ffmpeg/libavcodec/aacenc_ltp.c
Rostislav Pehlivanov 7303962f14 aacenc_ltp: adjust and speed up autocorrelation calculations
There were some errors in the calculation as well as an entire
unnecessary loop to find the gain coefficient. Merge the
two loops.
Thanks to @ubitux for the suggestions and testing.
2015-10-17 22:53:11 +01:00

226 lines
8.0 KiB
C

/*
* AAC encoder long term prediction extension
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder long term prediction extension
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aacenc_ltp.h"
#include "aacenc_quantization.h"
#include "aacenc_utils.h"
/**
* Encode LTP data.
*/
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
int common_window)
{
int i;
IndividualChannelStream *ics = &sce->ics;
if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
return;
if (common_window)
put_bits(&s->pb, 1, 0);
put_bits(&s->pb, 1, ics->ltp.present);
if (!ics->ltp.present)
return;
put_bits(&s->pb, 11, ics->ltp.lag);
put_bits(&s->pb, 3, ics->ltp.coef_idx);
for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
put_bits(&s->pb, 1, ics->ltp.used[i]);
}
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
{
int i, ch, tag, chans, cur_channel, start_ch = 0;
ChannelElement *cpe;
SingleChannelElement *sce;
for (i = 0; i < s->chan_map[0]; i++) {
cpe = &s->cpe[i];
tag = s->chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
cur_channel = start_ch + ch;
/* New sample + overlap */
memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
sce->ics.ltp.lag = 0;
}
start_ch += chans;
}
}
/**
* Process LTP parameters
* @see Patent WO2006070265A1
*/
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
{
int i, j, lag, samples_num;
float corr, max_ratio, max_corr;
float *pred_signal = &sce->ltp_state[0];
const float *samples = &s->planar_samples[s->cur_channel][1024];
if (s->profile != FF_PROFILE_AAC_LTP)
return;
/* Calculate lag */
max_corr = 0.0f;
for (i = 0; i < 2048; i++) {
float s0 = 0.0f, s1 = 0.0f;
const int start = FFMAX(0, i - 1024);
for (j = start; j < 2048; j++) {
const int idx = j - i + 1024;
s0 += samples[j]*pred_signal[idx];
s1 += pred_signal[idx]*pred_signal[idx];
}
corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
if (corr > max_corr) {
max_corr = corr;
lag = i;
max_ratio = corr/(2048-start);
}
}
if (lag < 1)
return;
sce->ics.ltp.lag = lag = av_clip_uintp2(lag, 11);
sce->ics.ltp.coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
sce->ics.ltp.coef = ltp_coef[sce->ics.ltp.coef_idx];
/* Predict the new samples */
samples_num = 1024 + (lag < 1024 ? lag : 1024);
for (i = 1024; i < samples_num + 1024; i++)
pred_signal[i] = sce->ics.ltp.coef*pred_signal[i-lag];
memset(&pred_signal[samples_num], 0, (2048 - samples_num)*sizeof(float));
}
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
{
int sfb, count = 0;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window ||
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
if (sum != 2) {
sce0->ics.ltp.used[sfb] = 0;
} else if (sum == 2) {
count++;
}
}
sce0->ics.ltp.present = !!count;
sce0->ics.predictor_present = !!count;
}
/**
* Mark LTP sfb's
*/
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
int common_window)
{
int w, g, w2, i, start = 0, count = 0;
int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
float *PCD34 = &s->scoefs[128*2];
const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
if (sce->ics.ltp.lag) {
memset(&sce->lcoeffs[0], 0.0f, 3072*sizeof(sce->lcoeffs[0]));
memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
}
return;
}
if (!sce->ics.ltp.lag)
return;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce->ics.num_swb; g++) {
int bits1 = 0, bits2 = 0;
float dist1 = 0.0f, dist2 = 0.0f;
if (w*16+g > max_ltp) {
start += sce->ics.swb_sizes[g];
continue;
}
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int bits_tmp1, bits_tmp2;
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
abs_pow34_v(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]);
abs_pow34_v(PCD34, PCD, sce->ics.swb_sizes[g]);
dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
sce->sf_idx[(w+w2)*16+g],
sce->band_type[(w+w2)*16+g],
s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
bits1 += bits_tmp1;
bits2 += bits_tmp2;
}
if (dist2 < dist1 && bits2 < bits1) {
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
sce->ics.ltp.used[w*16+g] = 1;
saved_bits += bits1 - bits2;
count++;
}
start += sce->ics.swb_sizes[g];
}
}
sce->ics.ltp.present = !!count && (saved_bits >= 0);
sce->ics.predictor_present = !!sce->ics.ltp.present;
/* Reset any marked sfbs */
if (!sce->ics.ltp.present && !!count) {
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->ics.ltp.used[w*16+g]) {
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
}
}
}
start += sce->ics.swb_sizes[g];
}
}
}
}