mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-26 01:02:33 +00:00
f4e0664fd1
PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. Official website: https://pytorch.org/. We call the C++ library of PyTorch as LibTorch, the same below. To build FFmpeg with LibTorch, please take following steps as reference: 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/, please select C++/Java for language, and other options as your need. Please download cxx11 ABI version: (libtorch-cxx11-abi-shared-with-deps-*.zip). 2. unzip the file to your own dir, with command unzip libtorch-shared-with-deps-latest.zip -d your_dir 3. export libtorch_root/libtorch/include and libtorch_root/libtorch/include/torch/csrc/api/include to $PATH export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH 4. config FFmpeg with ../configure --enable-libtorch \ --extra-cflag=-I/libtorch_root/libtorch/include \ --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \ --extra-ldflags=-L/libtorch_root/libtorch/lib/ 5. make To run FFmpeg DNN inference with LibTorch backend: ./ffmpeg -i input.jpg -vf \ dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg The LibTorch_model.pt can be generated by Python with torch.jit.script() api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is pytorch official guide about how to convert and load torchscript model. Please note, torch.jit.trace() is not recommanded, since it does not support ambiguous input size. Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com> |
||
---|---|---|
.. | ||
dnn_backend_common.c | ||
dnn_backend_common.h | ||
dnn_backend_openvino.c | ||
dnn_backend_tf.c | ||
dnn_backend_torch.cpp | ||
dnn_interface.c | ||
dnn_io_proc.c | ||
dnn_io_proc.h | ||
Makefile | ||
queue.c | ||
queue.h | ||
safe_queue.c | ||
safe_queue.h |