define AVFILTER_DEFINE_CLASS(fname) \
AVFILTER_DEFINE_CLASS_EXT(fname, #fname, fname##_options)
/**
* Find the index of a link.
*
* I.e. find i such that link == ctx->(in|out)puts[i]
*/
#define FF_INLINK_IDX(link) ((int)((link)->dstpad - (link)->dst->input_pads))
#define FF_OUTLINK_IDX(link) ((int)((link)->srcpad - (link)->src->output_pads))
/**
* Send a frame of data to the next filter.
*
* @param link the output link over which the data is being sent
* @param frame a reference to the buffer of data being sent. The
* receiving filter will free this reference when it no longer
* needs it or pass it on to the next filter.
*
* @return >= 0 on success, a negative AVERROR on error. The receiving filter
* is responsible for unreferencing frame in case of error.
*/
int ff_filter_frame(AVFilterLink *link, AVFrame *frame);
/**
* Allocate a new filter context and return it.
*
* @param filter what filter to create an instance of
* @param inst_name name to give to the new filter context
*
* @return newly created filter context or NULL on failure
*/
AVFilterContext *ff_filter_alloc(const AVFilter *filter, const char *inst_name);
int ff_filter_activate(AVFilterContext *filter);
/**
* Remove a filter from a graph;
*/
void ff_filter_graph_remove_filter(AVFilterGraph *graph, AVFilterContext *filter);
/**
* The filter is aware of hardware frames, and any hardware frame context
* should not be automatically propagated through it.
*/
#define FF_FILTER_FLAG_HWFRAME_AWARE (1 << 0)
/**
* Run one round of processing on a filter graph.
*/
int ff_filter_graph_run_once(AVFilterGraph *graph);
/**
* Get number of threads for current filter instance.
* This number is always same or less than graph->nb_threads.
*/
int ff_filter_get_nb_threads(AVFilterContext *ctx) av_pure;
/**
* Generic processing of user supplied commands that are set
* in the same way as the filter options.
* NOTE: 'enable' option is handled separately, and not by
* this function.
*/
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd,
const char *arg, char *res, int res_len, int flags);
/**
* Perform any additional setup required for hardware frames.
*
* link->hw_frames_ctx must be set before calling this function.
* Inside link->hw_frames_ctx, the fields format, sw_format, width and
* height must be set. If dynamically allocated pools are not supported,
* then initial_pool_size must also be set, to the minimum hardware frame
* pool size necessary for the filter to work (taking into account any
* frames which need to stored for use in operations as appropriate). If
* default_pool_size is nonzero, then it will be used as the pool size if
* no other modification takes place (this can be used to preserve
* compatibility).
*/
int ff_filter_init_hw_frames(AVFilterContext *avctx, AVFilterLink *link,
int default_pool_size);
#endif /* AVFILTER_INTERNAL_H */