ffmpeg/libswscale/utils.c
Ronald S. Bultje 1deb08fcb6 swscale: align vertical filtersize by 2 on x86.
The vertical scaler handles 2 rows at a time and thus requires
alignment by 2, or else it'll read invalid memory and result in
corrupt output.
2011-11-05 07:06:38 -07:00

1525 lines
54 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include "config.h"
#include <assert.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#if HAVE_VIRTUALALLOC
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "rgb2rgb.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/x86_cpu.h"
#include "libavutil/cpu.h"
#include "libavutil/avutil.h"
#include "libavutil/bswap.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
unsigned swscale_version(void)
{
return LIBSWSCALE_VERSION_INT;
}
const char *swscale_configuration(void)
{
return LIBAV_CONFIGURATION;
}
const char *swscale_license(void)
{
#define LICENSE_PREFIX "libswscale license: "
return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
#define RET 0xC3 //near return opcode for x86
typedef struct FormatEntry {
int is_supported_in, is_supported_out;
} FormatEntry;
const static FormatEntry format_entries[PIX_FMT_NB] = {
[PIX_FMT_YUV420P] = { 1 , 1 },
[PIX_FMT_YUYV422] = { 1 , 1 },
[PIX_FMT_RGB24] = { 1 , 1 },
[PIX_FMT_BGR24] = { 1 , 1 },
[PIX_FMT_YUV422P] = { 1 , 1 },
[PIX_FMT_YUV444P] = { 1 , 1 },
[PIX_FMT_YUV410P] = { 1 , 1 },
[PIX_FMT_YUV411P] = { 1 , 1 },
[PIX_FMT_GRAY8] = { 1 , 1 },
[PIX_FMT_MONOWHITE] = { 1 , 1 },
[PIX_FMT_MONOBLACK] = { 1 , 1 },
[PIX_FMT_PAL8] = { 1 , 0 },
[PIX_FMT_YUVJ420P] = { 1 , 1 },
[PIX_FMT_YUVJ422P] = { 1 , 1 },
[PIX_FMT_YUVJ444P] = { 1 , 1 },
[PIX_FMT_UYVY422] = { 1 , 1 },
[PIX_FMT_UYYVYY411] = { 0 , 0 },
[PIX_FMT_BGR8] = { 1 , 1 },
[PIX_FMT_BGR4] = { 0 , 1 },
[PIX_FMT_BGR4_BYTE] = { 1 , 1 },
[PIX_FMT_RGB8] = { 1 , 1 },
[PIX_FMT_RGB4] = { 0 , 1 },
[PIX_FMT_RGB4_BYTE] = { 1 , 1 },
[PIX_FMT_NV12] = { 1 , 1 },
[PIX_FMT_NV21] = { 1 , 1 },
[PIX_FMT_ARGB] = { 1 , 1 },
[PIX_FMT_RGBA] = { 1 , 1 },
[PIX_FMT_ABGR] = { 1 , 1 },
[PIX_FMT_BGRA] = { 1 , 1 },
[PIX_FMT_GRAY16BE] = { 1 , 1 },
[PIX_FMT_GRAY16LE] = { 1 , 1 },
[PIX_FMT_YUV440P] = { 1 , 1 },
[PIX_FMT_YUVJ440P] = { 1 , 1 },
[PIX_FMT_YUVA420P] = { 1 , 1 },
[PIX_FMT_RGB48BE] = { 1 , 1 },
[PIX_FMT_RGB48LE] = { 1 , 1 },
[PIX_FMT_RGB565BE] = { 1 , 1 },
[PIX_FMT_RGB565LE] = { 1 , 1 },
[PIX_FMT_RGB555BE] = { 1 , 1 },
[PIX_FMT_RGB555LE] = { 1 , 1 },
[PIX_FMT_BGR565BE] = { 1 , 1 },
[PIX_FMT_BGR565LE] = { 1 , 1 },
[PIX_FMT_BGR555BE] = { 1 , 1 },
[PIX_FMT_BGR555LE] = { 1 , 1 },
[PIX_FMT_YUV420P16LE] = { 1 , 1 },
[PIX_FMT_YUV420P16BE] = { 1 , 1 },
[PIX_FMT_YUV422P16LE] = { 1 , 1 },
[PIX_FMT_YUV422P16BE] = { 1 , 1 },
[PIX_FMT_YUV444P16LE] = { 1 , 1 },
[PIX_FMT_YUV444P16BE] = { 1 , 1 },
[PIX_FMT_RGB444LE] = { 0 , 1 },
[PIX_FMT_RGB444BE] = { 0 , 1 },
[PIX_FMT_BGR444LE] = { 0 , 1 },
[PIX_FMT_BGR444BE] = { 0 , 1 },
[PIX_FMT_Y400A] = { 1 , 0 },
[PIX_FMT_BGR48BE] = { 1 , 1 },
[PIX_FMT_BGR48LE] = { 1 , 1 },
[PIX_FMT_YUV420P9BE] = { 1 , 1 },
[PIX_FMT_YUV420P9LE] = { 1 , 1 },
[PIX_FMT_YUV420P10BE] = { 1 , 1 },
[PIX_FMT_YUV420P10LE] = { 1 , 1 },
[PIX_FMT_YUV422P9BE] = { 1 , 1 },
[PIX_FMT_YUV422P9LE] = { 1 , 1 },
[PIX_FMT_YUV422P10BE] = { 1 , 1 },
[PIX_FMT_YUV422P10LE] = { 1 , 1 },
[PIX_FMT_YUV444P9BE] = { 1 , 1 },
[PIX_FMT_YUV444P9LE] = { 1 , 1 },
[PIX_FMT_YUV444P10BE] = { 1 , 1 },
[PIX_FMT_YUV444P10LE] = { 1 , 1 },
};
int sws_isSupportedInput(enum PixelFormat pix_fmt)
{
return (unsigned)pix_fmt < PIX_FMT_NB ?
format_entries[pix_fmt].is_supported_in : 0;
}
int sws_isSupportedOutput(enum PixelFormat pix_fmt)
{
return (unsigned)pix_fmt < PIX_FMT_NB ?
format_entries[pix_fmt].is_supported_out : 0;
}
extern const int32_t ff_yuv2rgb_coeffs[8][4];
const char *sws_format_name(enum PixelFormat format)
{
if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
return av_pix_fmt_descriptors[format].name;
else
return "Unknown format";
}
static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
else return getSplineCoeff( 0.0,
b+ 2.0*c + 3.0*d,
c + 3.0*d,
-b- 3.0*c - 6.0*d,
dist-1.0);
}
static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
int64_t *filter=NULL;
int64_t *filter2=NULL;
const int64_t fone= 1LL<<54;
int ret= -1;
emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
// NOTE: the +3 is for the MMX(+1)/SSE(+3) scaler which reads over the end
FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+3)*sizeof(int16_t), fail);
if (FFABS(xInc - 0x10000) <10) { // unscaled
int i;
filterSize= 1;
FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
for (i=0; i<dstW; i++) {
filter[i*filterSize]= fone;
(*filterPos)[i]=i;
}
} else if (flags&SWS_POINT) { // lame looking point sampling mode
int i;
int xDstInSrc;
filterSize= 1;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
(*filterPos)[i]= xx;
filter[i]= fone;
xDstInSrc+= xInc;
}
} else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
int i;
int xDstInSrc;
filterSize= 2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
int j;
(*filterPos)[i]= xx;
//bilinear upscale / linear interpolate / area averaging
for (j=0; j<filterSize; j++) {
int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
if (coeff<0) coeff=0;
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
} else {
int xDstInSrc;
int sizeFactor;
if (flags&SWS_BICUBIC) sizeFactor= 4;
else if (flags&SWS_X) sizeFactor= 8;
else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
else if (flags&SWS_BILINEAR) sizeFactor= 2;
else {
sizeFactor= 0; //GCC warning killer
assert(0);
}
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
if (filterSize > srcW-2) filterSize=srcW-2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc - 0x10000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
int j;
(*filterPos)[i]= xx;
for (j=0; j<filterSize; j++) {
int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
double floatd;
int64_t coeff;
if (xInc > 1<<16)
d= d*dstW/srcW;
floatd= d * (1.0/(1<<30));
if (flags & SWS_BICUBIC) {
int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
if (d >= 1LL<<31) {
coeff = 0.0;
} else {
int64_t dd = (d * d) >> 30;
int64_t ddd = (dd * d) >> 30;
if (d < 1LL<<30)
coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
else
coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
}
coeff *= fone>>(30+24);
}
/* else if (flags & SWS_X) {
double p= param ? param*0.01 : 0.3;
coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
coeff*= pow(2.0, - p*d*d);
}*/
else if (flags & SWS_X) {
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
double c;
if (floatd<1.0)
c = cos(floatd*M_PI);
else
c=-1.0;
if (c<0.0) c= -pow(-c, A);
else c= pow( c, A);
coeff= (c*0.5 + 0.5)*fone;
} else if (flags & SWS_AREA) {
int64_t d2= d - (1<<29);
if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
else coeff=0.0;
coeff *= fone>>(30+16);
} else if (flags & SWS_GAUSS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (pow(2.0, - p*floatd*floatd))*fone;
} else if (flags & SWS_SINC) {
coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
} else if (flags & SWS_LANCZOS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
if (floatd>p) coeff=0;
} else if (flags & SWS_BILINEAR) {
coeff= (1<<30) - d;
if (coeff<0) coeff=0;
coeff *= fone >> 30;
} else if (flags & SWS_SPLINE) {
double p=-2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
} else {
coeff= 0.0; //GCC warning killer
assert(0);
}
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= 2*xInc;
}
}
/* apply src & dst Filter to filter -> filter2
av_free(filter);
*/
assert(filterSize>0);
filter2Size= filterSize;
if (srcFilter) filter2Size+= srcFilter->length - 1;
if (dstFilter) filter2Size+= dstFilter->length - 1;
assert(filter2Size>0);
FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
for (i=0; i<dstW; i++) {
int j, k;
if(srcFilter) {
for (k=0; k<srcFilter->length; k++) {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
}
} else {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + j]= filter[i*filterSize + j];
}
//FIXME dstFilter
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
}
av_freep(&filter);
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize= 0;
for (i=dstW-1; i>=0; i--) {
int min= filter2Size;
int j;
int64_t cutOff=0.0;
/* get rid of near zero elements on the left by shifting left */
for (j=0; j<filter2Size; j++) {
int k;
cutOff += FFABS(filter2[i*filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
/* preserve monotonicity because the core can't handle the filter otherwise */
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// move filter coefficients left
for (k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0;
(*filterPos)[i]++;
}
cutOff=0;
/* count near zeros on the right */
for (j=filter2Size-1; j>0; j--) {
cutOff += FFABS(filter2[i*filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
min--;
}
if (min>minFilterSize) minFilterSize= min;
}
if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
// we can handle the special case 4,
// so we don't want to go to the full 8
if (minFilterSize < 5)
filterAlign = 4;
// We really don't want to waste our time
// doing useless computation, so fall back on
// the scalar C code for very small filters.
// Vectorizing is worth it only if you have a
// decent-sized vector.
if (minFilterSize < 3)
filterAlign = 1;
}
if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign= 1;
}
assert(minFilterSize > 0);
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
assert(filterSize > 0);
filter= av_malloc(filterSize*dstW*sizeof(*filter));
if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
goto fail;
*outFilterSize= filterSize;
if (flags&SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i=0; i<dstW; i++) {
int j;
for (j=0; j<filterSize; j++) {
if (j>=filter2Size) filter[i*filterSize + j]= 0;
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
if((flags & SWS_BITEXACT) && j>=minFilterSize)
filter[i*filterSize + j]= 0;
}
}
//FIXME try to align filterPos if possible
//fix borders
for (i=0; i<dstW; i++) {
int j;
if ((*filterPos)[i] < 0) {
// move filter coefficients left to compensate for filterPos
for (j=1; j<filterSize; j++) {
int left= FFMAX(j + (*filterPos)[i], 0);
filter[i*filterSize + left] += filter[i*filterSize + j];
filter[i*filterSize + j]=0;
}
(*filterPos)[i]= 0;
}
if ((*filterPos)[i] + filterSize > srcW) {
int shift= (*filterPos)[i] + filterSize - srcW;
// move filter coefficients right to compensate for filterPos
for (j=filterSize-2; j>=0; j--) {
int right= FFMIN(j + shift, filterSize-1);
filter[i*filterSize +right] += filter[i*filterSize +j];
filter[i*filterSize +j]=0;
}
(*filterPos)[i]= srcW - filterSize;
}
}
// Note the +1 is for the MMX scaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+3)*sizeof(int16_t), fail);
/* normalize & store in outFilter */
for (i=0; i<dstW; i++) {
int j;
int64_t error=0;
int64_t sum=0;
for (j=0; j<filterSize; j++) {
sum+= filter[i*filterSize + j];
}
sum= (sum + one/2)/ one;
for (j=0; j<*outFilterSize; j++) {
int64_t v= filter[i*filterSize + j] + error;
int intV= ROUNDED_DIV(v, sum);
(*outFilter)[i*(*outFilterSize) + j]= intV;
error= v - intV*sum;
}
}
(*filterPos)[dstW+0] =
(*filterPos)[dstW+1] =
(*filterPos)[dstW+2] = (*filterPos)[dstW-1]; // the MMX/SSE scaler will read over the end
for (i=0; i<*outFilterSize; i++) {
int k= (dstW - 1) * (*outFilterSize) + i;
(*outFilter)[k + 1 * (*outFilterSize)] =
(*outFilter)[k + 2 * (*outFilterSize)] =
(*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
}
ret=0;
fail:
av_free(filter);
av_free(filter2);
return ret;
}
#if HAVE_MMX2
static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
uint8_t *fragmentA;
x86_reg imm8OfPShufW1A;
x86_reg imm8OfPShufW2A;
x86_reg fragmentLengthA;
uint8_t *fragmentB;
x86_reg imm8OfPShufW1B;
x86_reg imm8OfPShufW2B;
x86_reg fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
/* This scaler is made of runtime-generated MMX2 code using specially
* tuned pshufw instructions. For every four output pixels, if four
* input pixels are enough for the fast bilinear scaling, then a chunk
* of fragmentB is used. If five input pixels are needed, then a chunk
* of fragmentA is used.
*/
//code fragment
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos=0;
for (i=0; i<dstW/numSplits; i++) {
int xx=xpos>>16;
if ((i&3) == 0) {
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
int inc = (d+1<4);
uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
int maxShift= 3-(d+inc);
int shift=0;
if (filterCode) {
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
filterPos[i/2]= xx;
memcpy(filterCode + fragmentPos, fragment, fragmentLength);
filterCode[fragmentPos + imm8OfPShufW1]=
(a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
filterCode[fragmentPos + imm8OfPShufW2]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+4-inc>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
if (shift && i>=shift) {
filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
filterPos[i/2]-=shift;
}
}
fragmentPos+= fragmentLength;
if (filterCode)
filterCode[fragmentPos]= RET;
}
xpos+=xInc;
}
if (filterCode)
filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
return fragmentPos + 1;
}
#endif /* HAVE_MMX2 */
static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
{
*h = av_pix_fmt_descriptors[format].log2_chroma_w;
*v = av_pix_fmt_descriptors[format].log2_chroma_h;
}
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
int srcRange, const int table[4], int dstRange,
int brightness, int contrast, int saturation)
{
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
c->brightness= brightness;
c->contrast = contrast;
c->saturation= saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
//FIXME factorize
if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
return 0;
}
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
int *srcRange, int **table, int *dstRange,
int *brightness, int *contrast, int *saturation)
{
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness= c->brightness;
*contrast = c->contrast;
*saturation= c->saturation;
return 0;
}
static int handle_jpeg(enum PixelFormat *format)
{
switch (*format) {
case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
default: return 0;
}
}
SwsContext *sws_alloc_context(void)
{
SwsContext *c= av_mallocz(sizeof(SwsContext));
c->av_class = &sws_context_class;
av_opt_set_defaults(c);
return c;
}
int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
{
int i;
int usesVFilter, usesHFilter;
int unscaled;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
int srcW= c->srcW;
int srcH= c->srcH;
int dstW= c->dstW;
int dstH= c->dstH;
int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1;
int flags, cpu_flags;
enum PixelFormat srcFormat= c->srcFormat;
enum PixelFormat dstFormat= c->dstFormat;
cpu_flags = av_get_cpu_flags();
flags = c->flags;
emms_c();
if (!rgb15to16) sws_rgb2rgb_init();
unscaled = (srcW == dstW && srcH == dstH);
if (!sws_isSupportedInput(srcFormat)) {
av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat));
return AVERROR(EINVAL);
}
if (!sws_isSupportedOutput(dstFormat)) {
av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat));
return AVERROR(EINVAL);
}
i= flags & ( SWS_POINT
|SWS_AREA
|SWS_BILINEAR
|SWS_FAST_BILINEAR
|SWS_BICUBIC
|SWS_X
|SWS_GAUSS
|SWS_LANCZOS
|SWS_SINC
|SWS_SPLINE
|SWS_BICUBLIN);
if(!i || (i & (i-1))) {
av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n");
return AVERROR(EINVAL);
}
/* sanity check */
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return AVERROR(EINVAL);
}
if (!dstFilter) dstFilter= &dummyFilter;
if (!srcFilter) srcFilter= &dummyFilter;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
c->vRounder= 4* 0x0001000100010001ULL;
usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
(srcFilter->chrV && srcFilter->chrV->length>1) ||
(dstFilter->lumV && dstFilter->lumV->length>1) ||
(dstFilter->chrV && dstFilter->chrV->length>1);
usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
(srcFilter->chrH && srcFilter->chrH->length>1) ||
(dstFilter->lumH && dstFilter->lumH->length>1) ||
(dstFilter->chrH && dstFilter->chrH->length>1);
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
// reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
if (flags & SWS_FULL_CHR_H_INT &&
dstFormat != PIX_FMT_RGBA &&
dstFormat != PIX_FMT_ARGB &&
dstFormat != PIX_FMT_BGRA &&
dstFormat != PIX_FMT_ABGR &&
dstFormat != PIX_FMT_RGB24 &&
dstFormat != PIX_FMT_BGR24) {
av_log(c, AV_LOG_ERROR,
"full chroma interpolation for destination format '%s' not yet implemented\n",
sws_format_name(dstFormat));
flags &= ~SWS_FULL_CHR_H_INT;
c->flags = flags;
}
if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
// drop some chroma lines if the user wants it
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample+= c->vChrDrop;
// drop every other pixel for chroma calculation unless user wants full chroma
if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
&& ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
c->chrSrcHSubSample=1;
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
/* unscaled special cases */
if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
ff_get_unscaled_swscale(c);
if (c->swScale) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return 0;
}
}
c->srcBpc = 1 + av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1;
if (c->srcBpc < 8)
c->srcBpc = 8;
c->dstBpc = 1 + av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1;
if (c->dstBpc < 8)
c->dstBpc = 8;
if (c->dstBpc == 16)
dst_stride <<= 1;
FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3,
fail);
if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2 && c->srcBpc == 8 && c->dstBpc <= 10) {
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
}
if (usesHFilter) c->canMMX2BeUsed=0;
}
else
c->canMMX2BeUsed=0;
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but no one should notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if (flags&SWS_FAST_BILINEAR) {
if (c->canMMX2BeUsed) {
c->lumXInc+= 20;
c->chrXInc+= 20;
}
//we don't use the x86 asm scaler if MMX is available
else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
}
}
/* precalculate horizontal scaler filter coefficients */
{
#if HAVE_MMX2
// can't downscale !!!
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
#ifdef MAP_ANONYMOUS
c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#elif HAVE_VIRTUALALLOC
c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
#endif
if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
return AVERROR(ENOMEM);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
#ifdef MAP_ANONYMOUS
mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
#endif
} else
#endif /* HAVE_MMX2 */
{
const int filterAlign=
(HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
(HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1;
if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
srcFilter->lumH, dstFilter->lumH, c->param) < 0)
goto fail;
if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
srcFilter->chrH, dstFilter->chrH, c->param) < 0)
goto fail;
}
} // initialize horizontal stuff
/* precalculate vertical scaler filter coefficients */
{
const int filterAlign=
(HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
(HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1;
if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
srcFilter->lumV, dstFilter->lumV, c->param) < 0)
goto fail;
if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
srcFilter->chrV, dstFilter->chrV, c->param) < 0)
goto fail;
#if HAVE_ALTIVEC
FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
int j;
short *p = (short *)&c->vYCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vLumFilter[i];
}
for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
int j;
short *p = (short *)&c->vCCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vChrFilter[i];
}
#endif
}
// calculate buffer sizes so that they won't run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for (i=0; i<dstH; i++) {
int chrI= i*c->chrDstH / dstH;
int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
nextSlice>>= c->chrSrcVSubSample;
nextSlice<<= c->chrSrcVSubSample;
if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
// allocate several megabytes to handle all possible cases)
FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
//Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
/* align at 16 bytes for AltiVec */
for (i=0; i<c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
}
// 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
c->uv_off_px = dst_stride_px + 64 / (c->dstBpc &~ 7);
c->uv_off_byte = dst_stride + 16;
for (i=0; i<c->vChrBufSize; i++) {
FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+32, fail);
c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
for (i=0; i<c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
}
//try to avoid drawing green stuff between the right end and the stride end
for (i=0; i<c->vChrBufSize; i++)
memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
assert(c->chrDstH <= dstH);
if (flags&SWS_PRINT_INFO) {
if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
av_log(c, AV_LOG_INFO, "from %s to %s%s ",
sws_format_name(srcFormat),
#ifdef DITHER1XBPP
dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
#else
"",
#endif
sws_format_name(dstFormat));
if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
else av_log(c, AV_LOG_INFO, "using C\n");
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
}
c->swScale= ff_getSwsFunc(c);
return 0;
fail: //FIXME replace things by appropriate error codes
return -1;
}
#if FF_API_SWS_GETCONTEXT
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
{
SwsContext *c;
if(!(c=sws_alloc_context()))
return NULL;
c->flags= flags;
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->srcRange = handle_jpeg(&srcFormat);
c->dstRange = handle_jpeg(&dstFormat);
c->srcFormat= srcFormat;
c->dstFormat= dstFormat;
if (param) {
c->param[0] = param[0];
c->param[1] = param[1];
}
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
if(sws_init_context(c, srcFilter, dstFilter) < 0){
sws_freeContext(c);
return NULL;
}
return c;
}
#endif
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
float lumaSharpen, float chromaSharpen,
float chromaHShift, float chromaVShift,
int verbose)
{
SwsFilter *filter= av_malloc(sizeof(SwsFilter));
if (!filter)
return NULL;
if (lumaGBlur!=0.0) {
filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
} else {
filter->lumH= sws_getIdentityVec();
filter->lumV= sws_getIdentityVec();
}
if (chromaGBlur!=0.0) {
filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
} else {
filter->chrH= sws_getIdentityVec();
filter->chrV= sws_getIdentityVec();
}
if (chromaSharpen!=0.0) {
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->chrH, -chromaSharpen);
sws_scaleVec(filter->chrV, -chromaSharpen);
sws_addVec(filter->chrH, id);
sws_addVec(filter->chrV, id);
sws_freeVec(id);
}
if (lumaSharpen!=0.0) {
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->lumH, -lumaSharpen);
sws_scaleVec(filter->lumV, -lumaSharpen);
sws_addVec(filter->lumH, id);
sws_addVec(filter->lumV, id);
sws_freeVec(id);
}
if (chromaHShift != 0.0)
sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
if (chromaVShift != 0.0)
sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
sws_normalizeVec(filter->chrH, 1.0);
sws_normalizeVec(filter->chrV, 1.0);
sws_normalizeVec(filter->lumH, 1.0);
sws_normalizeVec(filter->lumV, 1.0);
if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
return filter;
}
SwsVector *sws_allocVec(int length)
{
SwsVector *vec = av_malloc(sizeof(SwsVector));
if (!vec)
return NULL;
vec->length = length;
vec->coeff = av_malloc(sizeof(double) * length);
if (!vec->coeff)
av_freep(&vec);
return vec;
}
SwsVector *sws_getGaussianVec(double variance, double quality)
{
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double middle= (length-1)*0.5;
SwsVector *vec= sws_allocVec(length);
if (!vec)
return NULL;
for (i=0; i<length; i++) {
double dist= i-middle;
vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
}
sws_normalizeVec(vec, 1.0);
return vec;
}
SwsVector *sws_getConstVec(double c, int length)
{
int i;
SwsVector *vec= sws_allocVec(length);
if (!vec)
return NULL;
for (i=0; i<length; i++)
vec->coeff[i]= c;
return vec;
}
SwsVector *sws_getIdentityVec(void)
{
return sws_getConstVec(1.0, 1);
}
static double sws_dcVec(SwsVector *a)
{
int i;
double sum=0;
for (i=0; i<a->length; i++)
sum+= a->coeff[i];
return sum;
}
void sws_scaleVec(SwsVector *a, double scalar)
{
int i;
for (i=0; i<a->length; i++)
a->coeff[i]*= scalar;
}
void sws_normalizeVec(SwsVector *a, double height)
{
sws_scaleVec(a, height/sws_dcVec(a));
}
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
{
int length= a->length + b->length - 1;
int i, j;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) {
for (j=0; j<b->length; j++) {
vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
}
}
return vec;
}
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
{
int length= FFMAX(a->length, b->length);
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
return vec;
}
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
{
int length= FFMAX(a->length, b->length);
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
{
int length= a->length + FFABS(shift)*2;
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) {
vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
}
return vec;
}
void sws_shiftVec(SwsVector *a, int shift)
{
SwsVector *shifted= sws_getShiftedVec(a, shift);
av_free(a->coeff);
a->coeff= shifted->coeff;
a->length= shifted->length;
av_free(shifted);
}
void sws_addVec(SwsVector *a, SwsVector *b)
{
SwsVector *sum= sws_sumVec(a, b);
av_free(a->coeff);
a->coeff= sum->coeff;
a->length= sum->length;
av_free(sum);
}
void sws_subVec(SwsVector *a, SwsVector *b)
{
SwsVector *diff= sws_diffVec(a, b);
av_free(a->coeff);
a->coeff= diff->coeff;
a->length= diff->length;
av_free(diff);
}
void sws_convVec(SwsVector *a, SwsVector *b)
{
SwsVector *conv= sws_getConvVec(a, b);
av_free(a->coeff);
a->coeff= conv->coeff;
a->length= conv->length;
av_free(conv);
}
SwsVector *sws_cloneVec(SwsVector *a)
{
int i;
SwsVector *vec= sws_allocVec(a->length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
return vec;
}
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
{
int i;
double max=0;
double min=0;
double range;
for (i=0; i<a->length; i++)
if (a->coeff[i]>max) max= a->coeff[i];
for (i=0; i<a->length; i++)
if (a->coeff[i]<min) min= a->coeff[i];
range= max - min;
for (i=0; i<a->length; i++) {
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
for (;x>0; x--) av_log(log_ctx, log_level, " ");
av_log(log_ctx, log_level, "|\n");
}
}
void sws_freeVec(SwsVector *a)
{
if (!a) return;
av_freep(&a->coeff);
a->length=0;
av_free(a);
}
void sws_freeFilter(SwsFilter *filter)
{
if (!filter) return;
if (filter->lumH) sws_freeVec(filter->lumH);
if (filter->lumV) sws_freeVec(filter->lumV);
if (filter->chrH) sws_freeVec(filter->chrH);
if (filter->chrV) sws_freeVec(filter->chrV);
av_free(filter);
}
void sws_freeContext(SwsContext *c)
{
int i;
if (!c) return;
if (c->lumPixBuf) {
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->lumPixBuf[i]);
av_freep(&c->lumPixBuf);
}
if (c->chrUPixBuf) {
for (i=0; i<c->vChrBufSize; i++)
av_freep(&c->chrUPixBuf[i]);
av_freep(&c->chrUPixBuf);
av_freep(&c->chrVPixBuf);
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->alpPixBuf[i]);
av_freep(&c->alpPixBuf);
}
av_freep(&c->vLumFilter);
av_freep(&c->vChrFilter);
av_freep(&c->hLumFilter);
av_freep(&c->hChrFilter);
#if HAVE_ALTIVEC
av_freep(&c->vYCoeffsBank);
av_freep(&c->vCCoeffsBank);
#endif
av_freep(&c->vLumFilterPos);
av_freep(&c->vChrFilterPos);
av_freep(&c->hLumFilterPos);
av_freep(&c->hChrFilterPos);
#if HAVE_MMX
#ifdef MAP_ANONYMOUS
if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
#elif HAVE_VIRTUALALLOC
if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
#else
av_free(c->lumMmx2FilterCode);
av_free(c->chrMmx2FilterCode);
#endif
c->lumMmx2FilterCode=NULL;
c->chrMmx2FilterCode=NULL;
#endif /* HAVE_MMX */
av_freep(&c->yuvTable);
av_free(c->formatConvBuffer);
av_free(c);
}
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
{
static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
if (!param)
param = default_param;
if (context &&
(context->srcW != srcW ||
context->srcH != srcH ||
context->srcFormat != srcFormat ||
context->dstW != dstW ||
context->dstH != dstH ||
context->dstFormat != dstFormat ||
context->flags != flags ||
context->param[0] != param[0] ||
context->param[1] != param[1])) {
sws_freeContext(context);
context = NULL;
}
if (!context) {
if (!(context = sws_alloc_context()))
return NULL;
context->srcW = srcW;
context->srcH = srcH;
context->srcRange = handle_jpeg(&srcFormat);
context->srcFormat = srcFormat;
context->dstW = dstW;
context->dstH = dstH;
context->dstRange = handle_jpeg(&dstFormat);
context->dstFormat = dstFormat;
context->flags = flags;
context->param[0] = param[0];
context->param[1] = param[1];
sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
if (sws_init_context(context, srcFilter, dstFilter) < 0) {
sws_freeContext(context);
return NULL;
}
}
return context;
}