ffmpeg/libavcodec/ppc/mpegvideo_altivec.c
Martin Storsjö efd29844eb mpegvideo: Add ff_ prefix to nonstatic functions
Signed-off-by: Martin Storsjö <martin@martin.st>
2012-02-15 22:07:23 +02:00

582 lines
24 KiB
C

/*
* Copyright (c) 2002 Dieter Shirley
*
* dct_unquantize_h263_altivec:
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include "libavutil/cpu.h"
#include "libavcodec/dsputil.h"
#include "libavcodec/mpegvideo.h"
#include "util_altivec.h"
#include "types_altivec.h"
#include "dsputil_altivec.h"
// Swaps two variables (used for altivec registers)
#define SWAP(a,b) \
do { \
__typeof__(a) swap_temp=a; \
a=b; \
b=swap_temp; \
} while (0)
// transposes a matrix consisting of four vectors with four elements each
#define TRANSPOSE4(a,b,c,d) \
do { \
__typeof__(a) _trans_ach = vec_mergeh(a, c); \
__typeof__(a) _trans_acl = vec_mergel(a, c); \
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \
__typeof__(a) _trans_bdl = vec_mergel(b, d); \
\
a = vec_mergeh(_trans_ach, _trans_bdh); \
b = vec_mergel(_trans_ach, _trans_bdh); \
c = vec_mergeh(_trans_acl, _trans_bdl); \
d = vec_mergel(_trans_acl, _trans_bdl); \
} while (0)
// Loads a four-byte value (int or float) from the target address
// into every element in the target vector. Only works if the
// target address is four-byte aligned (which should be always).
#define LOAD4(vec, address) \
{ \
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
vec = vec_ld(0, _load_addr); \
vec = vec_perm(vec, vec, _perm_vec); \
vec = vec_splat(vec, 0); \
}
#define FOUROF(a) {a,a,a,a}
static int dct_quantize_altivec(MpegEncContext* s,
DCTELEM* data, int n,
int qscale, int* overflow)
{
int lastNonZero;
vector float row0, row1, row2, row3, row4, row5, row6, row7;
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
const vector float zero = (const vector float)FOUROF(0.);
// used after quantize step
int oldBaseValue = 0;
// Load the data into the row/alt vectors
{
vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
data0 = vec_ld(0, data);
data1 = vec_ld(16, data);
data2 = vec_ld(32, data);
data3 = vec_ld(48, data);
data4 = vec_ld(64, data);
data5 = vec_ld(80, data);
data6 = vec_ld(96, data);
data7 = vec_ld(112, data);
// Transpose the data before we start
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
// load the data into floating point vectors. We load
// the high half of each row into the main row vectors
// and the low half into the alt vectors.
row0 = vec_ctf(vec_unpackh(data0), 0);
alt0 = vec_ctf(vec_unpackl(data0), 0);
row1 = vec_ctf(vec_unpackh(data1), 0);
alt1 = vec_ctf(vec_unpackl(data1), 0);
row2 = vec_ctf(vec_unpackh(data2), 0);
alt2 = vec_ctf(vec_unpackl(data2), 0);
row3 = vec_ctf(vec_unpackh(data3), 0);
alt3 = vec_ctf(vec_unpackl(data3), 0);
row4 = vec_ctf(vec_unpackh(data4), 0);
alt4 = vec_ctf(vec_unpackl(data4), 0);
row5 = vec_ctf(vec_unpackh(data5), 0);
alt5 = vec_ctf(vec_unpackl(data5), 0);
row6 = vec_ctf(vec_unpackh(data6), 0);
alt6 = vec_ctf(vec_unpackl(data6), 0);
row7 = vec_ctf(vec_unpackh(data7), 0);
alt7 = vec_ctf(vec_unpackl(data7), 0);
}
// The following block could exist as a separate an altivec dct
// function. However, if we put it inline, the DCT data can remain
// in the vector local variables, as floats, which we'll use during the
// quantize step...
{
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
int whichPass, whichHalf;
for(whichPass = 1; whichPass<=2; whichPass++) {
for(whichHalf = 1; whichHalf<=2; whichHalf++) {
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
vector float tmp10, tmp11, tmp12, tmp13;
vector float z1, z2, z3, z4, z5;
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
row0 = vec_add(tmp10, tmp11);
// dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
row4 = vec_sub(tmp10, tmp11);
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
// CONST_BITS-PASS1_BITS);
row2 = vec_madd(tmp13, vec_0_765366865, z1);
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
// CONST_BITS-PASS1_BITS);
row6 = vec_madd(tmp12, vec_1_847759065, z1);
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
// z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = vec_madd(z3, vec_1_961570560, z5);
// z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z4 = vec_madd(z4, vec_0_390180644, z5);
// The following adds are rolled into the multiplies above
// z3 = vec_add(z3, z5); // z3 += z5;
// z4 = vec_add(z4, z5); // z4 += z5;
// z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
// Wow! It's actually more efficient to roll this multiply
// into the adds below, even thought the multiply gets done twice!
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
// z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
// Same with this one...
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
// Swap the row values with the alts. If this is the first half,
// this sets up the low values to be acted on in the second half.
// If this is the second half, it puts the high values back in
// the row values where they are expected to be when we're done.
SWAP(row0, alt0);
SWAP(row1, alt1);
SWAP(row2, alt2);
SWAP(row3, alt3);
SWAP(row4, alt4);
SWAP(row5, alt5);
SWAP(row6, alt6);
SWAP(row7, alt7);
}
if (whichPass == 1) {
// transpose the data for the second pass
// First, block transpose the upper right with lower left.
SWAP(row4, alt0);
SWAP(row5, alt1);
SWAP(row6, alt2);
SWAP(row7, alt3);
// Now, transpose each block of four
TRANSPOSE4(row0, row1, row2, row3);
TRANSPOSE4(row4, row5, row6, row7);
TRANSPOSE4(alt0, alt1, alt2, alt3);
TRANSPOSE4(alt4, alt5, alt6, alt7);
}
}
}
// perform the quantize step, using the floating point data
// still in the row/alt registers
{
const int* biasAddr;
const vector signed int* qmat;
vector float bias, negBias;
if (s->mb_intra) {
vector signed int baseVector;
// We must cache element 0 in the intra case
// (it needs special handling).
baseVector = vec_cts(vec_splat(row0, 0), 0);
vec_ste(baseVector, 0, &oldBaseValue);
qmat = (vector signed int*)s->q_intra_matrix[qscale];
biasAddr = &s->intra_quant_bias;
} else {
qmat = (vector signed int*)s->q_inter_matrix[qscale];
biasAddr = &s->inter_quant_bias;
}
// Load the bias vector (We add 0.5 to the bias so that we're
// rounding when we convert to int, instead of flooring.)
{
vector signed int biasInt;
const vector float negOneFloat = (vector float)FOUROF(-1.0f);
LOAD4(biasInt, biasAddr);
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
negBias = vec_madd(bias, negOneFloat, zero);
}
{
vector float q0, q1, q2, q3, q4, q5, q6, q7;
q0 = vec_ctf(qmat[0], QMAT_SHIFT);
q1 = vec_ctf(qmat[2], QMAT_SHIFT);
q2 = vec_ctf(qmat[4], QMAT_SHIFT);
q3 = vec_ctf(qmat[6], QMAT_SHIFT);
q4 = vec_ctf(qmat[8], QMAT_SHIFT);
q5 = vec_ctf(qmat[10], QMAT_SHIFT);
q6 = vec_ctf(qmat[12], QMAT_SHIFT);
q7 = vec_ctf(qmat[14], QMAT_SHIFT);
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
vec_cmpgt(row0, zero));
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
vec_cmpgt(row1, zero));
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
vec_cmpgt(row2, zero));
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
vec_cmpgt(row3, zero));
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
vec_cmpgt(row4, zero));
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
vec_cmpgt(row5, zero));
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
vec_cmpgt(row6, zero));
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
vec_cmpgt(row7, zero));
q0 = vec_ctf(qmat[1], QMAT_SHIFT);
q1 = vec_ctf(qmat[3], QMAT_SHIFT);
q2 = vec_ctf(qmat[5], QMAT_SHIFT);
q3 = vec_ctf(qmat[7], QMAT_SHIFT);
q4 = vec_ctf(qmat[9], QMAT_SHIFT);
q5 = vec_ctf(qmat[11], QMAT_SHIFT);
q6 = vec_ctf(qmat[13], QMAT_SHIFT);
q7 = vec_ctf(qmat[15], QMAT_SHIFT);
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
vec_cmpgt(alt0, zero));
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
vec_cmpgt(alt1, zero));
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
vec_cmpgt(alt2, zero));
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
vec_cmpgt(alt3, zero));
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
vec_cmpgt(alt4, zero));
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
vec_cmpgt(alt5, zero));
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
vec_cmpgt(alt6, zero));
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
vec_cmpgt(alt7, zero));
}
}
// Store the data back into the original block
{
vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
{
// Clamp for overflow
vector signed int max_q_int, min_q_int;
vector signed short max_q, min_q;
LOAD4(max_q_int, &s->max_qcoeff);
LOAD4(min_q_int, &s->min_qcoeff);
max_q = vec_pack(max_q_int, max_q_int);
min_q = vec_pack(min_q_int, min_q_int);
data0 = vec_max(vec_min(data0, max_q), min_q);
data1 = vec_max(vec_min(data1, max_q), min_q);
data2 = vec_max(vec_min(data2, max_q), min_q);
data4 = vec_max(vec_min(data4, max_q), min_q);
data5 = vec_max(vec_min(data5, max_q), min_q);
data6 = vec_max(vec_min(data6, max_q), min_q);
data7 = vec_max(vec_min(data7, max_q), min_q);
}
{
vector bool char zero_01, zero_23, zero_45, zero_67;
vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
vector signed char negOne = vec_splat_s8(-1);
vector signed char* scanPtr =
(vector signed char*)(s->intra_scantable.inverse);
signed char lastNonZeroChar;
// Determine the largest non-zero index.
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
vec_cmpeq(data1, (vector signed short)zero));
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
vec_cmpeq(data3, (vector signed short)zero));
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
vec_cmpeq(data5, (vector signed short)zero));
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
vec_cmpeq(data7, (vector signed short)zero));
// 64 biggest values
scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
// 32 largest values
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
// 16 largest values
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
// 8 largest values
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
vec_mergel(scanIndexes_01, negOne));
// 4 largest values
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
vec_mergel(scanIndexes_01, negOne));
// 2 largest values
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
vec_mergel(scanIndexes_01, negOne));
// largest value
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
vec_mergel(scanIndexes_01, negOne));
scanIndexes_01 = vec_splat(scanIndexes_01, 0);
vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
lastNonZero = lastNonZeroChar;
// While the data is still in vectors we check for the transpose IDCT permute
// and handle it using the vector unit if we can. This is the permute used
// by the altivec idct, so it is common when using the altivec dct.
if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
}
vec_st(data0, 0, data);
vec_st(data1, 16, data);
vec_st(data2, 32, data);
vec_st(data3, 48, data);
vec_st(data4, 64, data);
vec_st(data5, 80, data);
vec_st(data6, 96, data);
vec_st(data7, 112, data);
}
}
// special handling of block[0]
if (s->mb_intra) {
if (!s->h263_aic) {
if (n < 4)
oldBaseValue /= s->y_dc_scale;
else
oldBaseValue /= s->c_dc_scale;
}
// Divide by 8, rounding the result
data[0] = (oldBaseValue + 4) >> 3;
}
// We handled the transpose permutation above and we don't
// need to permute the "no" permutation case.
if ((lastNonZero > 0) &&
(s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
(s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
ff_block_permute(data, s->dsp.idct_permutation,
s->intra_scantable.scantable, lastNonZero);
}
return lastNonZero;
}
/* AltiVec version of dct_unquantize_h263
this code assumes `block' is 16 bytes-aligned */
static void dct_unquantize_h263_altivec(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
int i, level, qmul, qadd;
int nCoeffs;
assert(s->block_last_index[n]>=0);
qadd = (qscale - 1) | 1;
qmul = qscale << 1;
if (s->mb_intra) {
if (!s->h263_aic) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
}else
qadd = 0;
i = 1;
nCoeffs= 63; //does not always use zigzag table
} else {
i = 0;
nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
}
{
register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
DECLARE_ALIGNED(16, short, qmul8) = qmul;
DECLARE_ALIGNED(16, short, qadd8) = qadd;
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
register vector bool short blockv_null, blockv_neg;
register short backup_0 = block[0];
register int j = 0;
qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
nqaddv = vec_sub(vczero, qaddv);
// vectorize all the 16 bytes-aligned blocks
// of 8 elements
for(; (j + 7) <= nCoeffs ; j+=8) {
blockv = vec_ld(j << 1, block);
blockv_neg = vec_cmplt(blockv, vczero);
blockv_null = vec_cmpeq(blockv, vczero);
// choose between +qadd or -qadd as the third operand
temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
// multiply & add (block{i,i+7} * qmul [+-] qadd)
temp1 = vec_mladd(blockv, qmulv, temp1);
// put 0 where block[{i,i+7} used to have 0
blockv = vec_sel(temp1, blockv, blockv_null);
vec_st(blockv, j << 1, block);
}
// if nCoeffs isn't a multiple of 8, finish the job
// using good old scalar units.
// (we could do it using a truncated vector,
// but I'm not sure it's worth the hassle)
for(; j <= nCoeffs ; j++) {
level = block[j];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
block[j] = level;
}
}
if (i == 1) {
// cheat. this avoid special-casing the first iteration
block[0] = backup_0;
}
}
}
void ff_MPV_common_init_altivec(MpegEncContext *s)
{
if (!(av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)) return;
// Test to make sure that the dct required alignments are met.
if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
(((long)(s->q_inter_matrix) & 0x0f) != 0)) {
av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
"to use AltiVec DCT. Reverting to non-AltiVec version.\n");
return;
}
if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
"to use AltiVec DCT. Reverting to non-AltiVec version.\n");
return;
}
if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
(s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
}
}